| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package fmt |
| |
| import ( |
| "strconv" |
| "unicode/utf8" |
| ) |
| |
| const ( |
| ldigits = "0123456789abcdefx" |
| udigits = "0123456789ABCDEFX" |
| ) |
| |
| const ( |
| signed = true |
| unsigned = false |
| ) |
| |
| // flags placed in a separate struct for easy clearing. |
| type fmtFlags struct { |
| widPresent bool |
| precPresent bool |
| minus bool |
| plus bool |
| sharp bool |
| space bool |
| zero bool |
| |
| // For the formats %+v %#v, we set the plusV/sharpV flags |
| // and clear the plus/sharp flags since %+v and %#v are in effect |
| // different, flagless formats set at the top level. |
| plusV bool |
| sharpV bool |
| } |
| |
| // A fmt is the raw formatter used by Printf etc. |
| // It prints into a buffer that must be set up separately. |
| type fmt struct { |
| buf *buffer |
| |
| fmtFlags |
| |
| wid int // width |
| prec int // precision |
| |
| // intbuf is large enough to store %b of an int64 with a sign and |
| // avoids padding at the end of the struct on 32 bit architectures. |
| intbuf [68]byte |
| } |
| |
| func (f *fmt) clearflags() { |
| f.fmtFlags = fmtFlags{} |
| } |
| |
| func (f *fmt) init(buf *buffer) { |
| f.buf = buf |
| f.clearflags() |
| } |
| |
| // writePadding generates n bytes of padding. |
| func (f *fmt) writePadding(n int) { |
| if n <= 0 { // No padding bytes needed. |
| return |
| } |
| buf := *f.buf |
| oldLen := len(buf) |
| newLen := oldLen + n |
| // Make enough room for padding. |
| if newLen > cap(buf) { |
| buf = make(buffer, cap(buf)*2+n) |
| copy(buf, *f.buf) |
| } |
| // Decide which byte the padding should be filled with. |
| padByte := byte(' ') |
| if f.zero { |
| padByte = byte('0') |
| } |
| // Fill padding with padByte. |
| padding := buf[oldLen:newLen] |
| for i := range padding { |
| padding[i] = padByte |
| } |
| *f.buf = buf[:newLen] |
| } |
| |
| // pad appends b to f.buf, padded on left (!f.minus) or right (f.minus). |
| func (f *fmt) pad(b []byte) { |
| if !f.widPresent || f.wid == 0 { |
| f.buf.write(b) |
| return |
| } |
| width := f.wid - utf8.RuneCount(b) |
| if !f.minus { |
| // left padding |
| f.writePadding(width) |
| f.buf.write(b) |
| } else { |
| // right padding |
| f.buf.write(b) |
| f.writePadding(width) |
| } |
| } |
| |
| // padString appends s to f.buf, padded on left (!f.minus) or right (f.minus). |
| func (f *fmt) padString(s string) { |
| if !f.widPresent || f.wid == 0 { |
| f.buf.writeString(s) |
| return |
| } |
| width := f.wid - utf8.RuneCountInString(s) |
| if !f.minus { |
| // left padding |
| f.writePadding(width) |
| f.buf.writeString(s) |
| } else { |
| // right padding |
| f.buf.writeString(s) |
| f.writePadding(width) |
| } |
| } |
| |
| // fmtBoolean formats a boolean. |
| func (f *fmt) fmtBoolean(v bool) { |
| if v { |
| f.padString("true") |
| } else { |
| f.padString("false") |
| } |
| } |
| |
| // fmtUnicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'". |
| func (f *fmt) fmtUnicode(u uint64) { |
| buf := f.intbuf[0:] |
| |
| // With default precision set the maximum needed buf length is 18 |
| // for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits |
| // into the already allocated intbuf with a capacity of 68 bytes. |
| prec := 4 |
| if f.precPresent && f.prec > 4 { |
| prec = f.prec |
| // Compute space needed for "U+" , number, " '", character, "'". |
| width := 2 + prec + 2 + utf8.UTFMax + 1 |
| if width > len(buf) { |
| buf = make([]byte, width) |
| } |
| } |
| |
| // Format into buf, ending at buf[i]. Formatting numbers is easier right-to-left. |
| i := len(buf) |
| |
| // For %#U we want to add a space and a quoted character at the end of the buffer. |
| if f.sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) { |
