blob: 213ef7832d362c61369a6bd7e827b476851621fd [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package escape
import (
"fmt"
"math"
"strings"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/logopt"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// Escape analysis.
//
// Here we analyze functions to determine which Go variables
// (including implicit allocations such as calls to "new" or "make",
// composite literals, etc.) can be allocated on the stack. The two
// key invariants we have to ensure are: (1) pointers to stack objects
// cannot be stored in the heap, and (2) pointers to a stack object
// cannot outlive that object (e.g., because the declaring function
// returned and destroyed the object's stack frame, or its space is
// reused across loop iterations for logically distinct variables).
//
// We implement this with a static data-flow analysis of the AST.
// First, we construct a directed weighted graph where vertices
// (termed "locations") represent variables allocated by statements
// and expressions, and edges represent assignments between variables
// (with weights representing addressing/dereference counts).
//
// Next we walk the graph looking for assignment paths that might
// violate the invariants stated above. If a variable v's address is
// stored in the heap or elsewhere that may outlive it, then v is
// marked as requiring heap allocation.
//
// To support interprocedural analysis, we also record data-flow from
// each function's parameters to the heap and to its result
// parameters. This information is summarized as "parameter tags",
// which are used at static call sites to improve escape analysis of
// function arguments.
// Constructing the location graph.
//
// Every allocating statement (e.g., variable declaration) or
// expression (e.g., "new" or "make") is first mapped to a unique
// "location."
//
// We also model every Go assignment as a directed edges between
// locations. The number of dereference operations minus the number of
// addressing operations is recorded as the edge's weight (termed
// "derefs"). For example:
//
// p = &q // -1
// p = q // 0
// p = *q // 1
// p = **q // 2
//
// p = **&**&q // 2
//
// Note that the & operator can only be applied to addressable
// expressions, and the expression &x itself is not addressable, so
// derefs cannot go below -1.
//
// Every Go language construct is lowered into this representation,
// generally without sensitivity to flow, path, or context; and
// without distinguishing elements within a compound variable. For
// example:
//
// var x struct { f, g *int }
// var u []*int
//
// x.f = u[0]
//
// is modeled simply as
//
// x = *u
//
// That is, we don't distinguish x.f from x.g, or u[0] from u[1],
// u[2], etc. However, we do record the implicit dereference involved
// in indexing a slice.
// A batch holds escape analysis state that's shared across an entire
// batch of functions being analyzed at once.
type batch struct {
allLocs []*location
closures []closure
heapLoc location
blankLoc location
}
// A closure holds a closure expression and its spill hole (i.e.,
// where the hole representing storing into its closure record).
type closure struct {
k hole
clo *ir.ClosureExpr
}
// An escape holds state specific to a single function being analyzed
// within a batch.
type escape struct {
*batch
curfn *ir.Func // function being analyzed
labels map[*types.Sym]labelState // known labels
// loopDepth counts the current loop nesting depth within
// curfn. It increments within each "for" loop and at each
// label with a corresponding backwards "goto" (i.e.,
// unstructured loop).
loopDepth int
}
// An location represents an abstract location that stores a Go
// variable.
type location struct {
n ir.Node // represented variable or expression, if any
curfn *ir.Func // enclosing function
edges []edge // incoming edges
loopDepth int // loopDepth at declaration
// resultIndex records the tuple index (starting at 1) for
// PPARAMOUT variables within their function's result type.
// For non-PPARAMOUT variables it's 0.
resultIndex int
// derefs and walkgen are used during walkOne to track the
// minimal dereferences from the walk root.
derefs int // >= -1
walkgen uint32
// dst and dstEdgeindex track the next immediate assignment
// destination location during walkone, along with the index
// of the edge pointing back to this location.
dst *location
dstEdgeIdx int
// queued is used by walkAll to track whether this location is
// in the walk queue.
queued bool
// escapes reports whether the represented variable's address
// escapes; that is, whether the variable must be heap
// allocated.
escapes bool
// transient reports whether the represented expression's
// address does not outlive the statement; that is, whether
// its storage can be immediately reused.
transient bool
// paramEsc records the represented parameter's leak set.
paramEsc leaks
captured bool // has a closure captured this variable?
reassigned bool // has this variable been reassigned?
addrtaken bool // has this variable's address been taken?
}
// An edge represents an assignment edge between two Go variables.
type edge struct {
src *location
derefs int // >= -1
notes *note
}
// Fmt is called from node printing to print information about escape analysis results.
func Fmt(n ir.Node) string {
text := ""
switch n.Esc() {
case ir.EscUnknown:
break
case ir.EscHeap:
text = "esc(h)"
case ir.EscNone:
text = "esc(no)"
case ir.EscNever:
text = "esc(N)"
default:
text = fmt.Sprintf("esc(%d)", n.Esc())
}
if n.Op() == ir.ONAME {
n := n.(*ir.Name)
if loc, ok := n.Opt.(*location); ok && loc.loopDepth != 0 {
if text != "" {
text += " "
}
text += fmt.Sprintf("ld(%d)", loc.loopDepth)
}
}
return text
}
// Batch performs escape analysis on a minimal batch of
// functions.
func Batch(fns []*ir.Func, recursive bool) {
for _, fn := range fns {
if fn.Op() != ir.ODCLFUNC {
base.Fatalf("unexpected node: %v", fn)
}
}
var b batch
b.heapLoc.escapes = true
// Construct data-flow graph from syntax trees.
for _, fn := range fns {
if base.Flag.W > 1 {
s := fmt.Sprintf("\nbefore escape %v", fn)
ir.Dump(s, fn)
}
b.initFunc(fn)
}
for _, fn := range fns {
if !fn.IsHiddenClosure() {
b.walkFunc(fn)
}
}
// We've walked the function bodies, so we've seen everywhere a
// variable might be reassigned or have it's address taken. Now we
// can decide whether closures should capture their free variables
// by value or reference.
for _, closure := range b.closures {
b.flowClosure(closure.k, closure.clo)
}
b.closures = nil
for _, loc := range b.allLocs {
if why := HeapAllocReason(loc.n); why != "" {
b.flow(b.heapHole().addr(loc.n, why), loc)
}
}
b.walkAll()
b.finish(fns)
}
func (b *batch) with(fn *ir.Func) *escape {
return &escape{
batch: b,
curfn: fn,
loopDepth: 1,
}
}
func (b *batch) initFunc(fn *ir.Func) {
e := b.with(fn)
if fn.Esc() != escFuncUnknown {
base.Fatalf("unexpected node: %v", fn)
}
fn.SetEsc(escFuncPlanned)
if base.Flag.LowerM > 3 {
ir.Dump("escAnalyze", fn)
}
// Allocate locations for local variables.
for _, n := range fn.Dcl {
if n.Op() == ir.ONAME {
e.newLoc(n, false)
}
}
// Initialize resultIndex for result parameters.
for i, f := range fn.Type().Results().FieldSlice() {
e.oldLoc(f.Nname.(*ir.Name)).resultIndex = 1 + i
}
}
func (b *batch) walkFunc(fn *ir.Func) {
e := b.with(fn)
fn.SetEsc(escFuncStarted)
// Identify labels that mark the head of an unstructured loop.
ir.Visit(fn, func(n ir.Node) {
switch n.Op() {
case ir.OLABEL:
n := n.(*ir.LabelStmt)
if e.labels == nil {
e.labels = make(map[*types.Sym]labelState)
}
e.labels[n.Label] = nonlooping
case ir.OGOTO:
// If we visited the label before the goto,
// then this is a looping label.
n := n.(*ir.BranchStmt)
if e.labels[n.Label] == nonlooping {
e.labels[n.Label] = looping
}
}
})
e.block(fn.Body)
if len(e.labels) != 0 {
base.FatalfAt(fn.Pos(), "leftover labels after walkFunc")
}
}
func (b *batch) flowClosure(k hole, clo *ir.ClosureExpr) {
for _, cv := range clo.Func.ClosureVars {
n := cv.Canonical()
loc := b.oldLoc(cv)
if !loc.captured {
base.FatalfAt(cv.Pos(), "closure variable never captured: %v", cv)
}
// Capture by value for variables <= 128 bytes that are never reassigned.
n.SetByval(!loc.addrtaken && !loc.reassigned && n.Type().Size() <= 128)
if !n.Byval() {
n.SetAddrtaken(true)
}
if base.Flag.LowerM > 1 {
how := "ref"
if n.Byval() {
how = "value"
}
base.WarnfAt(n.Pos(), "%v capturing by %s: %v (addr=%v assign=%v width=%d)", n.Curfn, how, n, loc.addrtaken, loc.reassigned, n.Type().Size())
}
// Flow captured variables to closure.
k := k
if !cv.Byval() {
k = k.addr(cv, "reference")
}
b.flow(k.note(cv, "captured by a closure"), loc)
}
}
// Below we implement the methods for walking the AST and recording
// data flow edges. Note that because a sub-expression might have
// side-effects, it's important to always visit the entire AST.
