blob: 0c7e5bdb97c03163afad9f967c91de5329f56da7 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x86
import (
"fmt"
"math"
"cmd/compile/internal/gc"
"cmd/compile/internal/logopt"
"cmd/compile/internal/ssa"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/obj/x86"
)
// markMoves marks any MOVXconst ops that need to avoid clobbering flags.
func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) {
flive := b.FlagsLiveAtEnd
for _, c := range b.ControlValues() {
flive = c.Type.IsFlags() || flive
}
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
if flive && v.Op == ssa.Op386MOVLconst {
// The "mark" is any non-nil Aux value.
v.Aux = v
}
if v.Type.IsFlags() {
flive = false
}
for _, a := range v.Args {
if a.Type.IsFlags() {
flive = true
}
}
}
}
// loadByType returns the load instruction of the given type.
func loadByType(t *types.Type) obj.As {
// Avoid partial register write
if !t.IsFloat() && t.Size() <= 2 {
if t.Size() == 1 {
return x86.AMOVBLZX
} else {
return x86.AMOVWLZX
}
}
// Otherwise, there's no difference between load and store opcodes.
return storeByType(t)
}
// storeByType returns the store instruction of the given type.
func storeByType(t *types.Type) obj.As {
width := t.Size()
if t.IsFloat() {
switch width {
case 4:
return x86.AMOVSS
case 8:
return x86.AMOVSD
}
} else {
switch width {
case 1:
return x86.AMOVB
case 2:
return x86.AMOVW
case 4:
return x86.AMOVL
}
}
panic("bad store type")
}
// moveByType returns the reg->reg move instruction of the given type.
func moveByType(t *types.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return x86.AMOVSS
case 8:
return x86.AMOVSD
default:
panic(fmt.Sprintf("bad float register width %d:%s", t.Size(), t))
}
} else {
switch t.Size() {
case 1:
// Avoids partial register write
return x86.AMOVL
case 2:
return x86.AMOVL
case 4:
return x86.AMOVL
default:
panic(fmt.Sprintf("bad int register width %d:%s", t.Size(), t))
}
}
}
// opregreg emits instructions for
// dest := dest(To) op src(From)
// and also returns the created obj.Prog so it
// may be further adjusted (offset, scale, etc).
func opregreg(s *gc.SSAGenState, op obj.As, dest, src int16) *obj.Prog {
p := s.Prog(op)
p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG
p.To.Reg = dest
p.From.Reg = src
return p
}
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
switch v.Op {
case ssa.Op386ADDL:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
switch {
case r == r1:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case r == r2:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
default:
p := s.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM
p.From.Reg = r1
p.From.Scale = 1
p.From.Index = r2
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
// 2-address opcode arithmetic
case ssa.Op386SUBL,
ssa.Op386MULL,
ssa.Op386ANDL,
ssa.Op386ORL,
ssa.Op386XORL,
ssa.Op386SHLL,
ssa.Op386SHRL, ssa.Op386SHRW, ssa.Op386SHRB,
ssa.Op386SARL, ssa.Op386SARW, ssa.Op386SARB,
ssa.Op386ADDSS, ssa.Op386ADDSD, ssa.Op386SUBSS, ssa.Op386SUBSD,
ssa.Op386MULSS, ssa.Op386MULSD, ssa.Op386DIVSS, ssa.Op386DIVSD,
ssa.Op386PXOR,
ssa.Op386ADCL,
ssa.Op386SBBL:
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
opregreg(s, v.Op.Asm(), r, v.Args[1].Reg())
case ssa.Op386ADDLcarry, ssa.Op386SUBLcarry:
// output 0 is carry/borrow, output 1 is the low 32 bits.
r := v.Reg0()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output[0] not in same register %s", v.LongString())
}
opregreg(s, v.Op.Asm(), r, v.Args[1].Reg())
case ssa.Op386ADDLconstcarry, ssa.Op386SUBLconstcarry:
// output 0 is carry/borrow, output 1 is the low 32 bits.
