| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Writes dwarf information to object files. |
| |
| package obj |
| |
| import ( |
| "cmd/internal/dwarf" |
| "cmd/internal/objabi" |
| "cmd/internal/src" |
| "fmt" |
| "sort" |
| "sync" |
| ) |
| |
| // Generate a sequence of opcodes that is as short as possible. |
| // See section 6.2.5 |
| const ( |
| LINE_BASE = -4 |
| LINE_RANGE = 10 |
| PC_RANGE = (255 - OPCODE_BASE) / LINE_RANGE |
| OPCODE_BASE = 11 |
| ) |
| |
| // generateDebugLinesSymbol fills the debug lines symbol of a given function. |
| // |
| // It's worth noting that this function doesn't generate the full debug_lines |
| // DWARF section, saving that for the linker. This function just generates the |
| // state machine part of debug_lines. The full table is generated by the |
| // linker. Also, we use the file numbers from the full package (not just the |
| // function in question) when generating the state machine. We do this so we |
| // don't have to do a fixup on the indices when writing the full section. |
| func (ctxt *Link) generateDebugLinesSymbol(s, lines *LSym) { |
| dctxt := dwCtxt{ctxt} |
| |
| // Emit a LNE_set_address extended opcode, so as to establish the |
| // starting text address of this function. |
| dctxt.AddUint8(lines, 0) |
| dwarf.Uleb128put(dctxt, lines, 1+int64(ctxt.Arch.PtrSize)) |
| dctxt.AddUint8(lines, dwarf.DW_LNE_set_address) |
| dctxt.AddAddress(lines, s, 0) |
| |
| // Set up the debug_lines state machine to the default values |
| // we expect at the start of a new sequence. |
| stmt := true |
| line := int64(1) |
| pc := s.Func().Text.Pc |
| var lastpc int64 // last PC written to line table, not last PC in func |
| name := "" |
| prologue, wrotePrologue := false, false |
| // Walk the progs, generating the DWARF table. |
| for p := s.Func().Text; p != nil; p = p.Link { |
| prologue = prologue || (p.Pos.Xlogue() == src.PosPrologueEnd) |
| // If we're not at a real instruction, keep looping! |
| if p.Pos.Line() == 0 || (p.Link != nil && p.Link.Pc == p.Pc) { |
| continue |
| } |
| newStmt := p.Pos.IsStmt() != src.PosNotStmt |
| newName, newLine := ctxt.getFileSymbolAndLine(p.Pos) |
| |
| // Output debug info. |
| wrote := false |
| if name != newName { |
| newFile := ctxt.PosTable.FileIndex(newName) + 1 // 1 indexing for the table. |
| dctxt.AddUint8(lines, dwarf.DW_LNS_set_file) |
| dwarf.Uleb128put(dctxt, lines, int64(newFile)) |
| name = newName |
| wrote = true |
| } |
| if prologue && !wrotePrologue { |
| dctxt.AddUint8(lines, uint8(dwarf.DW_LNS_set_prologue_end)) |
| wrotePrologue = true |
| wrote = true |
| } |
| if stmt != newStmt { |
| dctxt.AddUint8(lines, uint8(dwarf.DW_LNS_negate_stmt)) |
| stmt = newStmt |
| wrote = true |
| } |
| |
| if line != int64(newLine) || wrote { |
| pcdelta := p.Pc - pc |
| lastpc = p.Pc |
| putpclcdelta(ctxt, dctxt, lines, uint64(pcdelta), int64(newLine)-line) |
| line, pc = int64(newLine), p.Pc |
| } |
| } |
| |
| // Because these symbols will be concatenated together by the |
| // linker, we need to reset the state machine that controls the |
| // debug symbols. Do this using an end-of-sequence operator. |
| // |
| // Note: at one point in time, Delve did not support multiple end |
| // sequence ops within a compilation unit (bug for this: |
| // https://github.com/go-delve/delve/issues/1694), however the bug |
| // has since been fixed (Oct 2019). |
| // |
| // Issue 38192: the DWARF standard specifies that when you issue |