//
// For example, write either:
//
// if x {
// e.discard(n.Left)
// } else {
// e.value(k, n.Left)
// }
//
// or
//
// if x {
// k = e.discardHole()
// }
// e.value(k, n.Left)
//
// Do NOT write:
//
// // BAD: possibly loses side-effects within n.Left
// if !x {
// e.value(k, n.Left)
// }
// stmt evaluates a single Go statement.
func (e *escape) stmt(n ir.Node) {
if n == nil {
return
}
lno := ir.SetPos(n)
defer func() {
base.Pos = lno
}()
if base.Flag.LowerM > 2 {
fmt.Printf("%v:[%d] %v stmt: %v\n", base.FmtPos(base.Pos), e.loopDepth, e.curfn, n)
}
e.stmts(n.Init())
switch n.Op() {
default:
base.Fatalf("unexpected stmt: %v", n)
case ir.ODCLCONST, ir.ODCLTYPE, ir.OFALL, ir.OINLMARK:
// nop
case ir.OBREAK, ir.OCONTINUE, ir.OGOTO:
// TODO(mdempsky): Handle dead code?
case ir.OBLOCK:
n := n.(*ir.BlockStmt)
e.stmts(n.List)
case ir.ODCL:
// Record loop depth at declaration.
n := n.(*ir.Decl)
if !ir.IsBlank(n.X) {
e.dcl(n.X)
}
case ir.OLABEL:
n := n.(*ir.LabelStmt)
switch e.labels[n.Label] {
case nonlooping:
if base.Flag.LowerM > 2 {
fmt.Printf("%v:%v non-looping label\n", base.FmtPos(base.Pos), n)
}
case looping:
if base.Flag.LowerM > 2 {
fmt.Printf("%v: %v looping label\n", base.FmtPos(base.Pos), n)
}
e.loopDepth++
default:
base.Fatalf("label missing tag")
}
delete(e.labels, n.Label)
case ir.OIF:
n := n.(*ir.IfStmt)
e.discard(n.Cond)
e.block(n.Body)
e.block(n.Else)
case ir.OFOR, ir.OFORUNTIL:
n := n.(*ir.ForStmt)
e.loopDepth++
e.discard(n.Cond)
e.stmt(n.Post)
e.block(n.Body)
e.loopDepth--
case ir.ORANGE:
// for Key, Value = range X { Body }
n := n.(*ir.RangeStmt)
// X is evaluated outside the loop.
tmp := e.newLoc(nil, false)
e.expr(tmp.asHole(), n.X)
e.loopDepth++
ks := e.addrs([]ir.Node{n.Key, n.Value})
if n.X.Type().IsArray() {
e.flow(ks[1].note(n, "range"), tmp)
} else {
e.flow(ks[1].deref(n, "range-deref"), tmp)
}
e.reassigned(ks, n)
e.block(n.Body)
e.loopDepth--
case ir.OSWITCH:
n := n.(*ir.SwitchStmt)
if guard, ok := n.Tag.(*ir.TypeSwitchGuard); ok {
var ks []hole
if guard.Tag != nil {
for _, cas := range n.Cases {
cv := cas.Var
k := e.dcl(cv) // type switch variables have no ODCL.
if cv.Type().HasPointers() {
ks = append(ks, k.dotType(cv.Type(), cas, "switch case"))
}
}
}
e.expr(e.teeHole(ks...), n.Tag.(*ir.TypeSwitchGuard).X)
} else {
e.discard(n.Tag)
}
for _, cas := range n.Cases {
e.discards(cas.List)
e.block(cas.Body)
}
case ir.OSELECT:
n := n.(*ir.SelectStmt)
for _, cas := range n.Cases {
e.stmt(cas.Comm)
e.block(cas.Body)
}
case ir.ORECV:
// TODO(mdempsky): Consider e.discard(n.Left).
n := n.(*ir.UnaryExpr)
e.exprSkipInit(e.discardHole(), n) // already visited n.Ninit
case ir.OSEND:
n := n.(*ir.SendStmt)
e.discard(n.Chan)
e.assignHeap(n.Value, "send", n)
case ir.OAS:
n := n.(*ir.AssignStmt)
e.assignList([]ir.Node{n.X}, []ir.Node{n.Y}, "assign", n)
case ir.OASOP:
n := n.(*ir.AssignOpStmt)
// TODO(mdempsky): Worry about OLSH/ORSH?
e.assignList([]ir.Node{n.X}, []ir.Node{n.Y}, "assign", n)
case ir.OAS2:
n := n.(*ir.AssignListStmt)
e.assignList(n.Lhs, n.Rhs, "assign-pair", n)
case ir.OAS2DOTTYPE: // v, ok = x.(type)
n := n.(*ir.AssignListStmt)
e.assignList(n.Lhs, n.Rhs, "assign-pair-dot-type", n)
case ir.OAS2MAPR: // v, ok = m[k]
n := n.(*ir.AssignListStmt)
e.assignList(n.Lhs, n.Rhs, "assign-pair-mapr", n)
case ir.OAS2RECV, ir.OSELRECV2: // v, ok = <-ch
n := n.(*ir.AssignListStmt)
e.assignList(n.Lhs, n.Rhs, "assign-pair-receive", n)
case ir.OAS2FUNC:
n := n.(*ir.AssignListStmt)
e.stmts(n.Rhs[0].Init())
ks := e.addrs(n.Lhs)
e.call(ks, n.Rhs[0], nil)
e.reassigned(ks, n)
case ir.ORETURN:
n := n.(*ir.ReturnStmt)
results := e.curfn.Type().Results().FieldSlice()
dsts := make([]ir.Node, len(results))
for i, res := range results {
dsts[i] = res.Nname.(*ir.Name)
}
e.assignList(dsts, n.Results, "return", n)
case ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER, ir.OCLOSE, ir.OCOPY, ir.ODELETE, ir.OPANIC, ir.OPRINT, ir.OPRINTN, ir.ORECOVER:
e.call(nil, n, nil)
case ir.OGO, ir.ODEFER:
n := n.(*ir.GoDeferStmt)
e.stmts(n.Call.Init())
e.call(nil, n.Call, n)
case ir.OTAILCALL:
// TODO(mdempsky): Treat like a normal call? esc.go used to just ignore it.