r := v.Reg0()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output[0] not in same register %s", v.LongString())
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386DIVL, ssa.Op386DIVW,
ssa.Op386DIVLU, ssa.Op386DIVWU,
ssa.Op386MODL, ssa.Op386MODW,
ssa.Op386MODLU, ssa.Op386MODWU:
// Arg[0] is already in AX as it's the only register we allow
// and AX is the only output
x := v.Args[1].Reg()
// CPU faults upon signed overflow, which occurs when most
// negative int is divided by -1.
var j *obj.Prog
if v.Op == ssa.Op386DIVL || v.Op == ssa.Op386DIVW ||
v.Op == ssa.Op386MODL || v.Op == ssa.Op386MODW {
if ssa.DivisionNeedsFixUp(v) {
var c *obj.Prog
switch v.Op {
case ssa.Op386DIVL, ssa.Op386MODL:
c = s.Prog(x86.ACMPL)
j = s.Prog(x86.AJEQ)
case ssa.Op386DIVW, ssa.Op386MODW:
c = s.Prog(x86.ACMPW)
j = s.Prog(x86.AJEQ)
}
c.From.Type = obj.TYPE_REG
c.From.Reg = x
c.To.Type = obj.TYPE_CONST
c.To.Offset = -1
j.To.Type = obj.TYPE_BRANCH
}
// sign extend the dividend
switch v.Op {
case ssa.Op386DIVL, ssa.Op386MODL:
s.Prog(x86.ACDQ)
case ssa.Op386DIVW, ssa.Op386MODW:
s.Prog(x86.ACWD)
}
}
// for unsigned ints, we sign extend by setting DX = 0
// signed ints were sign extended above
if v.Op == ssa.Op386DIVLU || v.Op == ssa.Op386MODLU ||
v.Op == ssa.Op386DIVWU || v.Op == ssa.Op386MODWU {
c := s.Prog(x86.AXORL)
c.From.Type = obj.TYPE_REG
c.From.Reg = x86.REG_DX
c.To.Type = obj.TYPE_REG
c.To.Reg = x86.REG_DX
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = x
// signed division, rest of the check for -1 case
if j != nil {
j2 := s.Prog(obj.AJMP)
j2.To.Type = obj.TYPE_BRANCH
var n *obj.Prog
if v.Op == ssa.Op386DIVL || v.Op == ssa.Op386DIVW {
// n * -1 = -n
n = s.Prog(x86.ANEGL)
n.To.Type = obj.TYPE_REG
n.To.Reg = x86.REG_AX
} else {
// n % -1 == 0
n = s.Prog(x86.AXORL)
n.From.Type = obj.TYPE_REG
n.From.Reg = x86.REG_DX
n.To.Type = obj.TYPE_REG
n.To.Reg = x86.REG_DX
}
j.To.Val = n
j2.To.Val = s.Pc()
}
case ssa.Op386HMULL, ssa.Op386HMULLU:
// the frontend rewrites constant division by 8/16/32 bit integers into
// HMUL by a constant
// SSA rewrites generate the 64 bit versions
// Arg[0] is already in AX as it's the only register we allow
// and DX is the only output we care about (the high bits)
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
// IMULB puts the high portion in AH instead of DL,
// so move it to DL for consistency
if v.Type.Size() == 1 {
m := s.Prog(x86.AMOVB)
m.From.Type = obj.TYPE_REG
m.From.Reg = x86.REG_AH
m.To.Type = obj.TYPE_REG
m.To.Reg = x86.REG_DX
}
case ssa.Op386MULLU:
// Arg[0] is already in AX as it's the only register we allow
// results lo in AX
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
case ssa.Op386MULLQU:
// AX * args[1], high 32 bits in DX (result[0]), low 32 bits in AX (result[1]).
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
case ssa.Op386AVGLU:
// compute (x+y)/2 unsigned.
// Do a 32-bit add, the overflow goes into the carry.
// Shift right once and pull the carry back into the 31st bit.
