blob: 74188c057277ed8e921f3a40c9af8d753cf80633 [file] [log] [blame]
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package poll
import (
"errors"
"internal/race"
"internal/syscall/windows"
"io"
"sync"
"sync/atomic"
"syscall"
"unicode/utf16"
"unicode/utf8"
"unsafe"
)
var (
initErr error
ioSync uint64
)
// This package uses the SetFileCompletionNotificationModes Windows
// API to skip calling GetQueuedCompletionStatus if an IO operation
// completes synchronously. There is a known bug where
// SetFileCompletionNotificationModes crashes on some systems (see
// https://support.microsoft.com/kb/2568167 for details).
var socketCanUseSetFileCompletionNotificationModes bool // determines is SetFileCompletionNotificationModes is present and sockets can safely use it
// checkSetFileCompletionNotificationModes verifies that
// SetFileCompletionNotificationModes Windows API is present
// on the system and is safe to use.
// See https://support.microsoft.com/kb/2568167 for details.
func checkSetFileCompletionNotificationModes() {
err := syscall.LoadSetFileCompletionNotificationModes()
if err != nil {
return
}
protos := [2]int32{syscall.IPPROTO_TCP, 0}
var buf [32]syscall.WSAProtocolInfo
len := uint32(unsafe.Sizeof(buf))
n, err := syscall.WSAEnumProtocols(&protos[0], &buf[0], &len)
if err != nil {
return
}
for i := int32(0); i < n; i++ {
if buf[i].ServiceFlags1&syscall.XP1_IFS_HANDLES == 0 {
return
}
}
socketCanUseSetFileCompletionNotificationModes = true
}
// InitWSA initiates the use of the Winsock DLL by the current process.
// It is called from the net package at init time to avoid
// loading ws2_32.dll when net is not used.
var InitWSA = sync.OnceFunc(func() {
var d syscall.WSAData
e := syscall.WSAStartup(uint32(0x202), &d)
if e != nil {
initErr = e
}
checkSetFileCompletionNotificationModes()
})
// operation contains superset of data necessary to perform all async IO.
type operation struct {
// Used by IOCP interface, it must be first field
// of the struct, as our code relies on it.
o syscall.Overlapped
// fields used by runtime.netpoll
runtimeCtx uintptr
mode int32
// fields used only by net package
fd *FD
buf syscall.WSABuf
msg windows.WSAMsg
sa syscall.Sockaddr
rsa *syscall.RawSockaddrAny
rsan int32
handle syscall.Handle
flags uint32
qty uint32
bufs []syscall.WSABuf
}
func (o *operation) setEvent() {
h, err := windows.CreateEvent(nil, 0, 0, nil)
if err != nil {
// This shouldn't happen when all CreateEvent arguments are zero.
panic(err)
}
// Set the low bit so that the external IOCP doesn't receive the completion packet.
o.o.HEvent = h | 1
}
func (o *operation) close() {
if o.o.HEvent != 0 {
syscall.CloseHandle(o.o.HEvent)
}
}
func (o *operation) overlapped() *syscall.Overlapped {
if o.fd.isBlocking {
// Don't return the overlapped object if the file handle
// doesn't use overlapped I/O. It could be used, but
// that would then use the file pointer stored in the
// overlapped object rather than the real file pointer.
return nil
}
return &o.o
}
func (o *operation) InitBuf(buf []byte) {
o.buf.Len = uint32(len(buf))
o.buf.Buf = nil
if len(buf) != 0 {
o.buf.Buf = &buf[0]
}
}
func (o *operation) InitBufs(buf *[][]byte) {
if o.bufs == nil {
o.bufs = make([]syscall.WSABuf, 0, len(*buf))
} else {
o.bufs = o.bufs[:0]
}
for _, b := range *buf {
if len(b) == 0 {
o.bufs = append(o.bufs, syscall.WSABuf{})
continue
}
for len(b) > maxRW {
o.bufs = append(o.bufs, syscall.WSABuf{Len: maxRW, Buf: &b[0]})
b = b[maxRW:]
}
if len(b) > 0 {
o.bufs = append(o.bufs, syscall.WSABuf{Len: uint32(len(b)), Buf: &b[0]})
}
}
}
// ClearBufs clears all pointers to Buffers parameter captured
// by InitBufs, so it can be released by garbage collector.
func (o *operation) ClearBufs() {
for i := range o.bufs {
o.bufs[i].Buf = nil
}
o.bufs = o.bufs[:0]
}
func (o *operation) InitMsg(p []byte, oob []byte) {
o.InitBuf(p)
o.msg.Buffers = &o.buf
o.msg.BufferCount = 1
o.msg.Name = nil
o.msg.Namelen = 0
o.msg.Flags = 0
o.msg.Control.Len = uint32(len(oob))
o.msg.Control.Buf = nil
if len(oob) != 0 {
o.msg.Control.Buf = &oob[0]
}
}
// waitIO waits for the IO operation o to complete.
func waitIO(o *operation) error {
if o.fd.isBlocking {
panic("can't wait on blocking operations")
}
fd := o.fd
if !fd.pollable() {
// The overlapped handle is not added to the runtime poller,
// the only way to wait for the IO to complete is block until
// the overlapped event is signaled.
_, err := syscall.WaitForSingleObject(o.o.HEvent, syscall.INFINITE)
return err
}
// Wait for our request to complete.
err := fd.pd.wait(int(o.mode), fd.isFile)
switch err {
case nil, ErrNetClosing, ErrFileClosing, ErrDeadlineExceeded:
// No other error is expected.
default:
panic("unexpected runtime.netpoll error: " + err.Error())
}
return err
}
// cancelIO cancels the IO operation o and waits for it to complete.
func cancelIO(o *operation) {
fd := o.fd
if !fd.pollable() {
return
}
// Cancel our request.
err := syscall.CancelIoEx(fd.Sysfd, &o.o)
// Assuming ERROR_NOT_FOUND is returned, if IO is completed.
if err != nil && err != syscall.ERROR_NOT_FOUND {
// TODO(brainman): maybe do something else, but panic.
panic(err)
}
fd.pd.waitCanceled(int(o.mode))
}
// execIO executes a single IO operation o.