| // an end-sequence op, the PC value should be one past the last |
| // text address in the translation unit, so apply a delta to the |
| // text address before the end sequence op. If this isn't done, |
| // GDB will assign a line number of zero the last row in the line |
| // table, which we don't want. |
| lastlen := uint64(s.Size - (lastpc - s.Func().Text.Pc)) |
| dctxt.AddUint8(lines, dwarf.DW_LNS_advance_pc) |
| dwarf.Uleb128put(dctxt, lines, int64(lastlen)) |
| dctxt.AddUint8(lines, 0) // start extended opcode |
| dwarf.Uleb128put(dctxt, lines, 1) |
| dctxt.AddUint8(lines, dwarf.DW_LNE_end_sequence) |
| } |
| |
| func putpclcdelta(linkctxt *Link, dctxt dwCtxt, s *LSym, deltaPC uint64, deltaLC int64) { |
| // Choose a special opcode that minimizes the number of bytes needed to |
| // encode the remaining PC delta and LC delta. |
| var opcode int64 |
| if deltaLC < LINE_BASE { |
| if deltaPC >= PC_RANGE { |
| opcode = OPCODE_BASE + (LINE_RANGE * PC_RANGE) |
| } else { |
| opcode = OPCODE_BASE + (LINE_RANGE * int64(deltaPC)) |
| } |
| } else if deltaLC < LINE_BASE+LINE_RANGE { |
| if deltaPC >= PC_RANGE { |
| opcode = OPCODE_BASE + (deltaLC - LINE_BASE) + (LINE_RANGE * PC_RANGE) |
| if opcode > 255 { |
| opcode -= LINE_RANGE |
| } |
| } else { |
| opcode = OPCODE_BASE + (deltaLC - LINE_BASE) + (LINE_RANGE * int64(deltaPC)) |
| } |
| } else { |
| if deltaPC <= PC_RANGE { |
| opcode = OPCODE_BASE + (LINE_RANGE - 1) + (LINE_RANGE * int64(deltaPC)) |
| if opcode > 255 { |
| opcode = 255 |
| } |
| } else { |
| // Use opcode 249 (pc+=23, lc+=5) or 255 (pc+=24, lc+=1). |
| // |
| // Let x=deltaPC-PC_RANGE. If we use opcode 255, x will be the remaining |
| // deltaPC that we need to encode separately before emitting 255. If we |
| // use opcode 249, we will need to encode x+1. If x+1 takes one more |
| // byte to encode than x, then we use opcode 255. |
| // |
| // In all other cases x and x+1 take the same number of bytes to encode, |
| // so we use opcode 249, which may save us a byte in encoding deltaLC, |
| // for similar reasons. |
| switch deltaPC - PC_RANGE { |
| // PC_RANGE is the largest deltaPC we can encode in one byte, using |
| // DW_LNS_const_add_pc. |
| // |
| // (1<<16)-1 is the largest deltaPC we can encode in three bytes, using |
| // DW_LNS_fixed_advance_pc. |
| // |
| // (1<<(7n))-1 is the largest deltaPC we can encode in n+1 bytes for |
| // n=1,3,4,5,..., using DW_LNS_advance_pc. |
| case PC_RANGE, (1 << 7) - 1, (1 << 16) - 1, (1 << 21) - 1, (1 << 28) - 1, |
| (1 << 35) - 1, (1 << 42) - 1, (1 << 49) - 1, (1 << 56) - 1, (1 << 63) - 1: |
| opcode = 255 |
| default: |
| opcode = OPCODE_BASE + LINE_RANGE*PC_RANGE - 1 // 249 |
| } |
| } |
| } |
| if opcode < OPCODE_BASE || opcode > 255 { |
| panic(fmt.Sprintf("produced invalid special opcode %d", opcode)) |
| } |
| |
| // Subtract from deltaPC and deltaLC the amounts that the opcode will add. |
| deltaPC -= uint64((opcode - OPCODE_BASE) / LINE_RANGE) |
| deltaLC -= (opcode-OPCODE_BASE)%LINE_RANGE + LINE_BASE |
| |
| // Encode deltaPC. |
| if deltaPC != 0 { |
| if deltaPC <= PC_RANGE { |
| // Adjust the opcode so that we can use the 1-byte DW_LNS_const_add_pc |
| // instruction. |
| opcode -= LINE_RANGE * int64(PC_RANGE-deltaPC) |
| if opcode < OPCODE_BASE { |
| panic(fmt.Sprintf("produced invalid special opcode %d", opcode)) |
| } |
| dctxt.AddUint8(s, dwarf.DW_LNS_const_add_pc) |
| } else if (1<<14) <= deltaPC && deltaPC < (1<<16) { |
| dctxt.AddUint8(s, dwarf.DW_LNS_fixed_advance_pc) |
| dctxt.AddUint16(s, uint16(deltaPC)) |