| i-- |
| buf[i] = '\'' |
| i -= utf8.RuneLen(rune(u)) |
| utf8.EncodeRune(buf[i:], rune(u)) |
| i-- |
| buf[i] = '\'' |
| i-- |
| buf[i] = ' ' |
| } |
| // Format the Unicode code point u as a hexadecimal number. |
| for u >= 16 { |
| i-- |
| buf[i] = udigits[u&0xF] |
| prec-- |
| u >>= 4 |
| } |
| i-- |
| buf[i] = udigits[u] |
| prec-- |
| // Add zeros in front of the number until requested precision is reached. |
| for prec > 0 { |
| i-- |
| buf[i] = '0' |
| prec-- |
| } |
| // Add a leading "U+". |
| i-- |
| buf[i] = '+' |
| i-- |
| buf[i] = 'U' |
| |
| oldZero := f.zero |
| f.zero = false |
| f.pad(buf[i:]) |
| f.zero = oldZero |
| } |
| |
| // fmtInteger formats signed and unsigned integers. |
| func (f *fmt) fmtInteger(u uint64, base int, isSigned bool, verb rune, digits string) { |
| negative := isSigned && int64(u) < 0 |
| if negative { |
| u = -u |
| } |
| |
| buf := f.intbuf[0:] |
| // The already allocated f.intbuf with a capacity of 68 bytes |
| // is large enough for integer formatting when no precision or width is set. |
| if f.widPresent || f.precPresent { |
| // Account 3 extra bytes for possible addition of a sign and "0x". |
| width := 3 + f.wid + f.prec // wid and prec are always positive. |
| if width > len(buf) { |
| // We're going to need a bigger boat. |
| buf = make([]byte, width) |
| } |
| } |
| |
| // Two ways to ask for extra leading zero digits: %.3d or %03d. |
| // If both are specified the f.zero flag is ignored and |
| // padding with spaces is used instead. |
| prec := 0 |
| if f.precPresent { |
| prec = f.prec |
| // Precision of 0 and value of 0 means "print nothing" but padding. |
| if prec == 0 && u == 0 { |
| oldZero := f.zero |
| f.zero = false |
| f.writePadding(f.wid) |
| f.zero = oldZero |
| return |
| } |
| } else if f.zero && f.widPresent { |
| prec = f.wid |
| if negative || f.plus || f.space { |
| prec-- // leave room for sign |
| } |
| } |
| |
| // Because printing is easier right-to-left: format u into buf, ending at buf[i]. |
| // We could make things marginally faster by splitting the 32-bit case out |
| // into a separate block but it's not worth the duplication, so u has 64 bits. |
| i := len(buf) |
| // Use constants for the division and modulo for more efficient code. |
| // Switch cases ordered by popularity. |
| switch base { |
| case 10: |
| for u >= 10 { |
| i-- |
| next := u / 10 |
| buf[i] = byte('0' + u - next*10) |
| u = next |
| } |
| case 16: |
| for u >= 16 { |
| i-- |
| buf[i] = digits[u&0xF] |
| u >>= 4 |
| } |
| case 8: |
| for u >= 8 { |
| i-- |
| buf[i] = byte('0' + u&7) |
| u >>= 3 |
| } |
| case 2: |
| for u >= 2 { |
| i-- |
| buf[i] = byte('0' + u&1) |
| u >>= 1 |
| } |
| default: |
| panic("fmt: unknown base; can't happen") |
| } |
| i-- |
| buf[i] = digits[u] |
| for i > 0 && prec > len(buf)-i { |
| i-- |
| buf[i] = '0' |
| } |
| |
| // Various prefixes: 0x, -, etc. |
| if f.sharp { |
| switch base { |
| case 2: |
| // Add a leading 0b. |
| i-- |
| buf[i] = 'b' |
| i-- |
| buf[i] = '0' |
| case 8: |
| if buf[i] != '0' { |
| i-- |
| buf[i] = '0' |
| } |
| case 16: |
| // Add a leading 0x or 0X. |
| i-- |
| buf[i] = digits[16] |
| i-- |
| buf[i] = '0' |
| } |
| } |
| if verb == 'O' { |
| i-- |
| buf[i] = 'o' |
| i-- |
| buf[i] = '0' |
| } |
| |
| if negative { |
| i-- |
| buf[i] = '-' |
| } else if f.plus { |
| i-- |
| buf[i] = '+' |
| } else if f.space { |
| i-- |
| buf[i] = ' ' |
| } |
| |
| // Left padding with zeros has already been handled like precision earlier |
| // or the f.zero flag is ignored due to an explicitly set precision. |
| oldZero := f.zero |
| f.zero = false |
| f.pad(buf[i:]) |
| f.zero = oldZero |
| } |
| |
| // truncateString truncates the string s to the specified precision, if present. |