// It supports both synchronous and asynchronous IO.
// o.qty and o.flags are set to zero before calling submit
// to avoid reusing the values from a previous call.
func execIO(o *operation, submit func(o *operation) error) (int, error) {
fd := o.fd
// Notify runtime netpoll about starting IO.
err := fd.pd.prepare(int(o.mode), fd.isFile)
if err != nil {
return 0, err
}
// Start IO.
if !fd.isBlocking && o.o.HEvent == 0 && !fd.pollable() {
// If the handle is opened for overlapped IO but we can't
// use the runtime poller, then we need to use an
// event to wait for the IO to complete.
o.setEvent()
}
o.qty = 0
o.flags = 0
err = submit(o)
var waitErr error
// Blocking operations shouldn't return ERROR_IO_PENDING.
// Continue without waiting if that happens.
if !o.fd.isBlocking && (err == syscall.ERROR_IO_PENDING || (err == nil && !o.fd.skipSyncNotif)) {
// IO started asynchronously or completed synchronously but
// a sync notification is required. Wait for it to complete.
waitErr = waitIO(o)
if waitErr != nil {
// IO interrupted by "close" or "timeout".
cancelIO(o)
// We issued a cancellation request, but the IO operation may still succeeded
// before the cancellation request runs.
}
if fd.isFile {
err = windows.GetOverlappedResult(fd.Sysfd, &o.o, &o.qty, false)
} else {
err = windows.WSAGetOverlappedResult(fd.Sysfd, &o.o, &o.qty, false, &o.flags)
}
}
switch err {
case syscall.ERROR_OPERATION_ABORTED:
// ERROR_OPERATION_ABORTED may have been caused by us. In that case,
// map it to our own error. Don't do more than that, each submitted
// function may have its own meaning for each error.
if waitErr != nil {
// IO canceled by the poller while waiting for completion.
err = waitErr
} else if fd.kind == kindPipe && fd.closing() {
// Close uses CancelIoEx to interrupt concurrent I/O for pipes.
// If the fd is a pipe and the Write was interrupted by CancelIoEx,
// we assume it is interrupted by Close.
err = errClosing(fd.isFile)
}
case windows.ERROR_IO_INCOMPLETE:
// waitIO couldn't wait for the IO to complete.
if waitErr != nil {
// The wait error will be more informative.
err = waitErr
}
}
return int(o.qty), err
}
// FD is a file descriptor. The net and os packages embed this type in
// a larger type representing a network connection or OS file.
type FD struct {
// Lock sysfd and serialize access to Read and Write methods.
fdmu fdMutex
// System file descriptor. Immutable until Close.
Sysfd syscall.Handle
// Read operation.
rop operation
// Write operation.
wop operation
// I/O poller.
pd pollDesc
// Used to implement pread/pwrite.
l sync.Mutex
// The file offset for the next read or write.
// Overlapped IO operations don't use the real file pointer,
// so we need to keep track of the offset ourselves.
offset int64
// For console I/O.
lastbits []byte // first few bytes of the last incomplete rune in last write
readuint16 []uint16 // buffer to hold uint16s obtained with ReadConsole
readbyte []byte // buffer to hold decoding of readuint16 from utf16 to utf8
readbyteOffset int // readbyte[readOffset:] is yet to be consumed with file.Read
// Semaphore signaled when file is closed.
csema uint32
skipSyncNotif bool
// Whether this is a streaming descriptor, as opposed to a
// packet-based descriptor like a UDP socket.
IsStream bool
// Whether a zero byte read indicates EOF. This is false for a
// message based socket connection.
ZeroReadIsEOF bool
// Whether the handle is owned by os.File.
isFile bool
// The kind of this file.
kind fileKind
// Whether FILE_FLAG_OVERLAPPED was not set when opening the file.
isBlocking bool
disassociated atomic.Bool
}
// setOffset sets the offset fields of the overlapped object
// to the given offset. The fd.l lock must be held.
//
// Overlapped IO operations don't update the offset fields
// of the overlapped object nor the file pointer automatically,
// so we do that manually here.
// Note that this is a best effort that only works if the file
// pointer is completely owned by this operation. We could
// call seek to allow other processes or other operations on the
// same file to see the updated offset. That would be inefficient
// and won't work for concurrent operations anyway. If concurrent
// operations are needed, then the caller should serialize them
// using an external mechanism.
func (fd *FD) setOffset(off int64) {
fd.offset = off
fd.rop.o.OffsetHigh, fd.rop.o.Offset = uint32(off>>32), uint32(off)
fd.wop.o.OffsetHigh, fd.wop.o.Offset = uint32(off>>32), uint32(off)
}
// addOffset adds the given offset to the current offset.
func (fd *FD) addOffset(off int) {
fd.setOffset(fd.offset + int64(off))
}
// pollable should be used instead of fd.pd.pollable(),
// as it is aware of the disassociated state.
func (fd *FD) pollable() bool {
return fd.pd.pollable() && !fd.disassociated.Load()
}
// fileKind describes the kind of file.
type fileKind byte
const (
kindNet fileKind = iota
kindFile
kindConsole
kindPipe
kindFileNet
)
// Init initializes the FD. The Sysfd field should already be set.
// This can be called multiple times on a single FD.
// The net argument is a network name from the net package (e.g., "tcp"),
// or "file" or "console" or "dir".
// Set pollable to true if fd should be managed by runtime netpoll.