| } else { |
| dctxt.AddUint8(s, dwarf.DW_LNS_advance_pc) |
| dwarf.Uleb128put(dctxt, s, int64(deltaPC)) |
| } |
| } |
| |
| // Encode deltaLC. |
| if deltaLC != 0 { |
| dctxt.AddUint8(s, dwarf.DW_LNS_advance_line) |
| dwarf.Sleb128put(dctxt, s, deltaLC) |
| } |
| |
| // Output the special opcode. |
| dctxt.AddUint8(s, uint8(opcode)) |
| } |
| |
| // implement dwarf.Context |
| type dwCtxt struct{ *Link } |
| |
| func (c dwCtxt) PtrSize() int { |
| return c.Arch.PtrSize |
| } |
| func (c dwCtxt) AddInt(s dwarf.Sym, size int, i int64) { |
| ls := s.(*LSym) |
| ls.WriteInt(c.Link, ls.Size, size, i) |
| } |
| func (c dwCtxt) AddUint16(s dwarf.Sym, i uint16) { |
| c.AddInt(s, 2, int64(i)) |
| } |
| func (c dwCtxt) AddUint8(s dwarf.Sym, i uint8) { |
| b := []byte{byte(i)} |
| c.AddBytes(s, b) |
| } |
| func (c dwCtxt) AddBytes(s dwarf.Sym, b []byte) { |
| ls := s.(*LSym) |
| ls.WriteBytes(c.Link, ls.Size, b) |
| } |
| func (c dwCtxt) AddString(s dwarf.Sym, v string) { |
| ls := s.(*LSym) |
| ls.WriteString(c.Link, ls.Size, len(v), v) |
| ls.WriteInt(c.Link, ls.Size, 1, 0) |
| } |
| func (c dwCtxt) AddAddress(s dwarf.Sym, data interface{}, value int64) { |
| ls := s.(*LSym) |
| size := c.PtrSize() |
| if data != nil { |
| rsym := data.(*LSym) |
| ls.WriteAddr(c.Link, ls.Size, size, rsym, value) |
| } else { |
| ls.WriteInt(c.Link, ls.Size, size, value) |
| } |
| } |
| func (c dwCtxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) { |
| ls := s.(*LSym) |
| rsym := data.(*LSym) |
| ls.WriteCURelativeAddr(c.Link, ls.Size, rsym, value) |
| } |
| func (c dwCtxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) { |
| panic("should be used only in the linker") |
| } |
| func (c dwCtxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) { |
| size := 4 |
| if isDwarf64(c.Link) { |
| size = 8 |
| } |
| |
| ls := s.(*LSym) |
| rsym := t.(*LSym) |
| ls.WriteAddr(c.Link, ls.Size, size, rsym, ofs) |
| r := &ls.R[len(ls.R)-1] |
| r.Type = objabi.R_DWARFSECREF |
| } |
| |
| func (c dwCtxt) AddFileRef(s dwarf.Sym, f interface{}) { |
| ls := s.(*LSym) |
| rsym := f.(*LSym) |
| fidx := c.Link.PosTable.FileIndex(rsym.Name) |
| // Note the +1 here -- the value we're writing is going to be an |
| // index into the DWARF line table file section, whose entries |
| // are numbered starting at 1, not 0. |
| ls.WriteInt(c.Link, ls.Size, 4, int64(fidx+1)) |
| } |
| |
| func (c dwCtxt) CurrentOffset(s dwarf.Sym) int64 { |
| ls := s.(*LSym) |
| return ls.Size |
| } |
| |
| // Here "from" is a symbol corresponding to an inlined or concrete |
| // function, "to" is the symbol for the corresponding abstract |
| // function, and "dclIdx" is the index of the symbol of interest with |
| // respect to the Dcl slice of the original pre-optimization version |
| // of the inlined function. |
| func (c dwCtxt) RecordDclReference(from dwarf.Sym, to dwarf.Sym, dclIdx int, inlIndex int) { |
| ls := from.(*LSym) |
| tls := to.(*LSym) |
| ridx := len(ls.R) - 1 |
| c.Link.DwFixups.ReferenceChildDIE(ls, ridx, tls, dclIdx, inlIndex) |
| } |
| |
| func (c dwCtxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) { |
| ls := s.(*LSym) |
| c.Link.DwFixups.RegisterChildDIEOffsets(ls, vars, offsets) |
| } |
| |
| func (c dwCtxt) Logf(format string, args ...interface{}) { |
| c.Link.Logf(format, args...) |
| } |
| |
| func isDwarf64(ctxt *Link) bool { |
| return ctxt.Headtype == objabi.Haix |
| } |
| |
| func (ctxt *Link) dwarfSym(s *LSym) (dwarfInfoSym, dwarfLocSym, dwarfRangesSym, dwarfAbsFnSym, dwarfDebugLines *LSym) { |