}
}
func (e *escape) stmts(l ir.Nodes) {
for _, n := range l {
e.stmt(n)
}
}
// block is like stmts, but preserves loopDepth.
func (e *escape) block(l ir.Nodes) {
old := e.loopDepth
e.stmts(l)
e.loopDepth = old
}
// expr models evaluating an expression n and flowing the result into
// hole k.
func (e *escape) expr(k hole, n ir.Node) {
if n == nil {
return
}
e.stmts(n.Init())
e.exprSkipInit(k, n)
}
func (e *escape) exprSkipInit(k hole, n ir.Node) {
if n == nil {
return
}
lno := ir.SetPos(n)
defer func() {
base.Pos = lno
}()
uintptrEscapesHack := k.uintptrEscapesHack
k.uintptrEscapesHack = false
if uintptrEscapesHack && n.Op() == ir.OCONVNOP && n.(*ir.ConvExpr).X.Type().IsUnsafePtr() {
// nop
} else if k.derefs >= 0 && !n.Type().HasPointers() {
k.dst = &e.blankLoc
}
switch n.Op() {
default:
base.Fatalf("unexpected expr: %v", n)
case ir.OLITERAL, ir.ONIL, ir.OGETG, ir.OTYPE, ir.OMETHEXPR, ir.OLINKSYMOFFSET:
// nop
case ir.ONAME:
n := n.(*ir.Name)
if n.Class == ir.PFUNC || n.Class == ir.PEXTERN {
return
}
if n.IsClosureVar() && n.Defn == nil {
return // ".this" from method value wrapper
}
e.flow(k, e.oldLoc(n))
case ir.OPLUS, ir.ONEG, ir.OBITNOT, ir.ONOT:
n := n.(*ir.UnaryExpr)
e.discard(n.X)
case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.ODIV, ir.OMOD, ir.OLSH, ir.ORSH, ir.OAND, ir.OANDNOT, ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
n := n.(*ir.BinaryExpr)
e.discard(n.X)
e.discard(n.Y)
case ir.OANDAND, ir.OOROR:
n := n.(*ir.LogicalExpr)
e.discard(n.X)
e.discard(n.Y)
case ir.OADDR:
n := n.(*ir.AddrExpr)
e.expr(k.addr(n, "address-of"), n.X) // "address-of"
case ir.ODEREF:
n := n.(*ir.StarExpr)
e.expr(k.deref(n, "indirection"), n.X) // "indirection"
case ir.ODOT, ir.ODOTMETH, ir.ODOTINTER:
n := n.(*ir.SelectorExpr)
e.expr(k.note(n, "dot"), n.X)
case ir.ODOTPTR:
n := n.(*ir.SelectorExpr)
e.expr(k.deref(n, "dot of pointer"), n.X) // "dot of pointer"
case ir.ODOTTYPE, ir.ODOTTYPE2:
n := n.(*ir.TypeAssertExpr)
e.expr(k.dotType(n.Type(), n, "dot"), n.X)
case ir.OINDEX:
n := n.(*ir.IndexExpr)
if n.X.Type().IsArray() {
e.expr(k.note(n, "fixed-array-index-of"), n.X)
} else {
// TODO(mdempsky): Fix why reason text.
e.expr(k.deref(n, "dot of pointer"), n.X)
}
e.discard(n.Index)
case ir.OINDEXMAP:
n := n.(*ir.IndexExpr)
e.discard(n.X)
e.discard(n.Index)
case ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR, ir.OSLICESTR:
n := n.(*ir.SliceExpr)
e.expr(k.note(n, "slice"), n.X)
e.discard(n.Low)
e.discard(n.High)
e.discard(n.Max)
case ir.OCONV, ir.OCONVNOP:
n := n.(*ir.ConvExpr)
if ir.ShouldCheckPtr(e.curfn, 2) && n.Type().IsUnsafePtr() && n.X.Type().IsPtr() {
// When -d=checkptr=2 is enabled, treat
// conversions to unsafe.Pointer as an
// escaping operation. This allows better
// runtime instrumentation, since we can more
// easily detect object boundaries on the heap
// than the stack.
e.assignHeap(n.X, "conversion to unsafe.Pointer", n)
} else if n.Type().IsUnsafePtr() && n.X.Type().IsUintptr() {
e.unsafeValue(k, n.X)
} else {
e.expr(k, n.X)
}
case ir.OCONVIFACE:
n := n.(*ir.ConvExpr)
if !n.X.Type().IsInterface() && !types.IsDirectIface(n.X.Type()) {
k = e.spill(k, n)
}
e.expr(k.note(n, "interface-converted"), n.X)
case ir.ORECV:
n := n.(*ir.UnaryExpr)
e.discard(n.X)
case ir.OCALLMETH, ir.OCALLFUNC, ir.OCALLINTER, ir.OLEN, ir.OCAP, ir.OCOMPLEX, ir.OREAL, ir.OIMAG, ir.OAPPEND, ir.OCOPY:
e.call([]hole{k}, n, nil)
case ir.ONEW:
n := n.(*ir.UnaryExpr)
e.spill(k, n)
case ir.OMAKESLICE:
n := n.(*ir.MakeExpr)
e.spill(k, n)
e.discard(n.Len)
e.discard(n.Cap)
case ir.OMAKECHAN:
n := n.(*ir.MakeExpr)
e.discard(n.Len)
case ir.OMAKEMAP:
n := n.(*ir.MakeExpr)
e.spill(k, n)
e.discard(n.Len)
case ir.ORECOVER:
// nop
case ir.OCALLPART:
// Flow the receiver argument to both the closure and
// to the receiver parameter.
n := n.(*ir.SelectorExpr)
closureK := e.spill(k, n)
m := n.Selection
// We don't know how the method value will be called
// later, so conservatively assume the result
// parameters all flow to the heap.
//
// TODO(mdempsky): Change ks into a callback, so that
// we don't have to create this slice?
var ks []hole
for i := m.Type.NumResults(); i > 0; i-- {
ks = append(ks, e.heapHole())
}
name, _ := m.Nname.(*ir.Name)
paramK := e.tagHole(ks, name, m.Type.Recv())
e.expr(e.teeHole(paramK, closureK), n.X)
case ir.OPTRLIT:
n := n.(*ir.AddrExpr)
e.expr(e.spill(k, n), n.X)
case ir.OARRAYLIT:
n := n.(*ir.CompLitExpr)
for _, elt := range n.List {
if elt.Op() == ir.OKEY {
elt = elt.(*ir.KeyExpr).Value
}
e.expr(k.note(n, "array literal element"), elt)
}
case ir.OSLICELIT:
n := n.(*ir.CompLitExpr)
k = e.spill(k, n)
k.uintptrEscapesHack = uintptrEscapesHack // for ...uintptr parameters
for _, elt := range n.List {
if elt.Op() == ir.OKEY {
elt = elt.(*ir.KeyExpr).Value
}
e.expr(k.note(n, "slice-literal-element"), elt)
}
case ir.OSTRUCTLIT:
n := n.(*ir.CompLitExpr)
for _, elt := range n.List {
e.expr(k.note(n, "struct literal element"), elt.(*ir.StructKeyExpr).Value)
}
case ir.OMAPLIT:
n := n.(*ir.CompLitExpr)
e.spill(k, n)
// Map keys and values are always stored in the heap.
for _, elt := range n.List {
elt := elt.(*ir.KeyExpr)
e.assignHeap(elt.Key, "map literal key", n)
e.assignHeap(elt.Value, "map literal value", n)
}
case ir.OCLOSURE:
n := n.(*ir.ClosureExpr)
k = e.spill(k, n)
e.closures = append(e.closures, closure{k, n})
if fn := n.Func; fn.IsHiddenClosure() {
for _, cv := range fn.ClosureVars {
if loc := e.oldLoc(cv); !loc.captured {
loc.captured = true
// Ignore reassignments to the variable in straightline code
// preceding the first capture by a closure.
if loc.loopDepth == e.loopDepth {
loc.reassigned = false
}
}
}
for _, n := range fn.Dcl {
// Add locations for local variables of the
// closure, if needed, in case we're not including
// the closure func in the batch for escape
// analysis (happens for escape analysis called
// from reflectdata.methodWrapper)
if n.Op() == ir.ONAME && n.Opt == nil {
e.with(fn).newLoc(n, false)
}
}
e.walkFunc(fn)
}
case ir.ORUNES2STR, ir.OBYTES2STR, ir.OSTR2RUNES, ir.OSTR2BYTES, ir.ORUNESTR:
n := n.(*ir.ConvExpr)
e.spill(k, n)
e.discard(n.X)
case ir.OADDSTR:
n := n.(*ir.AddStringExpr)
e.spill(k, n)
// Arguments of OADDSTR never escape;
// runtime.concatstrings makes sure of that.
