|  | // Copyright 2010 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // TLS low level connection and record layer | 
|  |  | 
|  | package tls | 
|  |  | 
|  | import ( | 
|  | "bytes" | 
|  | "context" | 
|  | "crypto/cipher" | 
|  | "crypto/subtle" | 
|  | "crypto/x509" | 
|  | "errors" | 
|  | "fmt" | 
|  | "hash" | 
|  | "io" | 
|  | "net" | 
|  | "sync" | 
|  | "sync/atomic" | 
|  | "time" | 
|  | ) | 
|  |  | 
|  | // A Conn represents a secured connection. | 
|  | // It implements the net.Conn interface. | 
|  | type Conn struct { | 
|  | // constant | 
|  | conn        net.Conn | 
|  | isClient    bool | 
|  | handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake | 
|  |  | 
|  | // isHandshakeComplete is true if the connection is currently transferring | 
|  | // application data (i.e. is not currently processing a handshake). | 
|  | // isHandshakeComplete is true implies handshakeErr == nil. | 
|  | isHandshakeComplete atomic.Bool | 
|  | // constant after handshake; protected by handshakeMutex | 
|  | handshakeMutex sync.Mutex | 
|  | handshakeErr   error   // error resulting from handshake | 
|  | vers           uint16  // TLS version | 
|  | haveVers       bool    // version has been negotiated | 
|  | config         *Config // configuration passed to constructor | 
|  | // handshakes counts the number of handshakes performed on the | 
|  | // connection so far. If renegotiation is disabled then this is either | 
|  | // zero or one. | 
|  | handshakes       int | 
|  | didResume        bool // whether this connection was a session resumption | 
|  | cipherSuite      uint16 | 
|  | ocspResponse     []byte   // stapled OCSP response | 
|  | scts             [][]byte // signed certificate timestamps from server | 
|  | peerCertificates []*x509.Certificate | 
|  | // activeCertHandles contains the cache handles to certificates in | 
|  | // peerCertificates that are used to track active references. | 
|  | activeCertHandles []*activeCert | 
|  | // verifiedChains contains the certificate chains that we built, as | 
|  | // opposed to the ones presented by the server. | 
|  | verifiedChains [][]*x509.Certificate | 
|  | // serverName contains the server name indicated by the client, if any. | 
|  | serverName string | 
|  | // secureRenegotiation is true if the server echoed the secure | 
|  | // renegotiation extension. (This is meaningless as a server because | 
|  | // renegotiation is not supported in that case.) | 
|  | secureRenegotiation bool | 
|  | // ekm is a closure for exporting keying material. | 
|  | ekm func(label string, context []byte, length int) ([]byte, error) | 
|  | // resumptionSecret is the resumption_master_secret for handling | 
|  | // NewSessionTicket messages. nil if config.SessionTicketsDisabled. | 
|  | resumptionSecret []byte | 
|  |  | 
|  | // ticketKeys is the set of active session ticket keys for this | 
|  | // connection. The first one is used to encrypt new tickets and | 
|  | // all are tried to decrypt tickets. | 
|  | ticketKeys []ticketKey | 
|  |  | 
|  | // clientFinishedIsFirst is true if the client sent the first Finished | 
|  | // message during the most recent handshake. This is recorded because | 
|  | // the first transmitted Finished message is the tls-unique | 
|  | // channel-binding value. | 
|  | clientFinishedIsFirst bool | 
|  |  | 
|  | // closeNotifyErr is any error from sending the alertCloseNotify record. | 
|  | closeNotifyErr error | 
|  | // closeNotifySent is true if the Conn attempted to send an | 
|  | // alertCloseNotify record. | 
|  | closeNotifySent bool | 
|  |  | 
|  | // clientFinished and serverFinished contain the Finished message sent | 
|  | // by the client or server in the most recent handshake. This is | 
|  | // retained to support the renegotiation extension and tls-unique | 
|  | // channel-binding. | 
|  | clientFinished [12]byte | 
|  | serverFinished [12]byte | 
|  |  | 
|  | // clientProtocol is the negotiated ALPN protocol. | 
|  | clientProtocol string | 
|  |  | 
|  | // input/output | 
|  | in, out   halfConn | 
|  | rawInput  bytes.Buffer // raw input, starting with a record header | 
|  | input     bytes.Reader // application data waiting to be read, from rawInput.Next | 
|  | hand      bytes.Buffer // handshake data waiting to be read | 
|  | buffering bool         // whether records are buffered in sendBuf | 
|  | sendBuf   []byte       // a buffer of records waiting to be sent | 
|  |  | 
|  | // bytesSent counts the bytes of application data sent. | 
|  | // packetsSent counts packets. | 
|  | bytesSent   int64 | 
|  | packetsSent int64 | 
|  |  | 
|  | // retryCount counts the number of consecutive non-advancing records | 
|  | // received by Conn.readRecord. That is, records that neither advance the | 
|  | // handshake, nor deliver application data. Protected by in.Mutex. | 
|  | retryCount int | 
|  |  | 
|  | // activeCall indicates whether Close has been call in the low bit. | 
|  | // the rest of the bits are the number of goroutines in Conn.Write. | 
|  | activeCall atomic.Int32 | 
|  |  | 
|  | tmp [16]byte | 
|  | } | 
|  |  | 
|  | // Access to net.Conn methods. | 
|  | // Cannot just embed net.Conn because that would | 
|  | // export the struct field too. | 
|  |  | 
|  | // LocalAddr returns the local network address. | 
|  | func (c *Conn) LocalAddr() net.Addr { | 
|  | return c.conn.LocalAddr() | 
|  | } | 
|  |  | 
|  | // RemoteAddr returns the remote network address. | 
|  | func (c *Conn) RemoteAddr() net.Addr { | 
|  | return c.conn.RemoteAddr() | 
|  | } | 
|  |  | 
|  | // SetDeadline sets the read and write deadlines associated with the connection. | 
|  | // A zero value for t means Read and Write will not time out. | 
|  | // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. | 
|  | func (c *Conn) SetDeadline(t time.Time) error { | 
|  | return c.conn.SetDeadline(t) | 
|  | } | 
|  |  | 
|  | // SetReadDeadline sets the read deadline on the underlying connection. | 
|  | // A zero value for t means Read will not time out. | 
|  | func (c *Conn) SetReadDeadline(t time.Time) error { | 
|  | return c.conn.SetReadDeadline(t) | 
|  | } | 
|  |  | 
|  | // SetWriteDeadline sets the write deadline on the underlying connection. | 
|  | // A zero value for t means Write will not time out. | 
|  | // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. | 
|  | func (c *Conn) SetWriteDeadline(t time.Time) error { | 
|  | return c.conn.SetWriteDeadline(t) | 
|  | } | 
|  |  | 
|  | // NetConn returns the underlying connection that is wrapped by c. | 
|  | // Note that writing to or reading from this connection directly will corrupt the | 
|  | // TLS session. | 
|  | func (c *Conn) NetConn() net.Conn { | 
|  | return c.conn | 
|  | } | 
|  |  | 
|  | // A halfConn represents one direction of the record layer | 
|  | // connection, either sending or receiving. | 
|  | type halfConn struct { | 
|  | sync.Mutex | 
|  |  | 
|  | err     error  // first permanent error | 