// Pollable must be set to true for overlapped fds.
func (fd *FD) Init(net string, pollable bool) error {
if initErr != nil {
return initErr
}
switch net {
case "file":
fd.kind = kindFile
case "console":
fd.kind = kindConsole
case "pipe":
fd.kind = kindPipe
case "file+net":
fd.kind = kindFileNet
default:
// We don't actually care about the various network types.
fd.kind = kindNet
}
fd.isFile = fd.kind != kindNet
fd.isBlocking = !pollable
fd.rop.mode = 'r'
fd.wop.mode = 'w'
fd.rop.fd = fd
fd.wop.fd = fd
// It is safe to add overlapped handles that also perform I/O
// outside of the runtime poller. The runtime poller will ignore
// I/O completion notifications not initiated by us.
err := fd.pd.init(fd)
if err != nil {
return err
}
fd.rop.runtimeCtx = fd.pd.runtimeCtx
fd.wop.runtimeCtx = fd.pd.runtimeCtx
if fd.kind != kindNet || socketCanUseSetFileCompletionNotificationModes {
// Non-socket handles can use SetFileCompletionNotificationModes without problems.
err := syscall.SetFileCompletionNotificationModes(fd.Sysfd,
syscall.FILE_SKIP_SET_EVENT_ON_HANDLE|syscall.FILE_SKIP_COMPLETION_PORT_ON_SUCCESS,
)
fd.skipSyncNotif = err == nil
}
return nil
}
// DisassociateIOCP disassociates the file handle from the IOCP.
// The disassociate operation will not succeed if there is any
// in-progress IO operation on the file handle.
func (fd *FD) DisassociateIOCP() error {
if err := fd.incref(); err != nil {
return err
}
defer fd.decref()
if fd.isBlocking || !fd.pollable() {
// Nothing to disassociate.
return nil
}
info := windows.FILE_COMPLETION_INFORMATION{}
if err := windows.NtSetInformationFile(fd.Sysfd, &windows.IO_STATUS_BLOCK{}, unsafe.Pointer(&info), uint32(unsafe.Sizeof(info)), windows.FileReplaceCompletionInformation); err != nil {
return err
}
fd.disassociated.Store(true)
// Don't call fd.pd.close(), it would be too racy.
// There is no harm on leaving fd.pd open until Close is called.
return nil
}
func (fd *FD) destroy() error {
if fd.Sysfd == syscall.InvalidHandle {
return syscall.EINVAL
}
fd.rop.close()
fd.wop.close()
// Poller may want to unregister fd in readiness notification mechanism,
// so this must be executed before fd.CloseFunc.
fd.pd.close()
var err error
switch fd.kind {
case kindNet, kindFileNet:
// The net package uses the CloseFunc variable for testing.
err = CloseFunc(fd.Sysfd)
default:
err = syscall.CloseHandle(fd.Sysfd)
}
fd.Sysfd = syscall.InvalidHandle
runtime_Semrelease(&fd.csema)
return err
}
// Close closes the FD. The underlying file descriptor is closed by
// the destroy method when there are no remaining references.
func (fd *FD) Close() error {
if !fd.fdmu.increfAndClose() {
return errClosing(fd.isFile)
}
if fd.kind == kindPipe {
syscall.CancelIoEx(fd.Sysfd, nil)
}
// unblock pending reader and writer
fd.pd.evict()
err := fd.decref()
// Wait until the descriptor is closed. If this was the only
// reference, it is already closed.
runtime_Semacquire(&fd.csema)
return err
}
// Windows ReadFile and WSARecv use DWORD (uint32) parameter to pass buffer length.
// This prevents us reading blocks larger than 4GB.
// See golang.org/issue/26923.
const maxRW = 1 << 30 // 1GB is large enough and keeps subsequent reads aligned
// Read implements io.Reader.
func (fd *FD) Read(buf []byte) (int, error) {
if err := fd.readLock(); err != nil {
return 0, err
}
defer fd.readUnlock()
if fd.kind == kindFile {
fd.l.Lock()
defer fd.l.Unlock()
}
if len(buf) > maxRW {
buf = buf[:maxRW]
}
var n int
var err error
switch fd.kind {
case kindConsole:
n, err = fd.readConsole(buf)
case kindFile, kindPipe:
o := &fd.rop
o.InitBuf(buf)
n, err = execIO(o, func(o *operation) error {
return syscall.ReadFile(o.fd.Sysfd, unsafe.Slice(o.buf.Buf, o.buf.Len), &o.qty, o.overlapped())
})
fd.addOffset(n)
switch err {
case syscall.ERROR_HANDLE_EOF:
err = io.EOF
case syscall.ERROR_BROKEN_PIPE:
// ReadFile only documents ERROR_BROKEN_PIPE for pipes.
if fd.kind == kindPipe {
err = io.EOF
}
}
case kindNet:
o := &fd.rop
o.InitBuf(buf)
n, err = execIO(o, func(o *operation) error {
return syscall.WSARecv(o.fd.Sysfd, &o.buf, 1, &o.qty, &o.flags, &o.o, nil)
})
if race.Enabled {
race.Acquire(unsafe.Pointer(&ioSync))
}
}
if len(buf) != 0 {
err = fd.eofError(n, err)
}
return n, err
}
var ReadConsole = syscall.ReadConsole // changed for testing
// readConsole reads utf16 characters from console File,
// encodes them into utf8 and stores them in buffer b.
// It returns the number of utf8 bytes read and an error, if any.
func (fd *FD) readConsole(b []byte) (int, error) {
if len(b) == 0 {
return 0, nil
}
if fd.readuint16 == nil {
// Note: syscall.ReadConsole fails for very large buffers.
// The limit is somewhere around (but not exactly) 16384.