e.discards(n.List)
}
}
// unsafeValue evaluates a uintptr-typed arithmetic expression looking
// for conversions from an unsafe.Pointer.
func (e *escape) unsafeValue(k hole, n ir.Node) {
if n.Type().Kind() != types.TUINTPTR {
base.Fatalf("unexpected type %v for %v", n.Type(), n)
}
if k.addrtaken {
base.Fatalf("unexpected addrtaken")
}
e.stmts(n.Init())
switch n.Op() {
case ir.OCONV, ir.OCONVNOP:
n := n.(*ir.ConvExpr)
if n.X.Type().IsUnsafePtr() {
e.expr(k, n.X)
} else {
e.discard(n.X)
}
case ir.ODOTPTR:
n := n.(*ir.SelectorExpr)
if ir.IsReflectHeaderDataField(n) {
e.expr(k.deref(n, "reflect.Header.Data"), n.X)
} else {
e.discard(n.X)
}
case ir.OPLUS, ir.ONEG, ir.OBITNOT:
n := n.(*ir.UnaryExpr)
e.unsafeValue(k, n.X)
case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.ODIV, ir.OMOD, ir.OAND, ir.OANDNOT:
n := n.(*ir.BinaryExpr)
e.unsafeValue(k, n.X)
e.unsafeValue(k, n.Y)
case ir.OLSH, ir.ORSH:
n := n.(*ir.BinaryExpr)
e.unsafeValue(k, n.X)
// RHS need not be uintptr-typed (#32959) and can't meaningfully
// flow pointers anyway.
e.discard(n.Y)
default:
e.exprSkipInit(e.discardHole(), n)
}
}
// discard evaluates an expression n for side-effects, but discards
// its value.
func (e *escape) discard(n ir.Node) {
e.expr(e.discardHole(), n)
}
func (e *escape) discards(l ir.Nodes) {
for _, n := range l {
e.discard(n)
}
}
// addr evaluates an addressable expression n and returns a hole
// that represents storing into the represented location.
func (e *escape) addr(n ir.Node) hole {
if n == nil || ir.IsBlank(n) {
// Can happen in select case, range, maybe others.
return e.discardHole()
}
k := e.heapHole()
switch n.Op() {
default:
base.Fatalf("unexpected addr: %v", n)
case ir.ONAME:
n := n.(*ir.Name)
if n.Class == ir.PEXTERN {
break
}
k = e.oldLoc(n).asHole()
case ir.OLINKSYMOFFSET:
break
case ir.ODOT:
n := n.(*ir.SelectorExpr)
k = e.addr(n.X)
case ir.OINDEX:
n := n.(*ir.IndexExpr)
e.discard(n.Index)
if n.X.Type().IsArray() {
k = e.addr(n.X)
} else {
e.discard(n.X)
}
case ir.ODEREF, ir.ODOTPTR:
e.discard(n)
case ir.OINDEXMAP:
n := n.(*ir.IndexExpr)
e.discard(n.X)
e.assignHeap(n.Index, "key of map put", n)
}
return k
}
func (e *escape) addrs(l ir.Nodes) []hole {
var ks []hole
for _, n := range l {
ks = append(ks, e.addr(n))
}
return ks
}
// reassigned marks the locations associated with the given holes as
// reassigned, unless the location represents a variable declared and
// assigned exactly once by where.
func (e *escape) reassigned(ks []hole, where ir.Node) {
if as, ok := where.(*ir.AssignStmt); ok && as.Op() == ir.OAS && as.Y == nil {
if dst, ok := as.X.(*ir.Name); ok && dst.Op() == ir.ONAME && dst.Defn == nil {
// Zero-value assignment for variable declared without an
// explicit initial value. Assume this is its initialization
// statement.
return
}
}
for _, k := range ks {
loc := k.dst
// Variables declared by range statements are assigned on every iteration.
if n, ok := loc.n.(*ir.Name); ok && n.Defn == where && where.Op() != ir.ORANGE {
continue
}
loc.reassigned = true
}
}
// assignList evaluates the assignment dsts... = srcs....
func (e *escape) assignList(dsts, srcs []ir.Node, why string, where ir.Node) {
ks := e.addrs(dsts)
for i, k := range ks {
var src ir.Node
if i < len(srcs) {
src = srcs[i]
}
if dst := dsts[i]; dst != nil {
// Detect implicit conversion of uintptr to unsafe.Pointer when
// storing into reflect.{Slice,String}Header.
if dst.Op() == ir.ODOTPTR && ir.IsReflectHeaderDataField(dst) {
e.unsafeValue(e.heapHole().note(where, why), src)
continue
}
// Filter out some no-op assignments for escape analysis.
if src != nil && isSelfAssign(dst, src) {
if base.Flag.LowerM != 0 {
base.WarnfAt(where.Pos(), "%v ignoring self-assignment in %v", e.curfn, where)
}
k = e.discardHole()
}
}
e.expr(k.note(where, why), src)
}
e.reassigned(ks, where)
}
func (e *escape) assignHeap(src ir.Node, why string, where ir.Node) {
e.expr(e.heapHole().note(where, why), src)
}
// call evaluates a call expressions, including builtin calls. ks
// should contain the holes representing where the function callee's
// results flows; where is the OGO/ODEFER context of the call, if any.
func (e *escape) call(ks []hole, call, where ir.Node) {
topLevelDefer := where != nil && where.Op() == ir.ODEFER && e.loopDepth == 1
if topLevelDefer {
// force stack allocation of defer record, unless
// open-coded defers are used (see ssa.go)
where.SetEsc(ir.EscNever)
}
argument := func(k hole, arg ir.Node) {
if topLevelDefer {
// Top level defers arguments don't escape to
// heap, but they do need to last until end of
// function.
k = e.later(k)
} else if where != nil {
k = e.heapHole()
}
e.expr(k.note(call, "call parameter"), arg)
}
switch call.Op() {
default:
ir.Dump("esc", call)
base.Fatalf("unexpected call op: %v", call.Op())
case ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER:
call := call.(*ir.CallExpr)
typecheck.FixVariadicCall(call)
// Pick out the function callee, if statically known.
var fn *ir.Name
switch call.Op() {
case ir.OCALLFUNC:
switch v := ir.StaticValue(call.X); {
case v.Op() == ir.ONAME && v.(*ir.Name).Class == ir.PFUNC:
fn = v.(*ir.Name)
case v.Op() == ir.OCLOSURE:
fn = v.(*ir.ClosureExpr).Func.Nname
}
case ir.OCALLMETH:
fn = ir.MethodExprName(call.X)
}
fntype := call.X.Type()
if fn != nil {
fntype = fn.Type()
}
if ks != nil && fn != nil && e.inMutualBatch(fn) {
for i, result := range fn.Type().Results().FieldSlice() {
e.expr(ks[i], ir.AsNode(result.Nname))
}
}
if r := fntype.Recv(); r != nil {
argument(e.tagHole(ks, fn, r), call.X.(*ir.SelectorExpr).X)
} else {
// Evaluate callee function expression.
argument(e.discardHole(), call.X)
}
args := call.Args
for i, param := range fntype.Params().FieldSlice() {
argument(e.tagHole(ks, fn, param), args[i])
}
case ir.OAPPEND:
call := call.(*ir.CallExpr)
args := call.Args
// Appendee slice may flow directly to the result, if
// it has enough capacity. Alternatively, a new heap
// slice might be allocated, and all slice elements
// might flow to heap.
appendeeK := ks[0]
if args[0].Type().Elem().HasPointers() {
appendeeK = e.teeHole(appendeeK, e.heapHole().deref(call, "appendee slice"))
}
argument(appendeeK, args[0])
if call.IsDDD {
appendedK := e.discardHole()
if args[1].Type().IsSlice() && args[1].Type().Elem().HasPointers() {
appendedK = e.heapHole().deref(call, "appended slice...")