| if s.Type != objabi.STEXT { |
| ctxt.Diag("dwarfSym of non-TEXT %v", s) |
| } |
| fn := s.Func() |
| if fn.dwarfInfoSym == nil { |
| fn.dwarfInfoSym = &LSym{ |
| Type: objabi.SDWARFFCN, |
| } |
| if ctxt.Flag_locationlists { |
| fn.dwarfLocSym = &LSym{ |
| Type: objabi.SDWARFLOC, |
| } |
| } |
| fn.dwarfRangesSym = &LSym{ |
| Type: objabi.SDWARFRANGE, |
| } |
| fn.dwarfDebugLinesSym = &LSym{ |
| Type: objabi.SDWARFLINES, |
| } |
| if s.WasInlined() { |
| fn.dwarfAbsFnSym = ctxt.DwFixups.AbsFuncDwarfSym(s) |
| } |
| } |
| return fn.dwarfInfoSym, fn.dwarfLocSym, fn.dwarfRangesSym, fn.dwarfAbsFnSym, fn.dwarfDebugLinesSym |
| } |
| |
| func (s *LSym) Length(dwarfContext interface{}) int64 { |
| return s.Size |
| } |
| |
| // fileSymbol returns a symbol corresponding to the source file of the |
| // first instruction (prog) of the specified function. This will |
| // presumably be the file in which the function is defined. |
| func (ctxt *Link) fileSymbol(fn *LSym) *LSym { |
| p := fn.Func().Text |
| if p != nil { |
| f, _ := ctxt.getFileSymbolAndLine(p.Pos) |
| fsym := ctxt.Lookup(f) |
| return fsym |
| } |
| return nil |
| } |
| |
| // populateDWARF fills in the DWARF Debugging Information Entries for |
| // TEXT symbol 's'. The various DWARF symbols must already have been |
| // initialized in InitTextSym. |
| func (ctxt *Link) populateDWARF(curfn interface{}, s *LSym, myimportpath string) { |
| info, loc, ranges, absfunc, lines := ctxt.dwarfSym(s) |
| if info.Size != 0 { |
| ctxt.Diag("makeFuncDebugEntry double process %v", s) |
| } |
| var scopes []dwarf.Scope |
| var inlcalls dwarf.InlCalls |
| if ctxt.DebugInfo != nil { |
| scopes, inlcalls = ctxt.DebugInfo(s, info, curfn) |
| } |
| var err error |
| dwctxt := dwCtxt{ctxt} |
| filesym := ctxt.fileSymbol(s) |
| fnstate := &dwarf.FnState{ |
| Name: s.Name, |
| Importpath: myimportpath, |
| Info: info, |
| Filesym: filesym, |
| Loc: loc, |
| Ranges: ranges, |
| Absfn: absfunc, |
| StartPC: s, |
| Size: s.Size, |
| External: !s.Static(), |
| Scopes: scopes, |
| InlCalls: inlcalls, |
| UseBASEntries: ctxt.UseBASEntries, |
| } |
| if absfunc != nil { |
| err = dwarf.PutAbstractFunc(dwctxt, fnstate) |
| if err != nil { |
| ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err) |
| } |
| err = dwarf.PutConcreteFunc(dwctxt, fnstate, s.Wrapper()) |
| } else { |
| err = dwarf.PutDefaultFunc(dwctxt, fnstate, s.Wrapper()) |
| } |
| if err != nil { |
| ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err) |
| } |
| // Fill in the debug lines symbol. |
| ctxt.generateDebugLinesSymbol(s, lines) |
| } |
| |
| // DwarfIntConst creates a link symbol for an integer constant with the |
| // given name, type and value. |
| func (ctxt *Link) DwarfIntConst(myimportpath, name, typename string, val int64) { |
| if myimportpath == "" { |
| return |
| } |
| s := ctxt.LookupInit(dwarf.ConstInfoPrefix+myimportpath, func(s *LSym) { |
| s.Type = objabi.SDWARFCONST |
| ctxt.Data = append(ctxt.Data, s) |
| }) |
| dwarf.PutIntConst(dwCtxt{ctxt}, s, ctxt.Lookup(dwarf.InfoPrefix+typename), myimportpath+"."+name, val) |
| } |
| |
| // DwarfGlobal creates a link symbol containing a DWARF entry for |
| // a global variable. |
| func (ctxt *Link) DwarfGlobal(myimportpath, typename string, varSym *LSym) { |
| if myimportpath == "" || varSym.Local() { |
| return |
| } |
| varname := varSym.Name |
| dieSymName := dwarf.InfoPrefix + varname |
| dieSym := ctxt.LookupInit(dieSymName, func(s *LSym) { |