|  | version uint16 // protocol version | 
|  | cipher  any    // cipher algorithm | 
|  | mac     hash.Hash | 
|  | seq     [8]byte // 64-bit sequence number | 
|  |  | 
|  | scratchBuf [13]byte // to avoid allocs; interface method args escape | 
|  |  | 
|  | nextCipher any       // next encryption state | 
|  | nextMac    hash.Hash // next MAC algorithm | 
|  |  | 
|  | trafficSecret []byte // current TLS 1.3 traffic secret | 
|  | } | 
|  |  | 
|  | type permanentError struct { | 
|  | err net.Error | 
|  | } | 
|  |  | 
|  | func (e *permanentError) Error() string   { return e.err.Error() } | 
|  | func (e *permanentError) Unwrap() error   { return e.err } | 
|  | func (e *permanentError) Timeout() bool   { return e.err.Timeout() } | 
|  | func (e *permanentError) Temporary() bool { return false } | 
|  |  | 
|  | func (hc *halfConn) setErrorLocked(err error) error { | 
|  | if e, ok := err.(net.Error); ok { | 
|  | hc.err = &permanentError{err: e} | 
|  | } else { | 
|  | hc.err = err | 
|  | } | 
|  | return hc.err | 
|  | } | 
|  |  | 
|  | // prepareCipherSpec sets the encryption and MAC states | 
|  | // that a subsequent changeCipherSpec will use. | 
|  | func (hc *halfConn) prepareCipherSpec(version uint16, cipher any, mac hash.Hash) { | 
|  | hc.version = version | 
|  | hc.nextCipher = cipher | 
|  | hc.nextMac = mac | 
|  | } | 
|  |  | 
|  | // changeCipherSpec changes the encryption and MAC states | 
|  | // to the ones previously passed to prepareCipherSpec. | 
|  | func (hc *halfConn) changeCipherSpec() error { | 
|  | if hc.nextCipher == nil || hc.version == VersionTLS13 { | 
|  | return alertInternalError | 
|  | } | 
|  | hc.cipher = hc.nextCipher | 
|  | hc.mac = hc.nextMac | 
|  | hc.nextCipher = nil | 
|  | hc.nextMac = nil | 
|  | for i := range hc.seq { | 
|  | hc.seq[i] = 0 | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) { | 
|  | hc.trafficSecret = secret | 
|  | key, iv := suite.trafficKey(secret) | 
|  | hc.cipher = suite.aead(key, iv) | 
|  | for i := range hc.seq { | 
|  | hc.seq[i] = 0 | 
|  | } | 
|  | } | 
|  |  | 
|  | // incSeq increments the sequence number. | 
|  | func (hc *halfConn) incSeq() { | 
|  | for i := 7; i >= 0; i-- { | 
|  | hc.seq[i]++ | 
|  | if hc.seq[i] != 0 { | 
|  | return | 
|  | } | 
|  | } | 
|  |  | 
|  | // Not allowed to let sequence number wrap. | 
|  | // Instead, must renegotiate before it does. | 
|  | // Not likely enough to bother. | 
|  | panic("TLS: sequence number wraparound") | 
|  | } | 
|  |  | 
|  | // explicitNonceLen returns the number of bytes of explicit nonce or IV included | 
|  | // in each record. Explicit nonces are present only in CBC modes after TLS 1.0 | 
|  | // and in certain AEAD modes in TLS 1.2. | 
|  | func (hc *halfConn) explicitNonceLen() int { | 
|  | if hc.cipher == nil { | 
|  | return 0 | 
|  | } | 
|  |  | 
|  | switch c := hc.cipher.(type) { | 
|  | case cipher.Stream: | 
|  | return 0 | 
|  | case aead: | 
|  | return c.explicitNonceLen() | 
|  | case cbcMode: | 
|  | // TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack. | 
|  | if hc.version >= VersionTLS11 { | 
|  | return c.BlockSize() | 
|  | } | 
|  | return 0 | 
|  | default: | 
|  | panic("unknown cipher type") | 
|  | } | 
|  | } | 
|  |  | 
|  | // extractPadding returns, in constant time, the length of the padding to remove | 
|  | // from the end of payload. It also returns a byte which is equal to 255 if the | 
|  | // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2. | 
|  | func extractPadding(payload []byte) (toRemove int, good byte) { | 
|  | if len(payload) < 1 { | 
|  | return 0, 0 | 
|  | } | 
|  |  | 
|  | paddingLen := payload[len(payload)-1] | 
|  | t := uint(len(payload)-1) - uint(paddingLen) | 
|  | // if len(payload) >= (paddingLen - 1) then the MSB of t is zero | 
|  | good = byte(int32(^t) >> 31) | 
|  |  | 
|  | // The maximum possible padding length plus the actual length field | 
|  | toCheck := 256 | 
|  | // The length of the padded data is public, so we can use an if here | 
|  | if toCheck > len(payload) { | 
|  | toCheck = len(payload) | 
|  | } | 
|  |  | 
|  | for i := 0; i < toCheck; i++ { | 
|  | t := uint(paddingLen) - uint(i) | 
|  | // if i <= paddingLen then the MSB of t is zero | 
|  | mask := byte(int32(^t) >> 31) | 
|  | b := payload[len(payload)-1-i] | 
|  | good &^= mask&paddingLen ^ mask&b | 
|  | } | 
|  |  | 
|  | // We AND together the bits of good and replicate the result across | 
|  | // all the bits. | 
|  | good &= good << 4 | 
|  | good &= good << 2 | 
|  | good &= good << 1 | 
|  | good = uint8(int8(good) >> 7) | 
|  |  | 
|  | // Zero the padding length on error. This ensures any unchecked bytes | 
|  | // are included in the MAC. Otherwise, an attacker that could | 
|  | // distinguish MAC failures from padding failures could mount an attack | 
|  | // similar to POODLE in SSL 3.0: given a good ciphertext that uses a | 
|  | // full block's worth of padding, replace the final block with another | 
|  | // block. If the MAC check passed but the padding check failed, the | 
|  | // last byte of that block decrypted to the block size. | 
|  | // | 
|  | // See also macAndPaddingGood logic below. | 
|  | paddingLen &= good | 
|  |  | 
|  | toRemove = int(paddingLen) + 1 | 
|  | return | 
|  | } | 
|  |  | 
|  | func roundUp(a, b int) int { | 
|  | return a + (b-a%b)%b | 
|  | } | 
|  |  | 
|  | // cbcMode is an interface for block ciphers using cipher block chaining. | 
|  | type cbcMode interface { | 
|  | cipher.BlockMode | 
|  | SetIV([]byte) | 
|  | } | 
|  |  | 
|  | // decrypt authenticates and decrypts the record if protection is active at | 
|  | // this stage. The returned plaintext might overlap with the input. | 
|  | func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) { | 
|  | var plaintext []byte | 
|  | typ := recordType(record[0]) | 
|  | payload := record[recordHeaderLen:] | 
|  |  | 
|  | // In TLS 1.3, change_cipher_spec messages are to be ignored without being | 
|  | // decrypted. See RFC 8446, Appendix D.4. | 
|  | if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec { | 
|  | return payload, typ, nil | 
|  | } | 
|  |  | 
|  | paddingGood := byte(255) | 
|  | paddingLen := 0 | 
|  |  | 
|  | explicitNonceLen := hc.explicitNonceLen() | 
|  |  | 
|  | if hc.cipher != nil { | 
|  | switch c := hc.cipher.(type) { | 
|  | case cipher.Stream: | 
|  | c.XORKeyStream(payload, payload) | 
|  | case aead: | 
|  | if len(payload) < explicitNonceLen { | 
|  | return nil, 0, alertBadRecordMAC | 
|  | } | 
|  | nonce := payload[:explicitNonceLen] | 
|  | if len(nonce) == 0 { | 
|  | nonce = hc.seq[:] | 
|  | } | 
|  | payload = payload[explicitNonceLen:] | 
|  |  | 
|  | var additionalData []byte | 
|  | if hc.version == VersionTLS13 { | 
|  | additionalData = record[:recordHeaderLen] | 
|  | } else { | 
|  | additionalData = append(hc.scratchBuf[:0], hc.seq[:]...) | 
|  | additionalData = append(additionalData, record[:3]...) | 
|  | n := len(payload) - c.Overhead() | 