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
p := s.Prog(x86.AADDL)
p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG
p.To.Reg = r
p.From.Reg = v.Args[1].Reg()
p = s.Prog(x86.ARCRL)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386ADDLconst:
r := v.Reg()
a := v.Args[0].Reg()
if r == a {
if v.AuxInt == 1 {
p := s.Prog(x86.AINCL)
p.To.Type = obj.TYPE_REG
p.To.Reg = r
return
}
if v.AuxInt == -1 {
p := s.Prog(x86.ADECL)
p.To.Type = obj.TYPE_REG
p.To.Reg = r
return
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
return
}
p := s.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM
p.From.Reg = a
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386MULLconst:
r := v.Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
p.SetFrom3(obj.Addr{Type: obj.TYPE_REG, Reg: v.Args[0].Reg()})
case ssa.Op386SUBLconst,
ssa.Op386ADCLconst,
ssa.Op386SBBLconst,
ssa.Op386ANDLconst,
ssa.Op386ORLconst,
ssa.Op386XORLconst,
ssa.Op386SHLLconst,
ssa.Op386SHRLconst, ssa.Op386SHRWconst, ssa.Op386SHRBconst,
ssa.Op386SARLconst, ssa.Op386SARWconst, ssa.Op386SARBconst,
ssa.Op386ROLLconst, ssa.Op386ROLWconst, ssa.Op386ROLBconst:
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386SBBLcarrymask:
r := v.Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386LEAL1, ssa.Op386LEAL2, ssa.Op386LEAL4, ssa.Op386LEAL8:
r := v.Args[0].Reg()
i := v.Args[1].Reg()
p := s.Prog(x86.ALEAL)
switch v.Op {
case ssa.Op386LEAL1:
p.From.Scale = 1
if i == x86.REG_SP {
r, i = i, r
}
case ssa.Op386LEAL2:
p.From.Scale = 2
case ssa.Op386LEAL4:
p.From.Scale = 4
case ssa.Op386LEAL8:
p.From.Scale = 8
}
p.From.Type = obj.TYPE_MEM
p.From.Reg = r
p.From.Index = i
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386LEAL:
p := s.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386CMPL, ssa.Op386CMPW, ssa.Op386CMPB,
ssa.Op386TESTL, ssa.Op386TESTW, ssa.Op386TESTB:
opregreg(s, v.Op.Asm(), v.Args[1].Reg(), v.Args[0].Reg())
case ssa.Op386UCOMISS, ssa.Op386UCOMISD:
// Go assembler has swapped operands for UCOMISx relative to CMP,
// must account for that right here.
opregreg(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg())
case ssa.Op386CMPLconst, ssa.Op386CMPWconst, ssa.Op386CMPBconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_CONST
p.To.Offset = v.AuxInt
case ssa.Op386TESTLconst, ssa.Op386TESTWconst, ssa.Op386TESTBconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Args[0].Reg()
case ssa.Op386CMPLload, ssa.Op386CMPWload, ssa.Op386CMPBload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Args[1].Reg()
case ssa.Op386CMPLconstload, ssa.Op386CMPWconstload, ssa.Op386CMPBconstload:
sc := v.AuxValAndOff()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux2(&p.From, v, sc.Off())
p.To.Type = obj.TYPE_CONST
p.To.Offset = sc.Val()
case ssa.Op386MOVLconst:
x := v.Reg()
// If flags aren't live (indicated by v.Aux == nil),
// then we can rewrite MOV $0, AX into XOR AX, AX.