}
argument(appendedK, args[1])
} else {
for _, arg := range args[1:] {
argument(e.heapHole(), arg)
}
}
case ir.OCOPY:
call := call.(*ir.BinaryExpr)
argument(e.discardHole(), call.X)
copiedK := e.discardHole()
if call.Y.Type().IsSlice() && call.Y.Type().Elem().HasPointers() {
copiedK = e.heapHole().deref(call, "copied slice")
}
argument(copiedK, call.Y)
case ir.OPANIC:
call := call.(*ir.UnaryExpr)
argument(e.heapHole(), call.X)
case ir.OCOMPLEX:
call := call.(*ir.BinaryExpr)
argument(e.discardHole(), call.X)
argument(e.discardHole(), call.Y)
case ir.ODELETE, ir.OPRINT, ir.OPRINTN, ir.ORECOVER:
call := call.(*ir.CallExpr)
for _, arg := range call.Args {
argument(e.discardHole(), arg)
}
case ir.OLEN, ir.OCAP, ir.OREAL, ir.OIMAG, ir.OCLOSE:
call := call.(*ir.UnaryExpr)
argument(e.discardHole(), call.X)
}
}
// tagHole returns a hole for evaluating an argument passed to param.
// ks should contain the holes representing where the function
// callee's results flows. fn is the statically-known callee function,
// if any.
func (e *escape) tagHole(ks []hole, fn *ir.Name, param *types.Field) hole {
// If this is a dynamic call, we can't rely on param.Note.
if fn == nil {
return e.heapHole()
}
if e.inMutualBatch(fn) {
return e.addr(ir.AsNode(param.Nname))
}
// Call to previously tagged function.
if param.Note == UintptrEscapesNote {
k := e.heapHole()
k.uintptrEscapesHack = true
return k
}
var tagKs []hole
esc := parseLeaks(param.Note)
if x := esc.Heap(); x >= 0 {
tagKs = append(tagKs, e.heapHole().shift(x))
}
if ks != nil {
for i := 0; i < numEscResults; i++ {
if x := esc.Result(i); x >= 0 {
tagKs = append(tagKs, ks[i].shift(x))
}
}
}
return e.teeHole(tagKs...)
}
// inMutualBatch reports whether function fn is in the batch of
// mutually recursive functions being analyzed. When this is true,
// fn has not yet been analyzed, so its parameters and results
// should be incorporated directly into the flow graph instead of
// relying on its escape analysis tagging.
func (e *escape) inMutualBatch(fn *ir.Name) bool {
if fn.Defn != nil && fn.Defn.Esc() < escFuncTagged {
if fn.Defn.Esc() == escFuncUnknown {
base.Fatalf("graph inconsistency: %v", fn)
}
return true
}
return false
}
// An hole represents a context for evaluation a Go
// expression. E.g., when evaluating p in "x = **p", we'd have a hole
// with dst==x and derefs==2.
type hole struct {
dst *location
derefs int // >= -1
notes *note
// addrtaken indicates whether this context is taking the address of
// the expression, independent of whether the address will actually
// be stored into a variable.
addrtaken bool
// uintptrEscapesHack indicates this context is evaluating an
// argument for a //go:uintptrescapes function.
uintptrEscapesHack bool
}
type note struct {
next *note
where ir.Node
why string
}
func (k hole) note(where ir.Node, why string) hole {
if where == nil || why == "" {
base.Fatalf("note: missing where/why")
}
if base.Flag.LowerM >= 2 || logopt.Enabled() {
k.notes = &note{
next: k.notes,
where: where,
why: why,
}
}
return k
}
func (k hole) shift(delta int) hole {
k.derefs += delta
if k.derefs < -1 {
base.Fatalf("derefs underflow: %v", k.derefs)
}
k.addrtaken = delta < 0
return k
}
func (k hole) deref(where ir.Node, why string) hole { return k.shift(1).note(where, why) }
func (k hole) addr(where ir.Node, why string) hole { return k.shift(-1).note(where, why) }
func (k hole) dotType(t *types.Type, where ir.Node, why string) hole {
if !t.IsInterface() && !types.IsDirectIface(t) {
k = k.shift(1)
}
return k.note(where, why)
}
// teeHole returns a new hole that flows into each hole of ks,
// similar to the Unix tee(1) command.
func (e *escape) teeHole(ks ...hole) hole {
if len(ks) == 0 {
return e.discardHole()
}
if len(ks) == 1 {
return ks[0]
}
// TODO(mdempsky): Optimize if there's only one non-discard hole?
// Given holes "l1 = _", "l2 = **_", "l3 = *_", ..., create a
// new temporary location ltmp, wire it into place, and return
// a hole for "ltmp = _".
loc := e.newLoc(nil, true)
for _, k := range ks {
// N.B., "p = &q" and "p = &tmp; tmp = q" are not
// semantically equivalent. To combine holes like "l1
// = _" and "l2 = &_", we'd need to wire them as "l1 =
// *ltmp" and "l2 = ltmp" and return "ltmp = &_"
// instead.
if k.derefs < 0 {
base.Fatalf("teeHole: negative derefs")
}
e.flow(k, loc)
}
return loc.asHole()
}
func (e *escape) dcl(n *ir.Name) hole {
if n.Curfn != e.curfn || n.IsClosureVar() {
base.Fatalf("bad declaration of %v", n)
}
loc := e.oldLoc(n)
loc.loopDepth = e.loopDepth
return loc.asHole()
}
// spill allocates a new location associated with expression n, flows
// its address to k, and returns a hole that flows values to it. It's
// intended for use with most expressions that allocate storage.
func (e *escape) spill(k hole, n ir.Node) hole {
loc := e.newLoc(n, true)
e.flow(k.addr(n, "spill"), loc)
return loc.asHole()
}
// later returns a new hole that flows into k, but some time later.
// Its main effect is to prevent immediate reuse of temporary
// variables introduced during Order.
func (e *escape) later(k hole) hole {
loc := e.newLoc(nil, false)
e.flow(k, loc)
return loc.asHole()
}
func (e *escape) newLoc(n ir.Node, transient bool) *location {
if e.curfn == nil {
base.Fatalf("e.curfn isn't set")
}
if n != nil && n.Type() != nil && n.Type().NotInHeap() {
base.ErrorfAt(n.Pos(), "%v is incomplete (or unallocatable); stack allocation disallowed", n.Type())
}
if n != nil && n.Op() == ir.ONAME {
n = n.(*ir.Name).Canonical()
}
loc := &location{
n: n,
curfn: e.curfn,
loopDepth: e.loopDepth,
transient: transient,
}
e.allLocs = append(e.allLocs, loc)
if n != nil {
if n.Op() == ir.ONAME {
n := n.(*ir.Name)
if n.Curfn != e.curfn {
base.Fatalf("curfn mismatch: %v != %v", n.Curfn, e.curfn)
}
if n.Opt != nil {
base.Fatalf("%v already has a location", n)
}
n.Opt = loc
}
}
return loc
}
func (b *batch) oldLoc(n *ir.Name) *location {
return n.Canonical().Opt.(*location)
}
func (l *location) asHole() hole {
return hole{dst: l}
}
func (b *batch) flow(k hole, src *location) {
if k.addrtaken {
src.addrtaken = true
}
dst := k.dst
if dst == &b.blankLoc {
return
}
if dst == src && k.derefs >= 0 { // dst = dst, dst = *dst, ...
return
}
if dst.escapes && k.derefs < 0 { // dst = &src
if base.Flag.LowerM >= 2 || logopt.Enabled() {
pos := base.FmtPos(src.n.Pos())
if base.Flag.LowerM >= 2 {
fmt.Printf("%s: %v escapes to heap:\n", pos, src.n)
}
explanation := b.explainFlow(pos, dst, src, k.derefs, k.notes, []*logopt.LoggedOpt{})
if logopt.Enabled() {
var e_curfn *ir.Func // TODO(mdempsky): Fix.
logopt.LogOpt(src.n.Pos(), "escapes", "escape", ir.FuncName(e_curfn), fmt.Sprintf("%v escapes to heap", src.n), explanation)
}
}
src.escapes = true
return
}
// TODO(mdempsky): Deduplicate edges?
dst.edges = append(dst.edges, edge{src: src, derefs: k.derefs, notes: k.notes})
}
func (b *batch) heapHole() hole { return b.heapLoc.asHole() }
func (b *batch) discardHole() hole { return b.blankLoc.asHole() }
// walkAll computes the minimal dereferences between all pairs of
// locations.
func (b *batch) walkAll() {
// We use a work queue to keep track of locations that we need
// to visit, and repeatedly walk until we reach a fixed point.