|  | additionalData = append(additionalData, byte(n>>8), byte(n)) | 
|  | } | 
|  |  | 
|  | var err error | 
|  | plaintext, err = c.Open(payload[:0], nonce, payload, additionalData) | 
|  | if err != nil { | 
|  | return nil, 0, alertBadRecordMAC | 
|  | } | 
|  | case cbcMode: | 
|  | blockSize := c.BlockSize() | 
|  | minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize) | 
|  | if len(payload)%blockSize != 0 || len(payload) < minPayload { | 
|  | return nil, 0, alertBadRecordMAC | 
|  | } | 
|  |  | 
|  | if explicitNonceLen > 0 { | 
|  | c.SetIV(payload[:explicitNonceLen]) | 
|  | payload = payload[explicitNonceLen:] | 
|  | } | 
|  | c.CryptBlocks(payload, payload) | 
|  |  | 
|  | // In a limited attempt to protect against CBC padding oracles like | 
|  | // Lucky13, the data past paddingLen (which is secret) is passed to | 
|  | // the MAC function as extra data, to be fed into the HMAC after | 
|  | // computing the digest. This makes the MAC roughly constant time as | 
|  | // long as the digest computation is constant time and does not | 
|  | // affect the subsequent write, modulo cache effects. | 
|  | paddingLen, paddingGood = extractPadding(payload) | 
|  | default: | 
|  | panic("unknown cipher type") | 
|  | } | 
|  |  | 
|  | if hc.version == VersionTLS13 { | 
|  | if typ != recordTypeApplicationData { | 
|  | return nil, 0, alertUnexpectedMessage | 
|  | } | 
|  | if len(plaintext) > maxPlaintext+1 { | 
|  | return nil, 0, alertRecordOverflow | 
|  | } | 
|  | // Remove padding and find the ContentType scanning from the end. | 
|  | for i := len(plaintext) - 1; i >= 0; i-- { | 
|  | if plaintext[i] != 0 { | 
|  | typ = recordType(plaintext[i]) | 
|  | plaintext = plaintext[:i] | 
|  | break | 
|  | } | 
|  | if i == 0 { | 
|  | return nil, 0, alertUnexpectedMessage | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | plaintext = payload | 
|  | } | 
|  |  | 
|  | if hc.mac != nil { | 
|  | macSize := hc.mac.Size() | 
|  | if len(payload) < macSize { | 
|  | return nil, 0, alertBadRecordMAC | 
|  | } | 
|  |  | 
|  | n := len(payload) - macSize - paddingLen | 
|  | n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } | 
|  | record[3] = byte(n >> 8) | 
|  | record[4] = byte(n) | 
|  | remoteMAC := payload[n : n+macSize] | 
|  | localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:]) | 
|  |  | 
|  | // This is equivalent to checking the MACs and paddingGood | 
|  | // separately, but in constant-time to prevent distinguishing | 
|  | // padding failures from MAC failures. Depending on what value | 
|  | // of paddingLen was returned on bad padding, distinguishing | 
|  | // bad MAC from bad padding can lead to an attack. | 
|  | // | 
|  | // See also the logic at the end of extractPadding. | 
|  | macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood) | 
|  | if macAndPaddingGood != 1 { | 
|  | return nil, 0, alertBadRecordMAC | 
|  | } | 
|  |  | 
|  | plaintext = payload[:n] | 
|  | } | 
|  |  | 
|  | hc.incSeq() | 
|  | return plaintext, typ, nil | 
|  | } | 
|  |  | 
|  | // sliceForAppend extends the input slice by n bytes. head is the full extended | 
|  | // slice, while tail is the appended part. If the original slice has sufficient | 
|  | // capacity no allocation is performed. | 
|  | func sliceForAppend(in []byte, n int) (head, tail []byte) { | 
|  | if total := len(in) + n; cap(in) >= total { | 
|  | head = in[:total] | 
|  | } else { | 
|  | head = make([]byte, total) | 
|  | copy(head, in) | 
|  | } | 
|  | tail = head[len(in):] | 
|  | return | 
|  | } | 
|  |  | 
|  | // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and | 
|  | // appends it to record, which must already contain the record header. | 
|  | func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) { | 
|  | if hc.cipher == nil { | 
|  | return append(record, payload...), nil | 
|  | } | 
|  |  | 
|  | var explicitNonce []byte | 
|  | if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 { | 
|  | record, explicitNonce = sliceForAppend(record, explicitNonceLen) | 
|  | if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 { | 
|  | // The AES-GCM construction in TLS has an explicit nonce so that the | 
|  | // nonce can be random. However, the nonce is only 8 bytes which is | 
|  | // too small for a secure, random nonce. Therefore we use the | 
|  | // sequence number as the nonce. The 3DES-CBC construction also has | 
|  | // an 8 bytes nonce but its nonces must be unpredictable (see RFC | 
|  | // 5246, Appendix F.3), forcing us to use randomness. That's not | 
|  | // 3DES' biggest problem anyway because the birthday bound on block | 
|  | // collision is reached first due to its similarly small block size | 
|  | // (see the Sweet32 attack). | 
|  | copy(explicitNonce, hc.seq[:]) | 
|  | } else { | 
|  | if _, err := io.ReadFull(rand, explicitNonce); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | var dst []byte | 
|  | switch c := hc.cipher.(type) { | 
|  | case cipher.Stream: | 
|  | mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) | 
|  | record, dst = sliceForAppend(record, len(payload)+len(mac)) | 
|  | c.XORKeyStream(dst[:len(payload)], payload) | 
|  | c.XORKeyStream(dst[len(payload):], mac) | 
|  | case aead: | 
|  | nonce := explicitNonce | 
|  | if len(nonce) == 0 { | 
|  | nonce = hc.seq[:] | 
|  | } | 
|  |  | 
|  | if hc.version == VersionTLS13 { | 
|  | record = append(record, payload...) | 
|  |  | 
|  | // Encrypt the actual ContentType and replace the plaintext one. | 
|  | record = append(record, record[0]) | 
|  | record[0] = byte(recordTypeApplicationData) | 
|  |  | 
|  | n := len(payload) + 1 + c.Overhead() | 
|  | record[3] = byte(n >> 8) | 
|  | record[4] = byte(n) | 
|  |  | 
|  | record = c.Seal(record[:recordHeaderLen], | 
|  | nonce, record[recordHeaderLen:], record[:recordHeaderLen]) | 
|  | } else { | 
|  | additionalData := append(hc.scratchBuf[:0], hc.seq[:]...) | 
|  | additionalData = append(additionalData, record[:recordHeaderLen]...) | 
|  | record = c.Seal(record, nonce, payload, additionalData) | 
|  | } | 
|  | case cbcMode: | 
|  | mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) | 
|  | blockSize := c.BlockSize() | 
|  | plaintextLen := len(payload) + len(mac) | 
|  | paddingLen := blockSize - plaintextLen%blockSize | 
|  | record, dst = sliceForAppend(record, plaintextLen+paddingLen) | 
|  | copy(dst, payload) | 
|  | copy(dst[len(payload):], mac) | 
|  | for i := plaintextLen; i < len(dst); i++ { | 
|  | dst[i] = byte(paddingLen - 1) | 
|  | } | 
|  | if len(explicitNonce) > 0 { | 
|  | c.SetIV(explicitNonce) | 
|  | } | 
|  | c.CryptBlocks(dst, dst) | 
|  | default: | 
|  | panic("unknown cipher type") | 
|  | } | 
|  |  | 
|  | // Update length to include nonce, MAC and any block padding needed. | 
|  | n := len(record) - recordHeaderLen | 
|  | record[3] = byte(n >> 8) | 
|  | record[4] = byte(n) | 
|  | hc.incSeq() | 
|  |  | 
|  | return record, nil | 
|  | } | 
|  |  | 
|  | // RecordHeaderError is returned when a TLS record header is invalid. | 