if v.AuxInt == 0 && v.Aux == nil {
p := s.Prog(x86.AXORL)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = x
break
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = x
case ssa.Op386MOVSSconst, ssa.Op386MOVSDconst:
x := v.Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_FCONST
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
p.To.Type = obj.TYPE_REG
p.To.Reg = x
case ssa.Op386MOVSSconst1, ssa.Op386MOVSDconst1:
p := s.Prog(x86.ALEAL)
p.From.Type = obj.TYPE_MEM
p.From.Name = obj.NAME_EXTERN
f := math.Float64frombits(uint64(v.AuxInt))
if v.Op == ssa.Op386MOVSDconst1 {
p.From.Sym = gc.Ctxt.Float64Sym(f)
} else {
p.From.Sym = gc.Ctxt.Float32Sym(float32(f))
}
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVSSconst2, ssa.Op386MOVSDconst2:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVSSload, ssa.Op386MOVSDload, ssa.Op386MOVLload, ssa.Op386MOVWload, ssa.Op386MOVBload, ssa.Op386MOVBLSXload, ssa.Op386MOVWLSXload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386MOVBloadidx1, ssa.Op386MOVWloadidx1, ssa.Op386MOVLloadidx1, ssa.Op386MOVSSloadidx1, ssa.Op386MOVSDloadidx1,
ssa.Op386MOVSDloadidx8, ssa.Op386MOVLloadidx4, ssa.Op386MOVSSloadidx4, ssa.Op386MOVWloadidx2:
r := v.Args[0].Reg()
i := v.Args[1].Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
switch v.Op {
case ssa.Op386MOVBloadidx1, ssa.Op386MOVWloadidx1, ssa.Op386MOVLloadidx1, ssa.Op386MOVSSloadidx1, ssa.Op386MOVSDloadidx1:
if i == x86.REG_SP {
r, i = i, r
}
p.From.Scale = 1
case ssa.Op386MOVSDloadidx8:
p.From.Scale = 8
case ssa.Op386MOVLloadidx4, ssa.Op386MOVSSloadidx4:
p.From.Scale = 4
case ssa.Op386MOVWloadidx2:
p.From.Scale = 2
}
p.From.Reg = r
p.From.Index = i
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386ADDLloadidx4, ssa.Op386SUBLloadidx4, ssa.Op386MULLloadidx4,
ssa.Op386ANDLloadidx4, ssa.Op386ORLloadidx4, ssa.Op386XORLloadidx4:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[1].Reg()
p.From.Index = v.Args[2].Reg()
p.From.Scale = 4
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
if v.Reg() != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
case ssa.Op386ADDLload, ssa.Op386SUBLload, ssa.Op386MULLload,
ssa.Op386ANDLload, ssa.Op386ORLload, ssa.Op386XORLload,
ssa.Op386ADDSDload, ssa.Op386ADDSSload, ssa.Op386SUBSDload, ssa.Op386SUBSSload,
ssa.Op386MULSDload, ssa.Op386MULSSload, ssa.Op386DIVSSload, ssa.Op386DIVSDload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[1].Reg()
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
if v.Reg() != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
case ssa.Op386MOVSSstore, ssa.Op386MOVSDstore, ssa.Op386MOVLstore, ssa.Op386MOVWstore, ssa.Op386MOVBstore,
ssa.Op386ADDLmodify, ssa.Op386SUBLmodify, ssa.Op386ANDLmodify, ssa.Op386ORLmodify, ssa.Op386XORLmodify:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
case ssa.Op386ADDLconstmodify:
sc := v.AuxValAndOff()
val := sc.Val()
if val == 1 || val == -1 {
var p *obj.Prog
if val == 1 {
p = s.Prog(x86.AINCL)
} else {
p = s.Prog(x86.ADECL)
}
off := sc.Off()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, off)
break
}
fallthrough
case ssa.Op386ANDLconstmodify, ssa.Op386ORLconstmodify, ssa.Op386XORLconstmodify:
sc := v.AuxValAndOff()
off := sc.Off()
val := sc.Val()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = val
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, off)
case ssa.Op386MOVBstoreidx1, ssa.Op386MOVWstoreidx1, ssa.Op386MOVLstoreidx1, ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSDstoreidx1,