//
// We walk once from each location (including the heap), and
// then re-enqueue each location on its transition from
// transient->!transient and !escapes->escapes, which can each
// happen at most once. So we take Θ(len(e.allLocs)) walks.
// LIFO queue, has enough room for e.allLocs and e.heapLoc.
todo := make([]*location, 0, len(b.allLocs)+1)
enqueue := func(loc *location) {
if !loc.queued {
todo = append(todo, loc)
loc.queued = true
}
}
for _, loc := range b.allLocs {
enqueue(loc)
}
enqueue(&b.heapLoc)
var walkgen uint32
for len(todo) > 0 {
root := todo[len(todo)-1]
todo = todo[:len(todo)-1]
root.queued = false
walkgen++
b.walkOne(root, walkgen, enqueue)
}
}
// walkOne computes the minimal number of dereferences from root to
// all other locations.
func (b *batch) walkOne(root *location, walkgen uint32, enqueue func(*location)) {
// The data flow graph has negative edges (from addressing
// operations), so we use the Bellman-Ford algorithm. However,
// we don't have to worry about infinite negative cycles since
// we bound intermediate dereference counts to 0.
root.walkgen = walkgen
root.derefs = 0
root.dst = nil
todo := []*location{root} // LIFO queue
for len(todo) > 0 {
l := todo[len(todo)-1]
todo = todo[:len(todo)-1]
derefs := l.derefs
// If l.derefs < 0, then l's address flows to root.
addressOf := derefs < 0
if addressOf {
// For a flow path like "root = &l; l = x",
// l's address flows to root, but x's does
// not. We recognize this by lower bounding
// derefs at 0.
derefs = 0
// If l's address flows to a non-transient
// location, then l can't be transiently
// allocated.
if !root.transient && l.transient {
l.transient = false
enqueue(l)
}
}
if b.outlives(root, l) {
// l's value flows to root. If l is a function
// parameter and root is the heap or a
// corresponding result parameter, then record
// that value flow for tagging the function
// later.
if l.isName(ir.PPARAM) {
if (logopt.Enabled() || base.Flag.LowerM >= 2) && !l.escapes {
if base.Flag.LowerM >= 2 {
fmt.Printf("%s: parameter %v leaks to %s with derefs=%d:\n", base.FmtPos(l.n.Pos()), l.n, b.explainLoc(root), derefs)
}
explanation := b.explainPath(root, l)
if logopt.Enabled() {
var e_curfn *ir.Func // TODO(mdempsky): Fix.
logopt.LogOpt(l.n.Pos(), "leak", "escape", ir.FuncName(e_curfn),
fmt.Sprintf("parameter %v leaks to %s with derefs=%d", l.n, b.explainLoc(root), derefs), explanation)
}
}
l.leakTo(root, derefs)
}
// If l's address flows somewhere that
// outlives it, then l needs to be heap
// allocated.
if addressOf && !l.escapes {
if logopt.Enabled() || base.Flag.LowerM >= 2 {
if base.Flag.LowerM >= 2 {
fmt.Printf("%s: %v escapes to heap:\n", base.FmtPos(l.n.Pos()), l.n)
}
explanation := b.explainPath(root, l)
if logopt.Enabled() {
var e_curfn *ir.Func // TODO(mdempsky): Fix.
logopt.LogOpt(l.n.Pos(), "escape", "escape", ir.FuncName(e_curfn), fmt.Sprintf("%v escapes to heap", l.n), explanation)
}
}
l.escapes = true
enqueue(l)
continue
}
}
for i, edge := range l.edges {
if edge.src.escapes {
continue
}
d := derefs + edge.derefs
if edge.src.walkgen != walkgen || edge.src.derefs > d {
edge.src.walkgen = walkgen
edge.src.derefs = d
edge.src.dst = l
edge.src.dstEdgeIdx = i
todo = append(todo, edge.src)
}
}
}
}
// explainPath prints an explanation of how src flows to the walk root.
func (b *batch) explainPath(root, src *location) []*logopt.LoggedOpt {
visited := make(map[*location]bool)
pos := base.FmtPos(src.n.Pos())
var explanation []*logopt.LoggedOpt
for {
// Prevent infinite loop.
if visited[src] {
if base.Flag.LowerM >= 2 {
fmt.Printf("%s: warning: truncated explanation due to assignment cycle; see golang.org/issue/35518\n", pos)
}
break
}
visited[src] = true
dst := src.dst
edge := &dst.edges[src.dstEdgeIdx]
if edge.src != src {
base.Fatalf("path inconsistency: %v != %v", edge.src, src)
}
explanation = b.explainFlow(pos, dst, src, edge.derefs, edge.notes, explanation)
if dst == root {
break
}
src = dst
}
return explanation
}
func (b *batch) explainFlow(pos string, dst, srcloc *location, derefs int, notes *note, explanation []*logopt.LoggedOpt) []*logopt.LoggedOpt {
ops := "&"
if derefs >= 0 {
ops = strings.Repeat("*", derefs)
}
print := base.Flag.LowerM >= 2
flow := fmt.Sprintf(" flow: %s = %s%v:", b.explainLoc(dst), ops, b.explainLoc(srcloc))
if print {
fmt.Printf("%s:%s\n", pos, flow)
}
if logopt.Enabled() {
var epos src.XPos
if notes != nil {
epos = notes.where.Pos()
} else if srcloc != nil && srcloc.n != nil {
epos = srcloc.n.Pos()
}
var e_curfn *ir.Func // TODO(mdempsky): Fix.
explanation = append(explanation, logopt.NewLoggedOpt(epos, "escflow", "escape", ir.FuncName(e_curfn), flow))
}
for note := notes; note != nil; note = note.next {
if print {
fmt.Printf("%s: from %v (%v) at %s\n", pos, note.where, note.why, base.FmtPos(note.where.Pos()))
}
if logopt.Enabled() {
var e_curfn *ir.Func // TODO(mdempsky): Fix.
explanation = append(explanation, logopt.NewLoggedOpt(note.where.Pos(), "escflow", "escape", ir.FuncName(e_curfn),
fmt.Sprintf(" from %v (%v)", note.where, note.why)))
}
}
return explanation
}
func (b *batch) explainLoc(l *location) string {
if l == &b.heapLoc {
return "{heap}"
}
if l.n == nil {
// TODO(mdempsky): Omit entirely.
return "{temp}"
}
if l.n.Op() == ir.ONAME {
return fmt.Sprintf("%v", l.n)
}
return fmt.Sprintf("{storage for %v}", l.n)
}
// outlives reports whether values stored in l may survive beyond
// other's lifetime if stack allocated.
func (b *batch) outlives(l, other *location) bool {
// The heap outlives everything.
if l.escapes {
return true
}
// We don't know what callers do with returned values, so
// pessimistically we need to assume they flow to the heap and
// outlive everything too.
if l.isName(ir.PPARAMOUT) {
// Exception: Directly called closures can return
// locations allocated outside of them without forcing
// them to the heap. For example:
//
// var u int // okay to stack allocate
// *(func() *int { return &u }()) = 42
if containsClosure(other.curfn, l.curfn) && l.curfn.ClosureCalled() {
return false
}
return true
}
// If l and other are within the same function, then l
// outlives other if it was declared outside other's loop
// scope. For example:
//
// var l *int
// for {
// l = new(int)
// }
if l.curfn == other.curfn && l.loopDepth < other.loopDepth {
return true
}
// If other is declared within a child closure of where l is
// declared, then l outlives it. For example:
//
// var l *int
// func() {
// l = new(int)
// }
if containsClosure(l.curfn, other.curfn) {
return true
}
return false
}
// containsClosure reports whether c is a closure contained within f.
func containsClosure(f, c *ir.Func) bool {
// Common case.
if f == c {
return false
}
// Closures within function Foo are named like "Foo.funcN..."