|  | type RecordHeaderError struct { | 
|  | // Msg contains a human readable string that describes the error. | 
|  | Msg string | 
|  | // RecordHeader contains the five bytes of TLS record header that | 
|  | // triggered the error. | 
|  | RecordHeader [5]byte | 
|  | // Conn provides the underlying net.Conn in the case that a client | 
|  | // sent an initial handshake that didn't look like TLS. | 
|  | // It is nil if there's already been a handshake or a TLS alert has | 
|  | // been written to the connection. | 
|  | Conn net.Conn | 
|  | } | 
|  |  | 
|  | func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } | 
|  |  | 
|  | func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) { | 
|  | err.Msg = msg | 
|  | err.Conn = conn | 
|  | copy(err.RecordHeader[:], c.rawInput.Bytes()) | 
|  | return err | 
|  | } | 
|  |  | 
|  | func (c *Conn) readRecord() error { | 
|  | return c.readRecordOrCCS(false) | 
|  | } | 
|  |  | 
|  | func (c *Conn) readChangeCipherSpec() error { | 
|  | return c.readRecordOrCCS(true) | 
|  | } | 
|  |  | 
|  | // readRecordOrCCS reads one or more TLS records from the connection and | 
|  | // updates the record layer state. Some invariants: | 
|  | //   - c.in must be locked | 
|  | //   - c.input must be empty | 
|  | // | 
|  | // During the handshake one and only one of the following will happen: | 
|  | //   - c.hand grows | 
|  | //   - c.in.changeCipherSpec is called | 
|  | //   - an error is returned | 
|  | // | 
|  | // After the handshake one and only one of the following will happen: | 
|  | //   - c.hand grows | 
|  | //   - c.input is set | 
|  | //   - an error is returned | 
|  | func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error { | 
|  | if c.in.err != nil { | 
|  | return c.in.err | 
|  | } | 
|  | handshakeComplete := c.isHandshakeComplete.Load() | 
|  |  | 
|  | // This function modifies c.rawInput, which owns the c.input memory. | 
|  | if c.input.Len() != 0 { | 
|  | return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data")) | 
|  | } | 
|  | c.input.Reset(nil) | 
|  |  | 
|  | // Read header, payload. | 
|  | if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil { | 
|  | // RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify | 
|  | // is an error, but popular web sites seem to do this, so we accept it | 
|  | // if and only if at the record boundary. | 
|  | if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 { | 
|  | err = io.EOF | 
|  | } | 
|  | if e, ok := err.(net.Error); !ok || !e.Temporary() { | 
|  | c.in.setErrorLocked(err) | 
|  | } | 
|  | return err | 
|  | } | 
|  | hdr := c.rawInput.Bytes()[:recordHeaderLen] | 
|  | typ := recordType(hdr[0]) | 
|  |  | 
|  | // No valid TLS record has a type of 0x80, however SSLv2 handshakes | 
|  | // start with a uint16 length where the MSB is set and the first record | 
|  | // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests | 
|  | // an SSLv2 client. | 
|  | if !handshakeComplete && typ == 0x80 { | 
|  | c.sendAlert(alertProtocolVersion) | 
|  | return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received")) | 
|  | } | 
|  |  | 
|  | vers := uint16(hdr[1])<<8 | uint16(hdr[2]) | 
|  | n := int(hdr[3])<<8 | int(hdr[4]) | 
|  | if c.haveVers && c.vers != VersionTLS13 && vers != c.vers { | 
|  | c.sendAlert(alertProtocolVersion) | 
|  | msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers) | 
|  | return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) | 
|  | } | 
|  | if !c.haveVers { | 
|  | // First message, be extra suspicious: this might not be a TLS | 
|  | // client. Bail out before reading a full 'body', if possible. | 
|  | // The current max version is 3.3 so if the version is >= 16.0, | 
|  | // it's probably not real. | 
|  | if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 { | 
|  | return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake")) | 
|  | } | 
|  | } | 
|  | if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext { | 
|  | c.sendAlert(alertRecordOverflow) | 
|  | msg := fmt.Sprintf("oversized record received with length %d", n) | 
|  | return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) | 
|  | } | 
|  | if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil { | 
|  | if e, ok := err.(net.Error); !ok || !e.Temporary() { | 
|  | c.in.setErrorLocked(err) | 
|  | } | 
|  | return err | 
|  | } | 
|  |  | 
|  | // Process message. | 
|  | record := c.rawInput.Next(recordHeaderLen + n) | 
|  | data, typ, err := c.in.decrypt(record) | 
|  | if err != nil { | 
|  | return c.in.setErrorLocked(c.sendAlert(err.(alert))) | 
|  | } | 
|  | if len(data) > maxPlaintext { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow)) | 
|  | } | 
|  |  | 
|  | // Application Data messages are always protected. | 
|  | if c.in.cipher == nil && typ == recordTypeApplicationData { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  |  | 
|  | if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 { | 
|  | // This is a state-advancing message: reset the retry count. | 
|  | c.retryCount = 0 | 
|  | } | 
|  |  | 
|  | // Handshake messages MUST NOT be interleaved with other record types in TLS 1.3. | 
|  | if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  |  | 
|  | switch typ { | 
|  | default: | 
|  | return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  |  | 
|  | case recordTypeAlert: | 
|  | if len(data) != 2 { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  | if alert(data[1]) == alertCloseNotify { | 
|  | return c.in.setErrorLocked(io.EOF) | 
|  | } | 
|  | if c.vers == VersionTLS13 { | 
|  | return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) | 
|  | } | 
|  | switch data[0] { | 
|  | case alertLevelWarning: | 
|  | // Drop the record on the floor and retry. | 
|  | return c.retryReadRecord(expectChangeCipherSpec) | 
|  | case alertLevelError: | 
|  | return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) | 
|  | default: | 
|  | return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  |  | 
|  | case recordTypeChangeCipherSpec: | 
|  | if len(data) != 1 || data[0] != 1 { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertDecodeError)) | 
|  | } | 
|  | // Handshake messages are not allowed to fragment across the CCS. | 
|  | if c.hand.Len() > 0 { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  | // In TLS 1.3, change_cipher_spec records are ignored until the | 
|  | // Finished. See RFC 8446, Appendix D.4. Note that according to Section | 
|  | // 5, a server can send a ChangeCipherSpec before its ServerHello, when | 
|  | // c.vers is still unset. That's not useful though and suspicious if the | 
|  | // server then selects a lower protocol version, so don't allow that. | 
|  | if c.vers == VersionTLS13 { | 
|  | return c.retryReadRecord(expectChangeCipherSpec) | 
|  | } | 
|  | if !expectChangeCipherSpec { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  | if err := c.in.changeCipherSpec(); err != nil { | 
|  | return c.in.setErrorLocked(c.sendAlert(err.(alert))) | 