ssa.Op386MOVSDstoreidx8, ssa.Op386MOVSSstoreidx4, ssa.Op386MOVLstoreidx4, ssa.Op386MOVWstoreidx2,
ssa.Op386ADDLmodifyidx4, ssa.Op386SUBLmodifyidx4, ssa.Op386ANDLmodifyidx4, ssa.Op386ORLmodifyidx4, ssa.Op386XORLmodifyidx4:
r := v.Args[0].Reg()
i := v.Args[1].Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_MEM
switch v.Op {
case ssa.Op386MOVBstoreidx1, ssa.Op386MOVWstoreidx1, ssa.Op386MOVLstoreidx1, ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSDstoreidx1:
if i == x86.REG_SP {
r, i = i, r
}
p.To.Scale = 1
case ssa.Op386MOVSDstoreidx8:
p.To.Scale = 8
case ssa.Op386MOVSSstoreidx4, ssa.Op386MOVLstoreidx4,
ssa.Op386ADDLmodifyidx4, ssa.Op386SUBLmodifyidx4, ssa.Op386ANDLmodifyidx4, ssa.Op386ORLmodifyidx4, ssa.Op386XORLmodifyidx4:
p.To.Scale = 4
case ssa.Op386MOVWstoreidx2:
p.To.Scale = 2
}
p.To.Reg = r
p.To.Index = i
gc.AddAux(&p.To, v)
case ssa.Op386MOVLstoreconst, ssa.Op386MOVWstoreconst, ssa.Op386MOVBstoreconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
sc := v.AuxValAndOff()
p.From.Offset = sc.Val()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux2(&p.To, v, sc.Off())
case ssa.Op386ADDLconstmodifyidx4:
sc := v.AuxValAndOff()
val := sc.Val()
if val == 1 || val == -1 {
var p *obj.Prog
if val == 1 {
p = s.Prog(x86.AINCL)
} else {
p = s.Prog(x86.ADECL)
}
off := sc.Off()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
p.To.Scale = 4
p.To.Index = v.Args[1].Reg()
gc.AddAux2(&p.To, v, off)
break
}
fallthrough
case ssa.Op386MOVLstoreconstidx1, ssa.Op386MOVLstoreconstidx4, ssa.Op386MOVWstoreconstidx1, ssa.Op386MOVWstoreconstidx2, ssa.Op386MOVBstoreconstidx1,
ssa.Op386ANDLconstmodifyidx4, ssa.Op386ORLconstmodifyidx4, ssa.Op386XORLconstmodifyidx4:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
sc := v.AuxValAndOff()
p.From.Offset = sc.Val()
r := v.Args[0].Reg()
i := v.Args[1].Reg()
switch v.Op {
case ssa.Op386MOVBstoreconstidx1, ssa.Op386MOVWstoreconstidx1, ssa.Op386MOVLstoreconstidx1:
p.To.Scale = 1
if i == x86.REG_SP {
r, i = i, r
}
case ssa.Op386MOVWstoreconstidx2:
p.To.Scale = 2
case ssa.Op386MOVLstoreconstidx4,
ssa.Op386ADDLconstmodifyidx4, ssa.Op386ANDLconstmodifyidx4, ssa.Op386ORLconstmodifyidx4, ssa.Op386XORLconstmodifyidx4:
p.To.Scale = 4
}
p.To.Type = obj.TYPE_MEM
p.To.Reg = r
p.To.Index = i
gc.AddAux2(&p.To, v, sc.Off())
case ssa.Op386MOVWLSX, ssa.Op386MOVBLSX, ssa.Op386MOVWLZX, ssa.Op386MOVBLZX,
ssa.Op386CVTSL2SS, ssa.Op386CVTSL2SD,
ssa.Op386CVTTSS2SL, ssa.Op386CVTTSD2SL,
ssa.Op386CVTSS2SD, ssa.Op386CVTSD2SS:
opregreg(s, v.Op.Asm(), v.Reg(), v.Args[0].Reg())
case ssa.Op386DUFFZERO:
p := s.Prog(obj.ADUFFZERO)
p.To.Type = obj.TYPE_ADDR
p.To.Sym = gc.Duffzero
p.To.Offset = v.AuxInt
case ssa.Op386DUFFCOPY:
p := s.Prog(obj.ADUFFCOPY)
p.To.Type = obj.TYPE_ADDR
p.To.Sym = gc.Duffcopy
p.To.Offset = v.AuxInt
case ssa.OpCopy: // TODO: use MOVLreg for reg->reg copies instead of OpCopy?
if v.Type.IsMemory() {
return
}
x := v.Args[0].Reg()
y := v.Reg()
if x != y {
opregreg(s, moveByType(v.Type), y, x)
}
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
p := s.Prog(loadByType(v.Type))
gc.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
gc.AddrAuto(&p.To, v)
case ssa.Op386LoweredGetClosurePtr:
// Closure pointer is DX.
gc.CheckLoweredGetClosurePtr(v)
case ssa.Op386LoweredGetG:
r := v.Reg()
// See the comments in cmd/internal/obj/x86/obj6.go
// near CanUse1InsnTLS for a detailed explanation of these instructions.