// Stay well below.
fd.readuint16 = make([]uint16, 0, 10000)
fd.readbyte = make([]byte, 0, 4*cap(fd.readuint16))
}
for fd.readbyteOffset >= len(fd.readbyte) {
n := cap(fd.readuint16) - len(fd.readuint16)
if n > len(b) {
n = len(b)
}
var nw uint32
err := ReadConsole(fd.Sysfd, &fd.readuint16[:len(fd.readuint16)+1][len(fd.readuint16)], uint32(n), &nw, nil)
if err != nil {
return 0, err
}
uint16s := fd.readuint16[:len(fd.readuint16)+int(nw)]
fd.readuint16 = fd.readuint16[:0]
buf := fd.readbyte[:0]
for i := 0; i < len(uint16s); i++ {
r := rune(uint16s[i])
if utf16.IsSurrogate(r) {
if i+1 == len(uint16s) {
if nw > 0 {
// Save half surrogate pair for next time.
fd.readuint16 = fd.readuint16[:1]
fd.readuint16[0] = uint16(r)
break
}
r = utf8.RuneError
} else {
r = utf16.DecodeRune(r, rune(uint16s[i+1]))
if r != utf8.RuneError {
i++
}
}
}
buf = utf8.AppendRune(buf, r)
}
fd.readbyte = buf
fd.readbyteOffset = 0
if nw == 0 {
break
}
}
src := fd.readbyte[fd.readbyteOffset:]
var i int
for i = 0; i < len(src) && i < len(b); i++ {
x := src[i]
if x == 0x1A { // Ctrl-Z
if i == 0 {
fd.readbyteOffset++
}
break
}
b[i] = x
}
fd.readbyteOffset += i
return i, nil
}
// Pread emulates the Unix pread system call.
func (fd *FD) Pread(b []byte, off int64) (int, error) {
if fd.kind == kindPipe {
// Pread does not work with pipes
return 0, syscall.ESPIPE
}
// Call incref, not readLock, because since pread specifies the
// offset it is independent from other reads.
if err := fd.incref(); err != nil {
return 0, err
}
defer fd.decref()
if len(b) > maxRW {
b = b[:maxRW]
}
fd.l.Lock()
defer fd.l.Unlock()
curoffset, err := syscall.Seek(fd.Sysfd, 0, io.SeekCurrent)
if err != nil {
return 0, err
}
defer syscall.Seek(fd.Sysfd, curoffset, io.SeekStart)
defer fd.setOffset(curoffset)
o := &fd.rop
o.InitBuf(b)
fd.setOffset(off)
n, err := execIO(o, func(o *operation) error {
return syscall.ReadFile(o.fd.Sysfd, unsafe.Slice(o.buf.Buf, o.buf.Len), &o.qty, &o.o)
})
if err == syscall.ERROR_HANDLE_EOF {
err = io.EOF
}
if len(b) != 0 {
err = fd.eofError(n, err)
}
return n, err
}
// ReadFrom wraps the recvfrom network call.
func (fd *FD) ReadFrom(buf []byte) (int, syscall.Sockaddr, error) {
if len(buf) == 0 {
return 0, nil, nil
}
if len(buf) > maxRW {
buf = buf[:maxRW]
}
if err := fd.readLock(); err != nil {
return 0, nil, err
}
defer fd.readUnlock()
o := &fd.rop
o.InitBuf(buf)
n, err := execIO(o, func(o *operation) error {
if o.rsa == nil {
o.rsa = new(syscall.RawSockaddrAny)
}
o.rsan = int32(unsafe.Sizeof(*o.rsa))
return syscall.WSARecvFrom(o.fd.Sysfd, &o.buf, 1, &o.qty, &o.flags, o.rsa, &o.rsan, &o.o, nil)
})
err = fd.eofError(n, err)
if err != nil {
return n, nil, err
}
sa, _ := o.rsa.Sockaddr()
return n, sa, nil
}
// ReadFromInet4 wraps the recvfrom network call for IPv4.
func (fd *FD) ReadFromInet4(buf []byte, sa4 *syscall.SockaddrInet4) (int, error) {
if len(buf) == 0 {
return 0, nil
}
if len(buf) > maxRW {
buf = buf[:maxRW]
}
if err := fd.readLock(); err != nil {
return 0, err
}
defer fd.readUnlock()
o := &fd.rop
o.InitBuf(buf)
n, err := execIO(o, func(o *operation) error {
if o.rsa == nil {
o.rsa = new(syscall.RawSockaddrAny)
}
o.rsan = int32(unsafe.Sizeof(*o.rsa))
return syscall.WSARecvFrom(o.fd.Sysfd, &o.buf, 1, &o.qty, &o.flags, o.rsa, &o.rsan, &o.o, nil)
})
err = fd.eofError(n, err)
if err != nil {
return n, err
}
rawToSockaddrInet4(o.rsa, sa4)
return n, err
}
// ReadFromInet6 wraps the recvfrom network call for IPv6.
func (fd *FD) ReadFromInet6(buf []byte, sa6 *syscall.SockaddrInet6) (int, error) {
if len(buf) == 0 {
return 0, nil
}
if len(buf) > maxRW {
buf = buf[:maxRW]
}
if err := fd.readLock(); err != nil {
return 0, err
}
defer fd.readUnlock()
o := &fd.rop
o.InitBuf(buf)
n, err := execIO(o, func(o *operation) error {
if o.rsa == nil {
o.rsa = new(syscall.RawSockaddrAny)
}
o.rsan = int32(unsafe.Sizeof(*o.rsa))
return syscall.WSARecvFrom(o.fd.Sysfd, &o.buf, 1, &o.qty, &o.flags, o.rsa, &o.rsan, &o.o, nil)
})
err = fd.eofError(n, err)
if err != nil {
return n, err
}
rawToSockaddrInet6(o.rsa, sa6)
return n, err
}
// Write implements io.Writer.