|  | } | 
|  |  | 
|  | case recordTypeApplicationData: | 
|  | if !handshakeComplete || expectChangeCipherSpec { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  | // Some OpenSSL servers send empty records in order to randomize the | 
|  | // CBC IV. Ignore a limited number of empty records. | 
|  | if len(data) == 0 { | 
|  | return c.retryReadRecord(expectChangeCipherSpec) | 
|  | } | 
|  | // Note that data is owned by c.rawInput, following the Next call above, | 
|  | // to avoid copying the plaintext. This is safe because c.rawInput is | 
|  | // not read from or written to until c.input is drained. | 
|  | c.input.Reset(data) | 
|  |  | 
|  | case recordTypeHandshake: | 
|  | if len(data) == 0 || expectChangeCipherSpec { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  | c.hand.Write(data) | 
|  | } | 
|  |  | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // retryReadRecord recurs into readRecordOrCCS to drop a non-advancing record, like | 
|  | // a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3. | 
|  | func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error { | 
|  | c.retryCount++ | 
|  | if c.retryCount > maxUselessRecords { | 
|  | c.sendAlert(alertUnexpectedMessage) | 
|  | return c.in.setErrorLocked(errors.New("tls: too many ignored records")) | 
|  | } | 
|  | return c.readRecordOrCCS(expectChangeCipherSpec) | 
|  | } | 
|  |  | 
|  | // atLeastReader reads from R, stopping with EOF once at least N bytes have been | 
|  | // read. It is different from an io.LimitedReader in that it doesn't cut short | 
|  | // the last Read call, and in that it considers an early EOF an error. | 
|  | type atLeastReader struct { | 
|  | R io.Reader | 
|  | N int64 | 
|  | } | 
|  |  | 
|  | func (r *atLeastReader) Read(p []byte) (int, error) { | 
|  | if r.N <= 0 { | 
|  | return 0, io.EOF | 
|  | } | 
|  | n, err := r.R.Read(p) | 
|  | r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809 | 
|  | if r.N > 0 && err == io.EOF { | 
|  | return n, io.ErrUnexpectedEOF | 
|  | } | 
|  | if r.N <= 0 && err == nil { | 
|  | return n, io.EOF | 
|  | } | 
|  | return n, err | 
|  | } | 
|  |  | 
|  | // readFromUntil reads from r into c.rawInput until c.rawInput contains | 
|  | // at least n bytes or else returns an error. | 
|  | func (c *Conn) readFromUntil(r io.Reader, n int) error { | 
|  | if c.rawInput.Len() >= n { | 
|  | return nil | 
|  | } | 
|  | needs := n - c.rawInput.Len() | 
|  | // There might be extra input waiting on the wire. Make a best effort | 
|  | // attempt to fetch it so that it can be used in (*Conn).Read to | 
|  | // "predict" closeNotify alerts. | 
|  | c.rawInput.Grow(needs + bytes.MinRead) | 
|  | _, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)}) | 
|  | return err | 
|  | } | 
|  |  | 
|  | // sendAlert sends a TLS alert message. | 
|  | func (c *Conn) sendAlertLocked(err alert) error { | 
|  | switch err { | 
|  | case alertNoRenegotiation, alertCloseNotify: | 
|  | c.tmp[0] = alertLevelWarning | 
|  | default: | 
|  | c.tmp[0] = alertLevelError | 
|  | } | 
|  | c.tmp[1] = byte(err) | 
|  |  | 
|  | _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) | 
|  | if err == alertCloseNotify { | 
|  | // closeNotify is a special case in that it isn't an error. | 
|  | return writeErr | 
|  | } | 
|  |  | 
|  | return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) | 
|  | } | 
|  |  | 
|  | // sendAlert sends a TLS alert message. | 
|  | func (c *Conn) sendAlert(err alert) error { | 
|  | c.out.Lock() | 
|  | defer c.out.Unlock() | 
|  | return c.sendAlertLocked(err) | 
|  | } | 
|  |  | 
|  | const ( | 
|  | // tcpMSSEstimate is a conservative estimate of the TCP maximum segment | 
|  | // size (MSS). A constant is used, rather than querying the kernel for | 
|  | // the actual MSS, to avoid complexity. The value here is the IPv6 | 
|  | // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 | 
|  | // bytes) and a TCP header with timestamps (32 bytes). | 
|  | tcpMSSEstimate = 1208 | 
|  |  | 
|  | // recordSizeBoostThreshold is the number of bytes of application data | 
|  | // sent after which the TLS record size will be increased to the | 
|  | // maximum. | 
|  | recordSizeBoostThreshold = 128 * 1024 | 
|  | ) | 
|  |  | 
|  | // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the | 
|  | // next application data record. There is the following trade-off: | 
|  | // | 
|  | //   - For latency-sensitive applications, such as web browsing, each TLS | 
|  | //     record should fit in one TCP segment. | 
|  | //   - For throughput-sensitive applications, such as large file transfers, | 
|  | //     larger TLS records better amortize framing and encryption overheads. | 
|  | // | 
|  | // A simple heuristic that works well in practice is to use small records for | 
|  | // the first 1MB of data, then use larger records for subsequent data, and | 
|  | // reset back to smaller records after the connection becomes idle. See "High | 
|  | // Performance Web Networking", Chapter 4, or: | 
|  | // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ | 
|  | // | 
|  | // In the interests of simplicity and determinism, this code does not attempt | 
|  | // to reset the record size once the connection is idle, however. | 
|  | func (c *Conn) maxPayloadSizeForWrite(typ recordType) int { | 
|  | if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { | 
|  | return maxPlaintext | 
|  | } | 
|  |  | 
|  | if c.bytesSent >= recordSizeBoostThreshold { | 
|  | return maxPlaintext | 
|  | } | 
|  |  | 
|  | // Subtract TLS overheads to get the maximum payload size. | 
|  | payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen() | 
|  | if c.out.cipher != nil { | 
|  | switch ciph := c.out.cipher.(type) { | 
|  | case cipher.Stream: | 
|  | payloadBytes -= c.out.mac.Size() | 
|  | case cipher.AEAD: | 
|  | payloadBytes -= ciph.Overhead() | 
|  | case cbcMode: | 
|  | blockSize := ciph.BlockSize() | 
|  | // The payload must fit in a multiple of blockSize, with | 
|  | // room for at least one padding byte. | 
|  | payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 | 
|  | // The MAC is appended before padding so affects the | 
|  | // payload size directly. | 
|  | payloadBytes -= c.out.mac.Size() | 
|  | default: | 
|  | panic("unknown cipher type") | 
|  | } | 
|  | } | 
|  | if c.vers == VersionTLS13 { | 
|  | payloadBytes-- // encrypted ContentType | 
|  | } | 
|  |  | 
|  | // Allow packet growth in arithmetic progression up to max. | 
|  | pkt := c.packetsSent | 
|  | c.packetsSent++ | 
|  | if pkt > 1000 { | 
|  | return maxPlaintext // avoid overflow in multiply below | 
|  | } | 
|  |  | 
|  | n := payloadBytes * int(pkt+1) | 
|  | if n > maxPlaintext { | 
|  | n = maxPlaintext | 
|  | } | 
|  | return n | 
|  | } | 
|  |  | 
|  | func (c *Conn) write(data []byte) (int, error) { | 
|  | if c.buffering { | 
|  | c.sendBuf = append(c.sendBuf, data...) | 
|  | return len(data), nil | 
|  | } | 
|  |  | 
|  | n, err := c.conn.Write(data) | 