// TODO(mdempsky): Better way to recognize this.
fn := f.Sym().Name
cn := c.Sym().Name
return len(cn) > len(fn) && cn[:len(fn)] == fn && cn[len(fn)] == '.'
}
// leak records that parameter l leaks to sink.
func (l *location) leakTo(sink *location, derefs int) {
// If sink is a result parameter that doesn't escape (#44614)
// and we can fit return bits into the escape analysis tag,
// then record as a result leak.
if !sink.escapes && sink.isName(ir.PPARAMOUT) && sink.curfn == l.curfn {
ri := sink.resultIndex - 1
if ri < numEscResults {
// Leak to result parameter.
l.paramEsc.AddResult(ri, derefs)
return
}
}
// Otherwise, record as heap leak.
l.paramEsc.AddHeap(derefs)
}
func (b *batch) finish(fns []*ir.Func) {
// Record parameter tags for package export data.
for _, fn := range fns {
fn.SetEsc(escFuncTagged)
narg := 0
for _, fs := range &types.RecvsParams {
for _, f := range fs(fn.Type()).Fields().Slice() {
narg++
f.Note = b.paramTag(fn, narg, f)
}
}
}
for _, loc := range b.allLocs {
n := loc.n
if n == nil {
continue
}
if n.Op() == ir.ONAME {
n := n.(*ir.Name)
n.Opt = nil
}
// Update n.Esc based on escape analysis results.
if loc.escapes {
if n.Op() == ir.ONAME {
if base.Flag.CompilingRuntime {
base.ErrorfAt(n.Pos(), "%v escapes to heap, not allowed in runtime", n)
}
if base.Flag.LowerM != 0 {
base.WarnfAt(n.Pos(), "moved to heap: %v", n)
}
} else {
if base.Flag.LowerM != 0 {
base.WarnfAt(n.Pos(), "%v escapes to heap", n)
}
if logopt.Enabled() {
var e_curfn *ir.Func // TODO(mdempsky): Fix.
logopt.LogOpt(n.Pos(), "escape", "escape", ir.FuncName(e_curfn))
}
}
n.SetEsc(ir.EscHeap)
} else {
if base.Flag.LowerM != 0 && n.Op() != ir.ONAME {
base.WarnfAt(n.Pos(), "%v does not escape", n)
}
n.SetEsc(ir.EscNone)
if loc.transient {
switch n.Op() {
case ir.OCLOSURE:
n := n.(*ir.ClosureExpr)
n.SetTransient(true)
case ir.OCALLPART:
n := n.(*ir.SelectorExpr)
n.SetTransient(true)
case ir.OSLICELIT:
n := n.(*ir.CompLitExpr)
n.SetTransient(true)
}
}
}
}
}
func (l *location) isName(c ir.Class) bool {
return l.n != nil && l.n.Op() == ir.ONAME && l.n.(*ir.Name).Class == c
}
const numEscResults = 7
// An leaks represents a set of assignment flows from a parameter
// to the heap or to any of its function's (first numEscResults)
// result parameters.
type leaks [1 + numEscResults]uint8
// Empty reports whether l is an empty set (i.e., no assignment flows).
func (l leaks) Empty() bool { return l == leaks{} }
// Heap returns the minimum deref count of any assignment flow from l
// to the heap. If no such flows exist, Heap returns -1.
func (l leaks) Heap() int { return l.get(0) }
// Result returns the minimum deref count of any assignment flow from
// l to its function's i'th result parameter. If no such flows exist,
// Result returns -1.
func (l leaks) Result(i int) int { return l.get(1 + i) }
// AddHeap adds an assignment flow from l to the heap.
func (l *leaks) AddHeap(derefs int) { l.add(0, derefs) }
// AddResult adds an assignment flow from l to its function's i'th
// result parameter.
func (l *leaks) AddResult(i, derefs int) { l.add(1+i, derefs) }
func (l *leaks) setResult(i, derefs int) { l.set(1+i, derefs) }
func (l leaks) get(i int) int { return int(l[i]) - 1 }
func (l *leaks) add(i, derefs int) {
if old := l.get(i); old < 0 || derefs < old {
l.set(i, derefs)
}
}
func (l *leaks) set(i, derefs int) {
v := derefs + 1
if v < 0 {
base.Fatalf("invalid derefs count: %v", derefs)
}
if v > math.MaxUint8 {
v = math.MaxUint8
}
l[i] = uint8(v)
}
// Optimize removes result flow paths that are equal in length or
// longer than the shortest heap flow path.
func (l *leaks) Optimize() {
// If we have a path to the heap, then there's no use in
// keeping equal or longer paths elsewhere.
if x := l.Heap(); x >= 0 {
for i := 0; i < numEscResults; i++ {
if l.Result(i) >= x {
l.setResult(i, -1)
}
}
}
}
var leakTagCache = map[leaks]string{}
// Encode converts l into a binary string for export data.
func (l leaks) Encode() string {
if l.Heap() == 0 {
// Space optimization: empty string encodes more
// efficiently in export data.
return ""
}
if s, ok := leakTagCache[l]; ok {
return s
}
n := len(l)
for n > 0 && l[n-1] == 0 {
n--
}
s := "esc:" + string(l[:n])
leakTagCache[l] = s
return s
}
// parseLeaks parses a binary string representing a leaks
func parseLeaks(s string) leaks {
var l leaks
if !strings.HasPrefix(s, "esc:") {
l.AddHeap(0)
return l
}
copy(l[:], s[4:])
return l
}
func Funcs(all []ir.Node) {
ir.VisitFuncsBottomUp(all, Batch)
}
const (
escFuncUnknown = 0 + iota
escFuncPlanned
escFuncStarted
escFuncTagged
)
// Mark labels that have no backjumps to them as not increasing e.loopdepth.
type labelState int
const (
looping labelState = 1 + iota
nonlooping
)
func isSliceSelfAssign(dst, src ir.Node) bool {
// Detect the following special case.
//
// func (b *Buffer) Foo() {
// n, m := ...
// b.buf = b.buf[n:m]
// }
//
// This assignment is a no-op for escape analysis,
// it does not store any new pointers into b that were not already there.
// However, without this special case b will escape, because we assign to OIND/ODOTPTR.
// Here we assume that the statement will not contain calls,
// that is, that order will move any calls to init.
// Otherwise base ONAME value could change between the moments
// when we evaluate it for dst and for src.
// dst is ONAME dereference.
var dstX ir.Node
switch dst.Op() {
default:
return false
case ir.ODEREF:
dst := dst.(*ir.StarExpr)
dstX = dst.X
case ir.ODOTPTR:
dst := dst.(*ir.SelectorExpr)
dstX = dst.X
}
if dstX.Op() != ir.ONAME {
return false
}
// src is a slice operation.
switch src.Op() {
case ir.OSLICE, ir.OSLICE3, ir.OSLICESTR:
// OK.
case ir.OSLICEARR, ir.OSLICE3ARR:
// Since arrays are embedded into containing object,
// slice of non-pointer array will introduce a new pointer into b that was not already there
// (pointer to b itself). After such assignment, if b contents escape,
// b escapes as well. If we ignore such OSLICEARR, we will conclude
// that b does not escape when b contents do.
//
// Pointer to an array is OK since it's not stored inside b directly.
// For slicing an array (not pointer to array), there is an implicit OADDR.