func (fd *FD) Write(buf []byte) (int, error) {
if err := fd.writeLock(); err != nil {
return 0, err
}
defer fd.writeUnlock()
if fd.kind == kindFile {
fd.l.Lock()
defer fd.l.Unlock()
}
var ntotal int
for {
max := len(buf)
if max-ntotal > maxRW {
max = ntotal + maxRW
}
b := buf[ntotal:max]
var n int
var err error
switch fd.kind {
case kindConsole:
n, err = fd.writeConsole(b)
case kindPipe, kindFile:
o := &fd.wop
o.InitBuf(b)
n, err = execIO(o, func(o *operation) error {
return syscall.WriteFile(o.fd.Sysfd, unsafe.Slice(o.buf.Buf, o.buf.Len), &o.qty, o.overlapped())
})
fd.addOffset(n)
case kindNet:
if race.Enabled {
race.ReleaseMerge(unsafe.Pointer(&ioSync))
}
o := &fd.wop
o.InitBuf(b)
n, err = execIO(o, func(o *operation) error {
return syscall.WSASend(o.fd.Sysfd, &o.buf, 1, &o.qty, 0, &o.o, nil)
})
}
ntotal += n
if ntotal == len(buf) || err != nil {
return ntotal, err
}
if n == 0 {
return ntotal, io.ErrUnexpectedEOF
}
}
}
// writeConsole writes len(b) bytes to the console File.
// It returns the number of bytes written and an error, if any.
func (fd *FD) writeConsole(b []byte) (int, error) {
n := len(b)
runes := make([]rune, 0, 256)
if len(fd.lastbits) > 0 {
b = append(fd.lastbits, b...)
fd.lastbits = nil
}
for len(b) >= utf8.UTFMax || utf8.FullRune(b) {
r, l := utf8.DecodeRune(b)
runes = append(runes, r)
b = b[l:]
}
if len(b) > 0 {
fd.lastbits = make([]byte, len(b))
copy(fd.lastbits, b)
}
// syscall.WriteConsole seems to fail, if given large buffer.
// So limit the buffer to 16000 characters. This number was
// discovered by experimenting with syscall.WriteConsole.
const maxWrite = 16000
for len(runes) > 0 {
m := len(runes)
if m > maxWrite {
m = maxWrite
}
chunk := runes[:m]
runes = runes[m:]
uint16s := utf16.Encode(chunk)
for len(uint16s) > 0 {
var written uint32
err := syscall.WriteConsole(fd.Sysfd, &uint16s[0], uint32(len(uint16s)), &written, nil)
if err != nil {
return 0, err
}
uint16s = uint16s[written:]
}
}
return n, nil
}
// Pwrite emulates the Unix pwrite system call.
func (fd *FD) Pwrite(buf []byte, off int64) (int, error) {
if fd.kind == kindPipe {
// Pwrite does not work with pipes
return 0, syscall.ESPIPE
}
// Call incref, not writeLock, because since pwrite specifies the
// offset it is independent from other writes.
if err := fd.incref(); err != nil {
return 0, err
}
defer fd.decref()
fd.l.Lock()
defer fd.l.Unlock()
curoffset, err := syscall.Seek(fd.Sysfd, 0, io.SeekCurrent)
if err != nil {
return 0, err
}
defer syscall.Seek(fd.Sysfd, curoffset, io.SeekStart)
defer fd.setOffset(curoffset)
var ntotal int
for {
max := len(buf)
if max-ntotal > maxRW {
max = ntotal + maxRW
}
b := buf[ntotal:max]
o := &fd.wop
o.InitBuf(b)
fd.setOffset(off + int64(ntotal))
n, err := execIO(o, func(o *operation) error {
return syscall.WriteFile(o.fd.Sysfd, unsafe.Slice(o.buf.Buf, o.buf.Len), &o.qty, &o.o)
})
if n > 0 {
ntotal += n
}
if ntotal == len(buf) || err != nil {
return ntotal, err
}
if n == 0 {
return ntotal, io.ErrUnexpectedEOF
}
}
}
// Writev emulates the Unix writev system call.
func (fd *FD) Writev(buf *[][]byte) (int64, error) {
if len(*buf) == 0 {
return 0, nil
}
if err := fd.writeLock(); err != nil {
return 0, err
}
defer fd.writeUnlock()
if race.Enabled {
race.ReleaseMerge(unsafe.Pointer(&ioSync))
}
o := &fd.wop
o.InitBufs(buf)
n, err := execIO(o, func(o *operation) error {
return syscall.WSASend(o.fd.Sysfd, &o.bufs[0], uint32(len(o.bufs)), &o.qty, 0, &o.o, nil)
})
o.ClearBufs()
TestHookDidWritev(n)
consume(buf, int64(n))
return int64(n), err
}
// WriteTo wraps the sendto network call.
func (fd *FD) WriteTo(buf []byte, sa syscall.Sockaddr) (int, error) {
if err := fd.writeLock(); err != nil {
return 0, err
}
defer fd.writeUnlock()
if len(buf) == 0 {
// handle zero-byte payload
o := &fd.wop
o.InitBuf(buf)
o.sa = sa
n, err := execIO(o, func(o *operation) error {
return syscall.WSASendto(o.fd.Sysfd, &o.buf, 1, &o.qty, 0, o.sa, &o.o, nil)
})
return n, err
}
ntotal := 0
for len(buf) > 0 {
b := buf
if len(b) > maxRW {
b = b[:maxRW]
}
o := &fd.wop
o.InitBuf(b)
o.sa = sa
n, err := execIO(o, func(o *operation) error {
return syscall.WSASendto(o.fd.Sysfd, &o.buf, 1, &o.qty, 0, o.sa, &o.o, nil)
})
ntotal += int(n)
if err != nil {
return ntotal, err
}
buf = buf[n:]
}
return ntotal, nil
}
// WriteToInet4 is WriteTo, specialized for syscall.SockaddrInet4.