|  | c.bytesSent += int64(n) | 
|  | return n, err | 
|  | } | 
|  |  | 
|  | func (c *Conn) flush() (int, error) { | 
|  | if len(c.sendBuf) == 0 { | 
|  | return 0, nil | 
|  | } | 
|  |  | 
|  | n, err := c.conn.Write(c.sendBuf) | 
|  | c.bytesSent += int64(n) | 
|  | c.sendBuf = nil | 
|  | c.buffering = false | 
|  | return n, err | 
|  | } | 
|  |  | 
|  | // outBufPool pools the record-sized scratch buffers used by writeRecordLocked. | 
|  | var outBufPool = sync.Pool{ | 
|  | New: func() any { | 
|  | return new([]byte) | 
|  | }, | 
|  | } | 
|  |  | 
|  | // writeRecordLocked writes a TLS record with the given type and payload to the | 
|  | // connection and updates the record layer state. | 
|  | func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { | 
|  | outBufPtr := outBufPool.Get().(*[]byte) | 
|  | outBuf := *outBufPtr | 
|  | defer func() { | 
|  | // You might be tempted to simplify this by just passing &outBuf to Put, | 
|  | // but that would make the local copy of the outBuf slice header escape | 
|  | // to the heap, causing an allocation. Instead, we keep around the | 
|  | // pointer to the slice header returned by Get, which is already on the | 
|  | // heap, and overwrite and return that. | 
|  | *outBufPtr = outBuf | 
|  | outBufPool.Put(outBufPtr) | 
|  | }() | 
|  |  | 
|  | var n int | 
|  | for len(data) > 0 { | 
|  | m := len(data) | 
|  | if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload { | 
|  | m = maxPayload | 
|  | } | 
|  |  | 
|  | _, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen) | 
|  | outBuf[0] = byte(typ) | 
|  | vers := c.vers | 
|  | if vers == 0 { | 
|  | // Some TLS servers fail if the record version is | 
|  | // greater than TLS 1.0 for the initial ClientHello. | 
|  | vers = VersionTLS10 | 
|  | } else if vers == VersionTLS13 { | 
|  | // TLS 1.3 froze the record layer version to 1.2. | 
|  | // See RFC 8446, Section 5.1. | 
|  | vers = VersionTLS12 | 
|  | } | 
|  | outBuf[1] = byte(vers >> 8) | 
|  | outBuf[2] = byte(vers) | 
|  | outBuf[3] = byte(m >> 8) | 
|  | outBuf[4] = byte(m) | 
|  |  | 
|  | var err error | 
|  | outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand()) | 
|  | if err != nil { | 
|  | return n, err | 
|  | } | 
|  | if _, err := c.write(outBuf); err != nil { | 
|  | return n, err | 
|  | } | 
|  | n += m | 
|  | data = data[m:] | 
|  | } | 
|  |  | 
|  | if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 { | 
|  | if err := c.out.changeCipherSpec(); err != nil { | 
|  | return n, c.sendAlertLocked(err.(alert)) | 
|  | } | 
|  | } | 
|  |  | 
|  | return n, nil | 
|  | } | 
|  |  | 
|  | // writeRecord writes a TLS record with the given type and payload to the | 
|  | // connection and updates the record layer state. | 
|  | func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) { | 
|  | c.out.Lock() | 
|  | defer c.out.Unlock() | 
|  |  | 
|  | return c.writeRecordLocked(typ, data) | 
|  | } | 
|  |  | 
|  | // readHandshake reads the next handshake message from | 
|  | // the record layer. | 
|  | func (c *Conn) readHandshake() (any, error) { | 
|  | for c.hand.Len() < 4 { | 
|  | if err := c.readRecord(); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | } | 
|  |  | 
|  | data := c.hand.Bytes() | 
|  | n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) | 
|  | if n > maxHandshake { | 
|  | c.sendAlertLocked(alertInternalError) | 
|  | return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)) | 
|  | } | 
|  | for c.hand.Len() < 4+n { | 
|  | if err := c.readRecord(); err != nil { | 
|  | return nil, err | 
|  | } | 
|  | } | 
|  | data = c.hand.Next(4 + n) | 
|  | var m handshakeMessage | 
|  | switch data[0] { | 
|  | case typeHelloRequest: | 
|  | m = new(helloRequestMsg) | 
|  | case typeClientHello: | 
|  | m = new(clientHelloMsg) | 
|  | case typeServerHello: | 
|  | m = new(serverHelloMsg) | 
|  | case typeNewSessionTicket: | 
|  | if c.vers == VersionTLS13 { | 
|  | m = new(newSessionTicketMsgTLS13) | 
|  | } else { | 
|  | m = new(newSessionTicketMsg) | 
|  | } | 
|  | case typeCertificate: | 
|  | if c.vers == VersionTLS13 { | 
|  | m = new(certificateMsgTLS13) | 
|  | } else { | 
|  | m = new(certificateMsg) | 
|  | } | 
|  | case typeCertificateRequest: | 
|  | if c.vers == VersionTLS13 { | 
|  | m = new(certificateRequestMsgTLS13) | 
|  | } else { | 
|  | m = &certificateRequestMsg{ | 
|  | hasSignatureAlgorithm: c.vers >= VersionTLS12, | 
|  | } | 
|  | } | 
|  | case typeCertificateStatus: | 
|  | m = new(certificateStatusMsg) | 
|  | case typeServerKeyExchange: | 
|  | m = new(serverKeyExchangeMsg) | 
|  | case typeServerHelloDone: | 
|  | m = new(serverHelloDoneMsg) | 
|  | case typeClientKeyExchange: | 
|  | m = new(clientKeyExchangeMsg) | 
|  | case typeCertificateVerify: | 
|  | m = &certificateVerifyMsg{ | 
|  | hasSignatureAlgorithm: c.vers >= VersionTLS12, | 
|  | } | 
|  | case typeFinished: | 
|  | m = new(finishedMsg) | 
|  | case typeEncryptedExtensions: | 
|  | m = new(encryptedExtensionsMsg) | 
|  | case typeEndOfEarlyData: | 
|  | m = new(endOfEarlyDataMsg) | 
|  | case typeKeyUpdate: | 
|  | m = new(keyUpdateMsg) | 
|  | default: | 
|  | return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  |  | 
|  | // The handshake message unmarshalers | 
|  | // expect to be able to keep references to data, | 
|  | // so pass in a fresh copy that won't be overwritten. | 
|  | data = append([]byte(nil), data...) | 
|  |  | 
|  | if !m.unmarshal(data) { | 
|  | return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) | 
|  | } | 
|  | return m, nil | 
|  | } | 
|  |  | 
|  | var ( | 
|  | errShutdown = errors.New("tls: protocol is shutdown") | 
|  | ) | 
|  |  | 
|  | // Write writes data to the connection. | 
|  | // | 
|  | // As Write calls Handshake, in order to prevent indefinite blocking a deadline | 
|  | // must be set for both Read and Write before Write is called when the handshake | 
|  | // has not yet completed. See SetDeadline, SetReadDeadline, and | 
|  | // SetWriteDeadline. | 
|  | func (c *Conn) Write(b []byte) (int, error) { | 
|  | // interlock with Close below | 
|  | for { | 
|  | x := c.activeCall.Load() | 
|  | if x&1 != 0 { | 
|  | return 0, net.ErrClosed | 
|  | } | 
|  | if c.activeCall.CompareAndSwap(x, x+2) { | 
|  | break | 
|  | } | 
|  | } | 
|  | defer c.activeCall.Add(-2) | 
|  |  | 
|  | if err := c.Handshake(); err != nil { | 
|  | return 0, err | 
|  | } | 
|  |  | 
|  | c.out.Lock() | 
|  | defer c.out.Unlock() | 
|  |  | 
|  | if err := c.out.err; err != nil { | 
|  | return 0, err | 
|  | } | 
|  |  | 
|  | if !c.isHandshakeComplete.Load() { | 
|  | return 0, alertInternalError | 
|  | } | 
|  |  | 
|  | if c.closeNotifySent { | 
|  | return 0, errShutdown | 
|  | } | 
|  |  | 
|  | // TLS 1.0 is susceptible to a chosen-plaintext | 
|  | // attack when using block mode ciphers due to predictable IVs. | 
|  | // This can be prevented by splitting each Application Data | 
|  | // record into two records, effectively randomizing the IV. | 