if x86.CanUse1InsnTLS(gc.Ctxt) {
// MOVL (TLS), r
p := s.Prog(x86.AMOVL)
p.From.Type = obj.TYPE_MEM
p.From.Reg = x86.REG_TLS
p.To.Type = obj.TYPE_REG
p.To.Reg = r
} else {
// MOVL TLS, r
// MOVL (r)(TLS*1), r
p := s.Prog(x86.AMOVL)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_TLS
p.To.Type = obj.TYPE_REG
p.To.Reg = r
q := s.Prog(x86.AMOVL)
q.From.Type = obj.TYPE_MEM
q.From.Reg = r
q.From.Index = x86.REG_TLS
q.From.Scale = 1
q.To.Type = obj.TYPE_REG
q.To.Reg = r
}
case ssa.Op386LoweredGetCallerPC:
p := s.Prog(x86.AMOVL)
p.From.Type = obj.TYPE_MEM
p.From.Offset = -4 // PC is stored 4 bytes below first parameter.
p.From.Name = obj.NAME_PARAM
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386LoweredGetCallerSP:
// caller's SP is the address of the first arg
p := s.Prog(x86.AMOVL)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = -gc.Ctxt.FixedFrameSize() // 0 on 386, just to be consistent with other architectures
p.From.Name = obj.NAME_PARAM
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386LoweredWB:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = v.Aux.(*obj.LSym)
case ssa.Op386LoweredPanicBoundsA, ssa.Op386LoweredPanicBoundsB, ssa.Op386LoweredPanicBoundsC:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt]
s.UseArgs(8) // space used in callee args area by assembly stubs
case ssa.Op386LoweredPanicExtendA, ssa.Op386LoweredPanicExtendB, ssa.Op386LoweredPanicExtendC:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.ExtendCheckFunc[v.AuxInt]
s.UseArgs(12) // space used in callee args area by assembly stubs
case ssa.Op386CALLstatic, ssa.Op386CALLclosure, ssa.Op386CALLinter:
s.Call(v)
case ssa.Op386NEGL,
ssa.Op386BSWAPL,
ssa.Op386NOTL:
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
p := s.Prog(v.Op.Asm())
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.Op386BSFL, ssa.Op386BSFW,
ssa.Op386BSRL, ssa.Op386BSRW,
ssa.Op386SQRTSD:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386SETEQ, ssa.Op386SETNE,
ssa.Op386SETL, ssa.Op386SETLE,
ssa.Op386SETG, ssa.Op386SETGE,
ssa.Op386SETGF, ssa.Op386SETGEF,
ssa.Op386SETB, ssa.Op386SETBE,
ssa.Op386SETORD, ssa.Op386SETNAN,
ssa.Op386SETA, ssa.Op386SETAE,
ssa.Op386SETO:
p := s.Prog(v.Op.Asm())
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.Op386SETNEF:
p := s.Prog(v.Op.Asm())
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
q := s.Prog(x86.ASETPS)
q.To.Type = obj.TYPE_REG
q.To.Reg = x86.REG_AX
opregreg(s, x86.AORL, v.Reg(), x86.REG_AX)
case ssa.Op386SETEQF:
p := s.Prog(v.Op.Asm())
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
q := s.Prog(x86.ASETPC)
q.To.Type = obj.TYPE_REG
q.To.Reg = x86.REG_AX
opregreg(s, x86.AANDL, v.Reg(), x86.REG_AX)
case ssa.Op386InvertFlags:
v.Fatalf("InvertFlags should never make it to codegen %v", v.LongString())
case ssa.Op386FlagEQ, ssa.Op386FlagLT_ULT, ssa.Op386FlagLT_UGT, ssa.Op386FlagGT_ULT, ssa.Op386FlagGT_UGT:
v.Fatalf("Flag* ops should never make it to codegen %v", v.LongString())
case ssa.Op386REPSTOSL:
s.Prog(x86.AREP)
s.Prog(x86.ASTOSL)
case ssa.Op386REPMOVSL:
s.Prog(x86.AREP)
s.Prog(x86.AMOVSL)
case ssa.Op386LoweredNilCheck:
// Issue a load which will fault if the input is nil.
// TODO: We currently use the 2-byte instruction TESTB AX, (reg).