// We check that to determine non-pointer array slicing.
src := src.(*ir.SliceExpr)
if src.X.Op() == ir.OADDR {
return false
}
default:
return false
}
// slice is applied to ONAME dereference.
var baseX ir.Node
switch base := src.(*ir.SliceExpr).X; base.Op() {
default:
return false
case ir.ODEREF:
base := base.(*ir.StarExpr)
baseX = base.X
case ir.ODOTPTR:
base := base.(*ir.SelectorExpr)
baseX = base.X
}
if baseX.Op() != ir.ONAME {
return false
}
// dst and src reference the same base ONAME.
return dstX.(*ir.Name) == baseX.(*ir.Name)
}
// isSelfAssign reports whether assignment from src to dst can
// be ignored by the escape analysis as it's effectively a self-assignment.
func isSelfAssign(dst, src ir.Node) bool {
if isSliceSelfAssign(dst, src) {
return true
}
// Detect trivial assignments that assign back to the same object.
//
// It covers these cases:
// val.x = val.y
// val.x[i] = val.y[j]
// val.x1.x2 = val.x1.y2
// ... etc
//
// These assignments do not change assigned object lifetime.
if dst == nil || src == nil || dst.Op() != src.Op() {
return false
}
// The expression prefix must be both "safe" and identical.
switch dst.Op() {
case ir.ODOT, ir.ODOTPTR:
// Safe trailing accessors that are permitted to differ.
dst := dst.(*ir.SelectorExpr)
src := src.(*ir.SelectorExpr)
return ir.SameSafeExpr(dst.X, src.X)
case ir.OINDEX:
dst := dst.(*ir.IndexExpr)
src := src.(*ir.IndexExpr)
if mayAffectMemory(dst.Index) || mayAffectMemory(src.Index) {
return false
}
return ir.SameSafeExpr(dst.X, src.X)
default:
return false
}
}
// mayAffectMemory reports whether evaluation of n may affect the program's
// memory state. If the expression can't affect memory state, then it can be
// safely ignored by the escape analysis.
func mayAffectMemory(n ir.Node) bool {
// We may want to use a list of "memory safe" ops instead of generally
// "side-effect free", which would include all calls and other ops that can
// allocate or change global state. For now, it's safer to start with the latter.
//
// We're ignoring things like division by zero, index out of range,
// and nil pointer dereference here.
// TODO(rsc): It seems like it should be possible to replace this with
// an ir.Any looking for any op that's not the ones in the case statement.
// But that produces changes in the compiled output detected by buildall.
switch n.Op() {
case ir.ONAME, ir.OLITERAL, ir.ONIL:
return false
case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.OLSH, ir.ORSH, ir.OAND, ir.OANDNOT, ir.ODIV, ir.OMOD:
n := n.(*ir.BinaryExpr)
return mayAffectMemory(n.X) || mayAffectMemory(n.Y)
case ir.OINDEX:
n := n.(*ir.IndexExpr)
return mayAffectMemory(n.X) || mayAffectMemory(n.Index)
case ir.OCONVNOP, ir.OCONV:
n := n.(*ir.ConvExpr)
return mayAffectMemory(n.X)
case ir.OLEN, ir.OCAP, ir.ONOT, ir.OBITNOT, ir.OPLUS, ir.ONEG, ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF:
n := n.(*ir.UnaryExpr)
return mayAffectMemory(n.X)
case ir.ODOT, ir.ODOTPTR:
n := n.(*ir.SelectorExpr)
return mayAffectMemory(n.X)
case ir.ODEREF:
n := n.(*ir.StarExpr)
return mayAffectMemory(n.X)
default:
return true
}
}
// HeapAllocReason returns the reason the given Node must be heap
// allocated, or the empty string if it doesn't.
func HeapAllocReason(n ir.Node) string {
if n == nil || n.Type() == nil {
return ""
}
// Parameters are always passed via the stack.
if n.Op() == ir.ONAME {
n := n.(*ir.Name)
if n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT {
return ""
}
}
if n.Type().Width > ir.MaxStackVarSize {
return "too large for stack"
}
if (n.Op() == ir.ONEW || n.Op() == ir.OPTRLIT) && n.Type().Elem().Width >= ir.MaxImplicitStackVarSize {
return "too large for stack"
}
if n.Op() == ir.OCLOSURE && typecheck.ClosureType(n.(*ir.ClosureExpr)).Size() >= ir.MaxImplicitStackVarSize {
return "too large for stack"
}
if n.Op() == ir.OCALLPART && typecheck.PartialCallType(n.(*ir.SelectorExpr)).Size() >= ir.MaxImplicitStackVarSize {
return "too large for stack"
}
if n.Op() == ir.OMAKESLICE {
n := n.(*ir.MakeExpr)
r := n.Cap
if r == nil {
r = n.Len
}
if !ir.IsSmallIntConst(r) {
return "non-constant size"
}
if t := n.Type(); t.Elem().Width != 0 && ir.Int64Val(r) >= ir.MaxImplicitStackVarSize/t.Elem().Width {
return "too large for stack"
}
}
return ""
}
// This special tag is applied to uintptr variables
// that we believe may hold unsafe.Pointers for
// calls into assembly functions.
const UnsafeUintptrNote = "unsafe-uintptr"
// This special tag is applied to uintptr parameters of functions
// marked go:uintptrescapes.
const UintptrEscapesNote = "uintptr-escapes"
func (b *batch) paramTag(fn *ir.Func, narg int, f *types.Field) string {
name := func() string {
if f.Sym != nil {
return f.Sym.Name
}
return fmt.Sprintf("arg#%d", narg)
}
if len(fn.Body) == 0 {
// Assume that uintptr arguments must be held live across the call.
// This is most important for syscall.Syscall.
// See golang.org/issue/13372.
// This really doesn't have much to do with escape analysis per se,
// but we are reusing the ability to annotate an individual function
// argument and pass those annotations along to importing code.
if f.Type.IsUintptr() {
if base.Flag.LowerM != 0 {
base.WarnfAt(f.Pos, "assuming %v is unsafe uintptr", name())
}
return UnsafeUintptrNote
}
if !f.Type.HasPointers() { // don't bother tagging for scalars
return ""
}
var esc leaks
// External functions are assumed unsafe, unless
// //go:noescape is given before the declaration.
if fn.Pragma&ir.Noescape != 0 {
if base.Flag.LowerM != 0 && f.Sym != nil {
base.WarnfAt(f.Pos, "%v does not escape", name())
}
} else {
if base.Flag.LowerM != 0 && f.Sym != nil {
base.WarnfAt(f.Pos, "leaking param: %v", name())
}
esc.AddHeap(0)
}
return esc.Encode()
}
if fn.Pragma&ir.UintptrEscapes != 0 {
if f.Type.IsUintptr() {
if base.Flag.LowerM != 0 {
base.WarnfAt(f.Pos, "marking %v as escaping uintptr", name())
}
return UintptrEscapesNote
}
if f.IsDDD() && f.Type.Elem().IsUintptr() {
// final argument is ...uintptr.
if base.Flag.LowerM != 0 {
base.WarnfAt(f.Pos, "marking %v as escaping ...uintptr", name())
}
return UintptrEscapesNote
}
}
if !f.Type.HasPointers() { // don't bother tagging for scalars
return ""
}
// Unnamed parameters are unused and therefore do not escape.
if f.Sym == nil || f.Sym.IsBlank() {
var esc leaks
return esc.Encode()
}
n := f.Nname.(*ir.Name)
loc := b.oldLoc(n)
esc := loc.paramEsc
esc.Optimize()
if base.Flag.LowerM != 0 && !loc.escapes {
if esc.Empty() {
base.WarnfAt(f.Pos, "%v does not escape", name())
}
if x := esc.Heap(); x >= 0 {
if x == 0 {
base.WarnfAt(f.Pos, "leaking param: %v", name())
} else {
// TODO(mdempsky): Mention level=x like below?
base.WarnfAt(f.Pos, "leaking param content: %v", name())
}
}
for i := 0; i < numEscResults; i++ {
if x := esc.Result(i); x >= 0 {
res := fn.Type().Results().Field(i).Sym
base.WarnfAt(f.Pos, "leaking param: %v to result %v level=%d", name(), res, x)
}
}
}
return esc.Encode()
}