|  | // | 
|  | // https://www.openssl.org/~bodo/tls-cbc.txt | 
|  | // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 | 
|  | // https://www.imperialviolet.org/2012/01/15/beastfollowup.html | 
|  |  | 
|  | var m int | 
|  | if len(b) > 1 && c.vers == VersionTLS10 { | 
|  | if _, ok := c.out.cipher.(cipher.BlockMode); ok { | 
|  | n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) | 
|  | if err != nil { | 
|  | return n, c.out.setErrorLocked(err) | 
|  | } | 
|  | m, b = 1, b[1:] | 
|  | } | 
|  | } | 
|  |  | 
|  | n, err := c.writeRecordLocked(recordTypeApplicationData, b) | 
|  | return n + m, c.out.setErrorLocked(err) | 
|  | } | 
|  |  | 
|  | // handleRenegotiation processes a HelloRequest handshake message. | 
|  | func (c *Conn) handleRenegotiation() error { | 
|  | if c.vers == VersionTLS13 { | 
|  | return errors.New("tls: internal error: unexpected renegotiation") | 
|  | } | 
|  |  | 
|  | msg, err := c.readHandshake() | 
|  | if err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | helloReq, ok := msg.(*helloRequestMsg) | 
|  | if !ok { | 
|  | c.sendAlert(alertUnexpectedMessage) | 
|  | return unexpectedMessageError(helloReq, msg) | 
|  | } | 
|  |  | 
|  | if !c.isClient { | 
|  | return c.sendAlert(alertNoRenegotiation) | 
|  | } | 
|  |  | 
|  | switch c.config.Renegotiation { | 
|  | case RenegotiateNever: | 
|  | return c.sendAlert(alertNoRenegotiation) | 
|  | case RenegotiateOnceAsClient: | 
|  | if c.handshakes > 1 { | 
|  | return c.sendAlert(alertNoRenegotiation) | 
|  | } | 
|  | case RenegotiateFreelyAsClient: | 
|  | // Ok. | 
|  | default: | 
|  | c.sendAlert(alertInternalError) | 
|  | return errors.New("tls: unknown Renegotiation value") | 
|  | } | 
|  |  | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  |  | 
|  | c.isHandshakeComplete.Store(false) | 
|  | if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil { | 
|  | c.handshakes++ | 
|  | } | 
|  | return c.handshakeErr | 
|  | } | 
|  |  | 
|  | // handlePostHandshakeMessage processes a handshake message arrived after the | 
|  | // handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation. | 
|  | func (c *Conn) handlePostHandshakeMessage() error { | 
|  | if c.vers != VersionTLS13 { | 
|  | return c.handleRenegotiation() | 
|  | } | 
|  |  | 
|  | msg, err := c.readHandshake() | 
|  | if err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | c.retryCount++ | 
|  | if c.retryCount > maxUselessRecords { | 
|  | c.sendAlert(alertUnexpectedMessage) | 
|  | return c.in.setErrorLocked(errors.New("tls: too many non-advancing records")) | 
|  | } | 
|  |  | 
|  | switch msg := msg.(type) { | 
|  | case *newSessionTicketMsgTLS13: | 
|  | return c.handleNewSessionTicket(msg) | 
|  | case *keyUpdateMsg: | 
|  | return c.handleKeyUpdate(msg) | 
|  | default: | 
|  | c.sendAlert(alertUnexpectedMessage) | 
|  | return fmt.Errorf("tls: received unexpected handshake message of type %T", msg) | 
|  | } | 
|  | } | 
|  |  | 
|  | func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error { | 
|  | cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite) | 
|  | if cipherSuite == nil { | 
|  | return c.in.setErrorLocked(c.sendAlert(alertInternalError)) | 
|  | } | 
|  |  | 
|  | newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret) | 
|  | c.in.setTrafficSecret(cipherSuite, newSecret) | 
|  |  | 
|  | if keyUpdate.updateRequested { | 
|  | c.out.Lock() | 
|  | defer c.out.Unlock() | 
|  |  | 
|  | msg := &keyUpdateMsg{} | 
|  | _, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal()) | 
|  | if err != nil { | 
|  | // Surface the error at the next write. | 
|  | c.out.setErrorLocked(err) | 
|  | return nil | 
|  | } | 
|  |  | 
|  | newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret) | 
|  | c.out.setTrafficSecret(cipherSuite, newSecret) | 
|  | } | 
|  |  | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // Read reads data from the connection. | 
|  | // | 
|  | // As Read calls Handshake, in order to prevent indefinite blocking a deadline | 
|  | // must be set for both Read and Write before Read is called when the handshake | 
|  | // has not yet completed. See SetDeadline, SetReadDeadline, and | 
|  | // SetWriteDeadline. | 
|  | func (c *Conn) Read(b []byte) (int, error) { | 
|  | if err := c.Handshake(); err != nil { | 
|  | return 0, err | 
|  | } | 
|  | if len(b) == 0 { | 
|  | // Put this after Handshake, in case people were calling | 
|  | // Read(nil) for the side effect of the Handshake. | 
|  | return 0, nil | 
|  | } | 
|  |  | 
|  | c.in.Lock() | 
|  | defer c.in.Unlock() | 
|  |  | 
|  | for c.input.Len() == 0 { | 
|  | if err := c.readRecord(); err != nil { | 
|  | return 0, err | 
|  | } | 
|  | for c.hand.Len() > 0 { | 
|  | if err := c.handlePostHandshakeMessage(); err != nil { | 
|  | return 0, err | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | n, _ := c.input.Read(b) | 
|  |  | 
|  | // If a close-notify alert is waiting, read it so that we can return (n, | 
|  | // EOF) instead of (n, nil), to signal to the HTTP response reading | 
|  | // goroutine that the connection is now closed. This eliminates a race | 
|  | // where the HTTP response reading goroutine would otherwise not observe | 
|  | // the EOF until its next read, by which time a client goroutine might | 
|  | // have already tried to reuse the HTTP connection for a new request. | 
|  | // See https://golang.org/cl/76400046 and https://golang.org/issue/3514 | 
|  | if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 && | 
|  | recordType(c.rawInput.Bytes()[0]) == recordTypeAlert { | 
|  | if err := c.readRecord(); err != nil { | 
|  | return n, err // will be io.EOF on closeNotify | 
|  | } | 
|  | } | 
|  |  | 
|  | return n, nil | 
|  | } | 
|  |  | 
|  | // Close closes the connection. | 
|  | func (c *Conn) Close() error { | 
|  | // Interlock with Conn.Write above. | 
|  | var x int32 | 
|  | for { | 
|  | x = c.activeCall.Load() | 
|  | if x&1 != 0 { | 
|  | return net.ErrClosed | 
|  | } | 
|  | if c.activeCall.CompareAndSwap(x, x|1) { | 
|  | break | 
|  | } | 
|  | } | 
|  | if x != 0 { | 
|  | // io.Writer and io.Closer should not be used concurrently. | 
|  | // If Close is called while a Write is currently in-flight, | 
|  | // interpret that as a sign that this Close is really just | 
|  | // being used to break the Write and/or clean up resources and | 
|  | // avoid sending the alertCloseNotify, which may block | 
|  | // waiting on handshakeMutex or the c.out mutex. | 
|  | return c.conn.Close() | 
|  | } | 
|  |  | 
|  | var alertErr error | 
|  | if c.isHandshakeComplete.Load() { | 
|  | if err := c.closeNotify(); err != nil { | 
|  | alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err) | 
|  | } | 
|  | } | 
|  |  | 
|  | if err := c.conn.Close(); err != nil { | 
|  | return err | 
|  | } | 
|  | return alertErr | 
|  | } | 
|  |  | 
|  | var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") | 
|  |  | 
|  | // CloseWrite shuts down the writing side of the connection. It should only be | 