func (fd *FD) WriteToInet4(buf []byte, sa4 *syscall.SockaddrInet4) (int, error) {
if err := fd.writeLock(); err != nil {
return 0, err
}
defer fd.writeUnlock()
if len(buf) == 0 {
// handle zero-byte payload
o := &fd.wop
o.InitBuf(buf)
n, err := execIO(o, func(o *operation) error {
return windows.WSASendtoInet4(o.fd.Sysfd, &o.buf, 1, &o.qty, 0, sa4, &o.o, nil)
})
return n, err
}
ntotal := 0
for len(buf) > 0 {
b := buf
if len(b) > maxRW {
b = b[:maxRW]
}
o := &fd.wop
o.InitBuf(b)
n, err := execIO(o, func(o *operation) error {
return windows.WSASendtoInet4(o.fd.Sysfd, &o.buf, 1, &o.qty, 0, sa4, &o.o, nil)
})
ntotal += int(n)
if err != nil {
return ntotal, err
}
buf = buf[n:]
}
return ntotal, nil
}
// WriteToInet6 is WriteTo, specialized for syscall.SockaddrInet6.
func (fd *FD) WriteToInet6(buf []byte, sa6 *syscall.SockaddrInet6) (int, error) {
if err := fd.writeLock(); err != nil {
return 0, err
}
defer fd.writeUnlock()
if len(buf) == 0 {
// handle zero-byte payload
o := &fd.wop
o.InitBuf(buf)
n, err := execIO(o, func(o *operation) error {
return windows.WSASendtoInet6(o.fd.Sysfd, &o.buf, 1, &o.qty, 0, sa6, &o.o, nil)
})
return n, err
}
ntotal := 0
for len(buf) > 0 {
b := buf
if len(b) > maxRW {
b = b[:maxRW]
}
o := &fd.wop
o.InitBuf(b)
n, err := execIO(o, func(o *operation) error {
return windows.WSASendtoInet6(o.fd.Sysfd, &o.buf, 1, &o.qty, 0, sa6, &o.o, nil)
})
ntotal += int(n)
if err != nil {
return ntotal, err
}
buf = buf[n:]
}
return ntotal, nil
}
// Call ConnectEx. This doesn't need any locking, since it is only
// called when the descriptor is first created. This is here rather
// than in the net package so that it can use fd.wop.
func (fd *FD) ConnectEx(ra syscall.Sockaddr) error {
o := &fd.wop
o.sa = ra
_, err := execIO(o, func(o *operation) error {
return ConnectExFunc(o.fd.Sysfd, o.sa, nil, 0, nil, &o.o)
})
return err
}
func (fd *FD) acceptOne(s syscall.Handle, rawsa []syscall.RawSockaddrAny, o *operation) (string, error) {
// Submit accept request.
o.handle = s
o.rsan = int32(unsafe.Sizeof(rawsa[0]))
_, err := execIO(o, func(o *operation) error {
return AcceptFunc(o.fd.Sysfd, o.handle, (*byte)(unsafe.Pointer(&rawsa[0])), 0, uint32(o.rsan), uint32(o.rsan), &o.qty, &o.o)
})
if err != nil {
CloseFunc(s)
return "acceptex", err
}
// Inherit properties of the listening socket.
err = syscall.Setsockopt(s, syscall.SOL_SOCKET, syscall.SO_UPDATE_ACCEPT_CONTEXT, (*byte)(unsafe.Pointer(&fd.Sysfd)), int32(unsafe.Sizeof(fd.Sysfd)))
if err != nil {
CloseFunc(s)
return "setsockopt", err
}
return "", nil
}
// Accept handles accepting a socket. The sysSocket parameter is used
// to allocate the net socket.
func (fd *FD) Accept(sysSocket func() (syscall.Handle, error)) (syscall.Handle, []syscall.RawSockaddrAny, uint32, string, error) {
if err := fd.readLock(); err != nil {
return syscall.InvalidHandle, nil, 0, "", err
}
defer fd.readUnlock()
o := &fd.rop
var rawsa [2]syscall.RawSockaddrAny
for {
s, err := sysSocket()
if err != nil {
return syscall.InvalidHandle, nil, 0, "", err
}
errcall, err := fd.acceptOne(s, rawsa[:], o)
if err == nil {
return s, rawsa[:], uint32(o.rsan), "", nil
}
// Sometimes we see WSAECONNRESET and ERROR_NETNAME_DELETED is
// returned here. These happen if connection reset is received
// before AcceptEx could complete. These errors relate to new
// connection, not to AcceptEx, so ignore broken connection and
// try AcceptEx again for more connections.
errno, ok := err.(syscall.Errno)
if !ok {
return syscall.InvalidHandle, nil, 0, errcall, err
}
switch errno {
case syscall.ERROR_NETNAME_DELETED, syscall.WSAECONNRESET:
// ignore these and try again
default:
return syscall.InvalidHandle, nil, 0, errcall, err
}
}
}
// Seek wraps syscall.Seek.
func (fd *FD) Seek(offset int64, whence int) (int64, error) {
if fd.kind == kindPipe {
return 0, syscall.ESPIPE
}
if err := fd.incref(); err != nil {
return 0, err
}
defer fd.decref()
fd.l.Lock()
defer fd.l.Unlock()
if !fd.isBlocking && whence == io.SeekCurrent {
// Windows doesn't keep the file pointer for overlapped file handles.