// Should we use the 3-byte TESTB $0, (reg) instead? It is larger
// but it doesn't have false dependency on AX.
// Or maybe allocate an output register and use MOVL (reg),reg2 ?
// That trades clobbering flags for clobbering a register.
p := s.Prog(x86.ATESTB)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_AX
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
gc.AddAux(&p.To, v)
if logopt.Enabled() {
logopt.LogOpt(v.Pos, "nilcheck", "genssa", v.Block.Func.Name)
}
if gc.Debug_checknil != 0 && v.Pos.Line() > 1 { // v.Pos.Line()==1 in generated wrappers
gc.Warnl(v.Pos, "generated nil check")
}
case ssa.Op386FCHS:
v.Fatalf("FCHS in non-387 mode")
case ssa.OpClobber:
p := s.Prog(x86.AMOVL)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 0xdeaddead
p.To.Type = obj.TYPE_MEM
p.To.Reg = x86.REG_SP
gc.AddAux(&p.To, v)
default:
v.Fatalf("genValue not implemented: %s", v.LongString())
}
}
var blockJump = [...]struct {
asm, invasm obj.As
}{
ssa.Block386EQ: {x86.AJEQ, x86.AJNE},
ssa.Block386NE: {x86.AJNE, x86.AJEQ},
ssa.Block386LT: {x86.AJLT, x86.AJGE},
ssa.Block386GE: {x86.AJGE, x86.AJLT},
ssa.Block386LE: {x86.AJLE, x86.AJGT},
ssa.Block386GT: {x86.AJGT, x86.AJLE},
ssa.Block386OS: {x86.AJOS, x86.AJOC},
ssa.Block386OC: {x86.AJOC, x86.AJOS},
ssa.Block386ULT: {x86.AJCS, x86.AJCC},
ssa.Block386UGE: {x86.AJCC, x86.AJCS},
ssa.Block386UGT: {x86.AJHI, x86.AJLS},
ssa.Block386ULE: {x86.AJLS, x86.AJHI},
ssa.Block386ORD: {x86.AJPC, x86.AJPS},
ssa.Block386NAN: {x86.AJPS, x86.AJPC},
}
var eqfJumps = [2][2]gc.FloatingEQNEJump{
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPS, Index: 1}}, // next == b.Succs[0]
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPC, Index: 0}}, // next == b.Succs[1]
}
var nefJumps = [2][2]gc.FloatingEQNEJump{
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPC, Index: 1}}, // next == b.Succs[0]
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPS, Index: 0}}, // next == b.Succs[1]
}
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
switch b.Kind {
case ssa.BlockPlain:
if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockDefer:
// defer returns in rax:
// 0 if we should continue executing
// 1 if we should jump to deferreturn call
p := s.Prog(x86.ATESTL)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_AX
p.To.Type = obj.TYPE_REG
p.To.Reg = x86.REG_AX
p = s.Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockExit:
case ssa.BlockRet:
s.Prog(obj.ARET)
case ssa.BlockRetJmp:
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = b.Aux.(*obj.LSym)
case ssa.Block386EQF:
s.FPJump(b, next, &eqfJumps)
case ssa.Block386NEF:
s.FPJump(b, next, &nefJumps)
case ssa.Block386EQ, ssa.Block386NE,
ssa.Block386LT, ssa.Block386GE,
ssa.Block386LE, ssa.Block386GT,
ssa.Block386OS, ssa.Block386OC,
ssa.Block386ULT, ssa.Block386UGT,
ssa.Block386ULE, ssa.Block386UGE:
jmp := blockJump[b.Kind]
switch next {
case b.Succs[0].Block():
s.Br(jmp.invasm, b.Succs[1].Block())
case b.Succs[1].Block():
s.Br(jmp.asm, b.Succs[0].Block())
default:
if b.Likely != ssa.BranchUnlikely {
s.Br(jmp.asm, b.Succs[0].Block())
s.Br(obj.AJMP, b.Succs[1].Block())
} else {
s.Br(jmp.invasm, b.Succs[1].Block())
s.Br(obj.AJMP, b.Succs[0].Block())
}
}
default:
b.Fatalf("branch not implemented: %s", b.LongString())
}
}