|  | // called once the handshake has completed and does not call CloseWrite on the | 
|  | // underlying connection. Most callers should just use Close. | 
|  | func (c *Conn) CloseWrite() error { | 
|  | if !c.isHandshakeComplete.Load() { | 
|  | return errEarlyCloseWrite | 
|  | } | 
|  |  | 
|  | return c.closeNotify() | 
|  | } | 
|  |  | 
|  | func (c *Conn) closeNotify() error { | 
|  | c.out.Lock() | 
|  | defer c.out.Unlock() | 
|  |  | 
|  | if !c.closeNotifySent { | 
|  | // Set a Write Deadline to prevent possibly blocking forever. | 
|  | c.SetWriteDeadline(time.Now().Add(time.Second * 5)) | 
|  | c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) | 
|  | c.closeNotifySent = true | 
|  | // Any subsequent writes will fail. | 
|  | c.SetWriteDeadline(time.Now()) | 
|  | } | 
|  | return c.closeNotifyErr | 
|  | } | 
|  |  | 
|  | // Handshake runs the client or server handshake | 
|  | // protocol if it has not yet been run. | 
|  | // | 
|  | // Most uses of this package need not call Handshake explicitly: the | 
|  | // first Read or Write will call it automatically. | 
|  | // | 
|  | // For control over canceling or setting a timeout on a handshake, use | 
|  | // HandshakeContext or the Dialer's DialContext method instead. | 
|  | func (c *Conn) Handshake() error { | 
|  | return c.HandshakeContext(context.Background()) | 
|  | } | 
|  |  | 
|  | // HandshakeContext runs the client or server handshake | 
|  | // protocol if it has not yet been run. | 
|  | // | 
|  | // The provided Context must be non-nil. If the context is canceled before | 
|  | // the handshake is complete, the handshake is interrupted and an error is returned. | 
|  | // Once the handshake has completed, cancellation of the context will not affect the | 
|  | // connection. | 
|  | // | 
|  | // Most uses of this package need not call HandshakeContext explicitly: the | 
|  | // first Read or Write will call it automatically. | 
|  | func (c *Conn) HandshakeContext(ctx context.Context) error { | 
|  | // Delegate to unexported method for named return | 
|  | // without confusing documented signature. | 
|  | return c.handshakeContext(ctx) | 
|  | } | 
|  |  | 
|  | func (c *Conn) handshakeContext(ctx context.Context) (ret error) { | 
|  | // Fast sync/atomic-based exit if there is no handshake in flight and the | 
|  | // last one succeeded without an error. Avoids the expensive context setup | 
|  | // and mutex for most Read and Write calls. | 
|  | if c.isHandshakeComplete.Load() { | 
|  | return nil | 
|  | } | 
|  |  | 
|  | handshakeCtx, cancel := context.WithCancel(ctx) | 
|  | // Note: defer this before starting the "interrupter" goroutine | 
|  | // so that we can tell the difference between the input being canceled and | 
|  | // this cancellation. In the former case, we need to close the connection. | 
|  | defer cancel() | 
|  |  | 
|  | // Start the "interrupter" goroutine, if this context might be canceled. | 
|  | // (The background context cannot). | 
|  | // | 
|  | // The interrupter goroutine waits for the input context to be done and | 
|  | // closes the connection if this happens before the function returns. | 
|  | if ctx.Done() != nil { | 
|  | done := make(chan struct{}) | 
|  | interruptRes := make(chan error, 1) | 
|  | defer func() { | 
|  | close(done) | 
|  | if ctxErr := <-interruptRes; ctxErr != nil { | 
|  | // Return context error to user. | 
|  | ret = ctxErr | 
|  | } | 
|  | }() | 
|  | go func() { | 
|  | select { | 
|  | case <-handshakeCtx.Done(): | 
|  | // Close the connection, discarding the error | 
|  | _ = c.conn.Close() | 
|  | interruptRes <- handshakeCtx.Err() | 
|  | case <-done: | 
|  | interruptRes <- nil | 
|  | } | 
|  | }() | 
|  | } | 
|  |  | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  |  | 
|  | if err := c.handshakeErr; err != nil { | 
|  | return err | 
|  | } | 
|  | if c.isHandshakeComplete.Load() { | 
|  | return nil | 
|  | } | 
|  |  | 
|  | c.in.Lock() | 
|  | defer c.in.Unlock() | 
|  |  | 
|  | c.handshakeErr = c.handshakeFn(handshakeCtx) | 
|  | if c.handshakeErr == nil { | 
|  | c.handshakes++ | 
|  | } else { | 
|  | // If an error occurred during the handshake try to flush the | 
|  | // alert that might be left in the buffer. | 
|  | c.flush() | 
|  | } | 
|  |  | 
|  | if c.handshakeErr == nil && !c.isHandshakeComplete.Load() { | 
|  | c.handshakeErr = errors.New("tls: internal error: handshake should have had a result") | 
|  | } | 
|  | if c.handshakeErr != nil && c.isHandshakeComplete.Load() { | 
|  | panic("tls: internal error: handshake returned an error but is marked successful") | 
|  | } | 
|  |  | 
|  | return c.handshakeErr | 
|  | } | 
|  |  | 
|  | // ConnectionState returns basic TLS details about the connection. | 
|  | func (c *Conn) ConnectionState() ConnectionState { | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  | return c.connectionStateLocked() | 
|  | } | 
|  |  | 
|  | func (c *Conn) connectionStateLocked() ConnectionState { | 
|  | var state ConnectionState | 
|  | state.HandshakeComplete = c.isHandshakeComplete.Load() | 
|  | state.Version = c.vers | 
|  | state.NegotiatedProtocol = c.clientProtocol | 
|  | state.DidResume = c.didResume | 
|  | state.NegotiatedProtocolIsMutual = true | 
|  | state.ServerName = c.serverName | 
|  | state.CipherSuite = c.cipherSuite | 
|  | state.PeerCertificates = c.peerCertificates | 
|  | state.VerifiedChains = c.verifiedChains | 
|  | state.SignedCertificateTimestamps = c.scts | 
|  | state.OCSPResponse = c.ocspResponse | 
|  | if !c.didResume && c.vers != VersionTLS13 { | 
|  | if c.clientFinishedIsFirst { | 
|  | state.TLSUnique = c.clientFinished[:] | 
|  | } else { | 
|  | state.TLSUnique = c.serverFinished[:] | 
|  | } | 
|  | } | 
|  | if c.config.Renegotiation != RenegotiateNever { | 
|  | state.ekm = noExportedKeyingMaterial | 
|  | } else { | 
|  | state.ekm = c.ekm | 
|  | } | 
|  | return state | 
|  | } | 
|  |  | 
|  | // OCSPResponse returns the stapled OCSP response from the TLS server, if | 
|  | // any. (Only valid for client connections.) | 
|  | func (c *Conn) OCSPResponse() []byte { | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  |  | 
|  | return c.ocspResponse | 
|  | } | 
|  |  | 
|  | // VerifyHostname checks that the peer certificate chain is valid for | 
|  | // connecting to host. If so, it returns nil; if not, it returns an error | 
|  | // describing the problem. | 
|  | func (c *Conn) VerifyHostname(host string) error { | 
|  | c.handshakeMutex.Lock() | 
|  | defer c.handshakeMutex.Unlock() | 
|  | if !c.isClient { | 
|  | return errors.New("tls: VerifyHostname called on TLS server connection") | 
|  | } | 
|  | if !c.isHandshakeComplete.Load() { | 
|  | return errors.New("tls: handshake has not yet been performed") | 
|  | } | 
|  | if len(c.verifiedChains) == 0 { | 
|  | return errors.New("tls: handshake did not verify certificate chain") | 
|  | } | 
|  | return c.peerCertificates[0].VerifyHostname(host) | 
|  | } |