| func (f *fmt) truncateString(s string) string { |
| if f.precPresent { |
| n := f.prec |
| for i := range s { |
| n-- |
| if n < 0 { |
| return s[:i] |
| } |
| } |
| } |
| return s |
| } |
| |
| // truncate truncates the byte slice b as a string of the specified precision, if present. |
| func (f *fmt) truncate(b []byte) []byte { |
| if f.precPresent { |
| n := f.prec |
| for i := 0; i < len(b); { |
| n-- |
| if n < 0 { |
| return b[:i] |
| } |
| wid := 1 |
| if b[i] >= utf8.RuneSelf { |
| _, wid = utf8.DecodeRune(b[i:]) |
| } |
| i += wid |
| } |
| } |
| return b |
| } |
| |
| // fmtS formats a string. |
| func (f *fmt) fmtS(s string) { |
| s = f.truncateString(s) |
| f.padString(s) |
| } |
| |
| // fmtBs formats the byte slice b as if it was formatted as string with fmtS. |
| func (f *fmt) fmtBs(b []byte) { |
| b = f.truncate(b) |
| f.pad(b) |
| } |
| |
| // fmtSbx formats a string or byte slice as a hexadecimal encoding of its bytes. |
| func (f *fmt) fmtSbx(s string, b []byte, digits string) { |
| length := len(b) |
| if b == nil { |
| // No byte slice present. Assume string s should be encoded. |
| length = len(s) |
| } |
| // Set length to not process more bytes than the precision demands. |
| if f.precPresent && f.prec < length { |
| length = f.prec |
| } |
| // Compute width of the encoding taking into account the f.sharp and f.space flag. |
| width := 2 * length |
| if width > 0 { |
| if f.space { |
| // Each element encoded by two hexadecimals will get a leading 0x or 0X. |
| if f.sharp { |
| width *= 2 |
| } |
| // Elements will be separated by a space. |
| width += length - 1 |
| } else if f.sharp { |
| // Only a leading 0x or 0X will be added for the whole string. |
| width += 2 |
| } |
| } else { // The byte slice or string that should be encoded is empty. |
| if f.widPresent { |
| f.writePadding(f.wid) |
| } |
| return |
| } |
| // Handle padding to the left. |
| if f.widPresent && f.wid > width && !f.minus { |
| f.writePadding(f.wid - width) |
| } |
| // Write the encoding directly into the output buffer. |
| buf := *f.buf |
| if f.sharp { |
| // Add leading 0x or 0X. |
| buf = append(buf, '0', digits[16]) |
| } |
| var c byte |
| for i := 0; i < length; i++ { |
| if f.space && i > 0 { |
| // Separate elements with a space. |
| buf = append(buf, ' ') |
| if f.sharp { |
| // Add leading 0x or 0X for each element. |
| buf = append(buf, '0', digits[16]) |
| } |
| } |
| if b != nil { |
| c = b[i] // Take a byte from the input byte slice. |
| } else { |
| c = s[i] // Take a byte from the input string. |
| } |
| // Encode each byte as two hexadecimal digits. |
| buf = append(buf, digits[c>>4], digits[c&0xF]) |
| } |
| *f.buf = buf |
| // Handle padding to the right. |
| if f.widPresent && f.wid > width && f.minus { |
| f.writePadding(f.wid - width) |
| } |
| } |
| |
| // fmtSx formats a string as a hexadecimal encoding of its bytes. |
| func (f *fmt) fmtSx(s, digits string) { |
| f.fmtSbx(s, nil, digits) |
| } |
| |
| // fmtBx formats a byte slice as a hexadecimal encoding of its bytes. |
| func (f *fmt) fmtBx(b []byte, digits string) { |
| f.fmtSbx("", b, digits) |
| } |
| |
| // fmtQ formats a string as a double-quoted, escaped Go string constant. |
| // If f.sharp is set a raw (backquoted) string may be returned instead |
| // if the string does not contain any control characters other than tab. |
| func (f *fmt) fmtQ(s string) { |
| s = f.truncateString(s) |
| if f.sharp && strconv.CanBackquote(s) { |
| f.padString("`" + s + "`") |
| return |
| } |
| buf := f.intbuf[:0] |
| if f.plus { |
| f.pad(strconv.AppendQuoteToASCII(buf, s)) |
| } else { |
| f.pad(strconv.AppendQuote(buf, s)) |
| } |
| } |
| |
| // fmtC formats an integer as a Unicode character. |
| // If the character is not valid Unicode, it will print '\ufffd'. |