// We do it ourselves in case to account for any read or write
// operations that may have occurred.
offset += fd.offset
}
n, err := syscall.Seek(fd.Sysfd, offset, whence)
fd.setOffset(n)
return n, err
}
// Fchmod updates syscall.ByHandleFileInformation.Fileattributes when needed.
func (fd *FD) Fchmod(mode uint32) error {
if err := fd.incref(); err != nil {
return err
}
defer fd.decref()
var d syscall.ByHandleFileInformation
if err := syscall.GetFileInformationByHandle(fd.Sysfd, &d); err != nil {
return err
}
attrs := d.FileAttributes
if mode&syscall.S_IWRITE != 0 {
attrs &^= syscall.FILE_ATTRIBUTE_READONLY
} else {
attrs |= syscall.FILE_ATTRIBUTE_READONLY
}
if attrs == d.FileAttributes {
return nil
}
var du windows.FILE_BASIC_INFO
du.FileAttributes = attrs
return windows.SetFileInformationByHandle(fd.Sysfd, windows.FileBasicInfo, unsafe.Pointer(&du), uint32(unsafe.Sizeof(du)))
}
// Fchdir wraps syscall.Fchdir.
func (fd *FD) Fchdir() error {
if err := fd.incref(); err != nil {
return err
}
defer fd.decref()
return syscall.Fchdir(fd.Sysfd)
}
// GetFileType wraps syscall.GetFileType.
func (fd *FD) GetFileType() (uint32, error) {
if err := fd.incref(); err != nil {
return 0, err
}
defer fd.decref()
return syscall.GetFileType(fd.Sysfd)
}
// GetFileInformationByHandle wraps GetFileInformationByHandle.
func (fd *FD) GetFileInformationByHandle(data *syscall.ByHandleFileInformation) error {
if err := fd.incref(); err != nil {
return err
}
defer fd.decref()
return syscall.GetFileInformationByHandle(fd.Sysfd, data)
}
// RawRead invokes the user-defined function f for a read operation.
func (fd *FD) RawRead(f func(uintptr) bool) error {
if err := fd.readLock(); err != nil {
return err
}
defer fd.readUnlock()
for {
if f(uintptr(fd.Sysfd)) {
return nil
}
// Use a zero-byte read as a way to get notified when this
// socket is readable. h/t https://stackoverflow.com/a/42019668/332798
o := &fd.rop
o.InitBuf(nil)
_, err := execIO(o, func(o *operation) error {
if !fd.IsStream {
o.flags |= windows.MSG_PEEK
}
return syscall.WSARecv(o.fd.Sysfd, &o.buf, 1, &o.qty, &o.flags, &o.o, nil)
})
if err == windows.WSAEMSGSIZE {
// expected with a 0-byte peek, ignore.
} else if err != nil {
return err
}
}
}
// RawWrite invokes the user-defined function f for a write operation.
func (fd *FD) RawWrite(f func(uintptr) bool) error {
if err := fd.writeLock(); err != nil {
return err
}
defer fd.writeUnlock()
if f(uintptr(fd.Sysfd)) {
return nil
}
// TODO(tmm1): find a way to detect socket writability
return syscall.EWINDOWS
}
func sockaddrInet4ToRaw(rsa *syscall.RawSockaddrAny, sa *syscall.SockaddrInet4) int32 {
*rsa = syscall.RawSockaddrAny{}
raw := (*syscall.RawSockaddrInet4)(unsafe.Pointer(rsa))
raw.Family = syscall.AF_INET
p := (*[2]byte)(unsafe.Pointer(&raw.Port))
p[0] = byte(sa.Port >> 8)
p[1] = byte(sa.Port)
raw.Addr = sa.Addr
return int32(unsafe.Sizeof(*raw))
}
func sockaddrInet6ToRaw(rsa *syscall.RawSockaddrAny, sa *syscall.SockaddrInet6) int32 {
*rsa = syscall.RawSockaddrAny{}
raw := (*syscall.RawSockaddrInet6)(unsafe.Pointer(rsa))
raw.Family = syscall.AF_INET6
p := (*[2]byte)(unsafe.Pointer(&raw.Port))
p[0] = byte(sa.Port >> 8)
p[1] = byte(sa.Port)
raw.Scope_id = sa.ZoneId
raw.Addr = sa.Addr
return int32(unsafe.Sizeof(*raw))
}
func rawToSockaddrInet4(rsa *syscall.RawSockaddrAny, sa *syscall.SockaddrInet4) {
pp := (*syscall.RawSockaddrInet4)(unsafe.Pointer(rsa))
p := (*[2]byte)(unsafe.Pointer(&pp.Port))
sa.Port = int(p[0])<<8 + int(p[1])
sa.Addr = pp.Addr
}
func rawToSockaddrInet6(rsa *syscall.RawSockaddrAny, sa *syscall.SockaddrInet6) {
pp := (*syscall.RawSockaddrInet6)(unsafe.Pointer(rsa))
p := (*[2]byte)(unsafe.Pointer(&pp.Port))
sa.Port = int(p[0])<<8 + int(p[1])
sa.ZoneId = pp.Scope_id
sa.Addr = pp.Addr
}
func sockaddrToRaw(rsa *syscall.RawSockaddrAny, sa syscall.Sockaddr) (int32, error) {
switch sa := sa.(type) {
case *syscall.SockaddrInet4:
sz := sockaddrInet4ToRaw(rsa, sa)
return sz, nil
case *syscall.SockaddrInet6:
sz := sockaddrInet6ToRaw(rsa, sa)
return sz, nil
default:
return 0, syscall.EWINDOWS
}
}
// ReadMsg wraps the WSARecvMsg network call.
func (fd *FD) ReadMsg(p []byte, oob []byte, flags int) (int, int, int, syscall.Sockaddr, error) {
if err := fd.readLock(); err != nil {
return 0, 0, 0, nil, err
}
defer fd.readUnlock()
if len(p) > maxRW {
p = p[:maxRW]
}
o := &fd.rop
o.InitMsg(p, oob)
if o.rsa == nil {
o.rsa = new(syscall.RawSockaddrAny)
}
o.msg.Name = (syscall.Pointer)(unsafe.Pointer(o.rsa))
o.msg.Namelen = int32(unsafe.Sizeof(*o.rsa))
o.msg.Flags = uint32(flags)
n, err := execIO(o, func(o *operation) error {
return windows.WSARecvMsg(o.fd.Sysfd, &o.msg, &o.qty, &o.o, nil)
})
err = fd.eofError(n, err)
var sa syscall.Sockaddr
if err == nil {
sa, err = o.rsa.Sockaddr()
}
return n, int(o.msg.Control.Len), int(o.msg.Flags), sa, err
}
// ReadMsgInet4 is ReadMsg, but specialized to return a syscall.SockaddrInet4.
func (fd *FD) ReadMsgInet4(p []byte, oob []byte, flags int, sa4 *syscall.SockaddrInet4) (int, int, int, error) {
if err := fd.readLock(); err != nil {
return 0, 0, 0, err
}
defer fd.readUnlock()
if len(p) > maxRW {
p = p[:maxRW]
}
o := &fd.rop
o.InitMsg(p, oob)
if o.rsa == nil {
o.rsa = new(syscall.RawSockaddrAny)
}
o.msg.Name = (syscall.Pointer)(unsafe.Pointer(o.rsa))
o.msg.Namelen = int32(unsafe.Sizeof(*o.rsa))
o.msg.Flags = uint32(flags)
n, err := execIO(o, func(o *operation) error {
return windows.WSARecvMsg(o.fd.Sysfd, &o.msg, &o.qty, &o.o, nil)
})
err = fd.eofError(n, err)
if err == nil {
rawToSockaddrInet4(o.rsa, sa4)
}
return n, int(o.msg.Control.Len), int(o.msg.Flags), err
}
// ReadMsgInet6 is ReadMsg, but specialized to return a syscall.SockaddrInet6.
func (fd *FD) ReadMsgInet6(p []byte, oob []byte, flags int, sa6 *syscall.SockaddrInet6) (int, int, int, error) {
if err := fd.readLock(); err != nil {
return 0, 0, 0, err
}
defer fd.readUnlock()
if len(p) > maxRW {
p = p[:maxRW]
}
o := &fd.rop
o.InitMsg(p, oob)
if o.rsa == nil {
o.rsa = new(syscall.RawSockaddrAny)
}
o.msg.Name = (syscall.Pointer)(unsafe.Pointer(o.rsa))
o.msg.Namelen = int32(unsafe.Sizeof(*o.rsa))
o.msg.Flags = uint32(flags)
n, err := execIO(o, func(o *operation) error {
return windows.WSARecvMsg(o.fd.Sysfd, &o.msg, &o.qty, &o.o, nil)
})
err = fd.eofError(n, err)
if err == nil {
rawToSockaddrInet6(o.rsa, sa6)
}
return n, int(o.msg.Control.Len), int(o.msg.Flags), err
}
// WriteMsg wraps the WSASendMsg network call.
func (fd *FD) WriteMsg(p []byte, oob []byte, sa syscall.Sockaddr) (int, int, error) {
if len(p) > maxRW {
return 0, 0, errors.New("packet is too large (only 1GB is allowed)")
}
if err := fd.writeLock(); err != nil {
return 0, 0, err
}
defer fd.writeUnlock()
o := &fd.wop
o.InitMsg(p, oob)
if sa != nil {
if o.rsa == nil {
o.rsa = new(syscall.RawSockaddrAny)
}
len, err := sockaddrToRaw(o.rsa, sa)
if err != nil {
return 0, 0, err
}
o.msg.Name = (syscall.Pointer)(unsafe.Pointer(o.rsa))
o.msg.Namelen = len
}
n, err := execIO(o, func(o *operation) error {
return windows.WSASendMsg(o.fd.Sysfd, &o.msg, 0, &o.qty, &o.o, nil)
})
return n, int(o.msg.Control.Len), err
}
// WriteMsgInet4 is WriteMsg specialized for syscall.SockaddrInet4.
func (fd *FD) WriteMsgInet4(p []byte, oob []byte, sa *syscall.SockaddrInet4) (int, int, error) {
if len(p) > maxRW {
return 0, 0, errors.New("packet is too large (only 1GB is allowed)")
}
if err := fd.writeLock(); err != nil {
return 0, 0, err
}
defer fd.writeUnlock()
o := &fd.wop
o.InitMsg(p, oob)
if o.rsa == nil {
o.rsa = new(syscall.RawSockaddrAny)
}
len := sockaddrInet4ToRaw(o.rsa, sa)
o.msg.Name = (syscall.Pointer)(unsafe.Pointer(o.rsa))
o.msg.Namelen = len
n, err := execIO(o, func(o *operation) error {
return windows.WSASendMsg(o.fd.Sysfd, &o.msg, 0, &o.qty, &o.o, nil)
})
return n, int(o.msg.Control.Len), err
}
// WriteMsgInet6 is WriteMsg specialized for syscall.SockaddrInet6.
func (fd *FD) WriteMsgInet6(p []byte, oob []byte, sa *syscall.SockaddrInet6) (int, int, error) {
if len(p) > maxRW {
return 0, 0, errors.New("packet is too large (only 1GB is allowed)")
}
if err := fd.writeLock(); err != nil {
return 0, 0, err
}
defer fd.writeUnlock()
o := &fd.wop
o.InitMsg(p, oob)
if o.rsa == nil {
o.rsa = new(syscall.RawSockaddrAny)
}
len := sockaddrInet6ToRaw(o.rsa, sa)
o.msg.Name = (syscall.Pointer)(unsafe.Pointer(o.rsa))
o.msg.Namelen = len
n, err := execIO(o, func(o *operation) error {
return windows.WSASendMsg(o.fd.Sysfd, &o.msg, 0, &o.qty, &o.o, nil)
})
return n, int(o.msg.Control.Len), err
}
func DupCloseOnExec(fd int) (int, string, error) {
proc, err := syscall.GetCurrentProcess()
if err != nil {
return 0, "GetCurrentProcess", err
}
var nfd syscall.Handle
const inherit = false // analogous to CLOEXEC
if err := syscall.DuplicateHandle(proc, syscall.Handle(fd), proc, &nfd, 0, inherit, syscall.DUPLICATE_SAME_ACCESS); err != nil {
return 0, "DuplicateHandle", err
}
return int(nfd), "", nil
}