| func (f *fmt) fmtC(c uint64) { |
| r := rune(c) |
| if c > utf8.MaxRune { |
| r = utf8.RuneError |
| } |
| buf := f.intbuf[:0] |
| w := utf8.EncodeRune(buf[:utf8.UTFMax], r) |
| f.pad(buf[:w]) |
| } |
| |
| // fmtQc formats an integer as a single-quoted, escaped Go character constant. |
| // If the character is not valid Unicode, it will print '\ufffd'. |
| func (f *fmt) fmtQc(c uint64) { |
| r := rune(c) |
| if c > utf8.MaxRune { |
| r = utf8.RuneError |
| } |
| buf := f.intbuf[:0] |
| if f.plus { |
| f.pad(strconv.AppendQuoteRuneToASCII(buf, r)) |
| } else { |
| f.pad(strconv.AppendQuoteRune(buf, r)) |
| } |
| } |
| |
| // fmtFloat formats a float64. It assumes that verb is a valid format specifier |
| // for strconv.AppendFloat and therefore fits into a byte. |
| func (f *fmt) fmtFloat(v float64, size int, verb rune, prec int) { |
| // Explicit precision in format specifier overrules default precision. |
| if f.precPresent { |
| prec = f.prec |
| } |
| // Format number, reserving space for leading + sign if needed. |
| num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size) |
| if num[1] == '-' || num[1] == '+' { |
| num = num[1:] |
| } else { |
| num[0] = '+' |
| } |
| // f.space means to add a leading space instead of a "+" sign unless |
| // the sign is explicitly asked for by f.plus. |
| if f.space && num[0] == '+' && !f.plus { |
| num[0] = ' ' |
| } |
| // Special handling for infinities and NaN, |
| // which don't look like a number so shouldn't be padded with zeros. |
| if num[1] == 'I' || num[1] == 'N' { |
| oldZero := f.zero |
| f.zero = false |
| // Remove sign before NaN if not asked for. |
| if num[1] == 'N' && !f.space && !f.plus { |
| num = num[1:] |
| } |
| f.pad(num) |
| f.zero = oldZero |
| return |
| } |
| // The sharp flag forces printing a decimal point for non-binary formats |
| // and retains trailing zeros, which we may need to restore. |
| if f.sharp && verb != 'b' { |
| digits := 0 |
| switch verb { |
| case 'v', 'g', 'G', 'x': |
| digits = prec |
| // If no precision is set explicitly use a precision of 6. |
| if digits == -1 { |
| digits = 6 |
| } |
| } |
| |
| // Buffer pre-allocated with enough room for |
| // exponent notations of the form "e+123" or "p-1023". |
| var tailBuf [6]byte |
| tail := tailBuf[:0] |
| |
| hasDecimalPoint := false |
| sawNonzeroDigit := false |
| // Starting from i = 1 to skip sign at num[0]. |
| for i := 1; i < len(num); i++ { |
| switch num[i] { |
| case '.': |
| hasDecimalPoint = true |
| case 'p', 'P': |
| tail = append(tail, num[i:]...) |
| num = num[:i] |
| case 'e', 'E': |
| if verb != 'x' && verb != 'X' { |
| tail = append(tail, num[i:]...) |
| num = num[:i] |
| break |
| } |
| fallthrough |
| default: |
| if num[i] != '0' { |
| sawNonzeroDigit = true |
| } |
| // Count significant digits after the first non-zero digit. |
| if sawNonzeroDigit { |
| digits-- |
| } |
| } |
| } |
| if !hasDecimalPoint { |
| // Leading digit 0 should contribute once to digits. |
| if len(num) == 2 && num[1] == '0' { |
| digits-- |
| } |
| num = append(num, '.') |
| } |
| for digits > 0 { |
| num = append(num, '0') |
| digits-- |
| } |
| num = append(num, tail...) |
| } |
| // We want a sign if asked for and if the sign is not positive. |
| if f.plus || num[0] != '+' { |
| // If we're zero padding to the left we want the sign before the leading zeros. |
| // Achieve this by writing the sign out and then padding the unsigned number. |
| if f.zero && f.widPresent && f.wid > len(num) { |
| f.buf.writeByte(num[0]) |
| f.writePadding(f.wid - len(num)) |
| f.buf.write(num[1:]) |
| return |
| } |
| f.pad(num) |
| return |
| } |
| // No sign to show and the number is positive; just print the unsigned number. |
| f.pad(num[1:]) |
| } |