| s.Type = objabi.SDWARFVAR |
| s.Set(AttrDuplicateOK, true) // needed for shared linkage |
| ctxt.Data = append(ctxt.Data, s) |
| }) |
| typeSym := ctxt.Lookup(dwarf.InfoPrefix + typename) |
| dwarf.PutGlobal(dwCtxt{ctxt}, dieSym, typeSym, varSym, varname) |
| } |
| |
| func (ctxt *Link) DwarfAbstractFunc(curfn interface{}, s *LSym, myimportpath string) { |
| absfn := ctxt.DwFixups.AbsFuncDwarfSym(s) |
| if absfn.Size != 0 { |
| ctxt.Diag("internal error: DwarfAbstractFunc double process %v", s) |
| } |
| if s.Func() == nil { |
| s.NewFuncInfo() |
| } |
| scopes, _ := ctxt.DebugInfo(s, absfn, curfn) |
| dwctxt := dwCtxt{ctxt} |
| filesym := ctxt.fileSymbol(s) |
| fnstate := dwarf.FnState{ |
| Name: s.Name, |
| Importpath: myimportpath, |
| Info: absfn, |
| Filesym: filesym, |
| Absfn: absfn, |
| External: !s.Static(), |
| Scopes: scopes, |
| UseBASEntries: ctxt.UseBASEntries, |
| } |
| if err := dwarf.PutAbstractFunc(dwctxt, &fnstate); err != nil { |
| ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err) |
| } |
| } |
| |
| // This table is designed to aid in the creation of references between |
| // DWARF subprogram DIEs. |
| // |
| // In most cases when one DWARF DIE has to refer to another DWARF DIE, |
| // the target of the reference has an LSym, which makes it easy to use |
| // the existing relocation mechanism. For DWARF inlined routine DIEs, |
| // however, the subprogram DIE has to refer to a child |
| // parameter/variable DIE of the abstract subprogram. This child DIE |
| // doesn't have an LSym, and also of interest is the fact that when |
| // DWARF generation is happening for inlined function F within caller |
| // G, it's possible that DWARF generation hasn't happened yet for F, |
| // so there is no way to know the offset of a child DIE within F's |
| // abstract function. Making matters more complex, each inlined |
| // instance of F may refer to a subset of the original F's variables |
| // (depending on what happens with optimization, some vars may be |
| // eliminated). |
| // |
| // The fixup table below helps overcome this hurdle. At the point |
| // where a parameter/variable reference is made (via a call to |
| // "ReferenceChildDIE"), a fixup record is generate that records |
| // the relocation that is targeting that child variable. At a later |
| // point when the abstract function DIE is emitted, there will be |
| // a call to "RegisterChildDIEOffsets", at which point the offsets |
| // needed to apply fixups are captured. Finally, once the parallel |
| // portion of the compilation is done, fixups can actually be applied |
| // during the "Finalize" method (this can't be done during the |
| // parallel portion of the compile due to the possibility of data |
| // races). |
| // |
| // This table is also used to record the "precursor" function node for |
| // each function that is the target of an inline -- child DIE references |
| // have to be made with respect to the original pre-optimization |
| // version of the function (to allow for the fact that each inlined |
| // body may be optimized differently). |
| type DwarfFixupTable struct { |
| ctxt *Link |
| mu sync.Mutex |
| symtab map[*LSym]int // maps abstract fn LSYM to index in svec |
| svec []symFixups |
| precursor map[*LSym]fnState // maps fn Lsym to precursor Node, absfn sym |
| } |
| |
| type symFixups struct { |
| fixups []relFixup |
| doffsets []declOffset |
| inlIndex int32 |
| defseen bool |
| } |
| |
| type declOffset struct { |
| // Index of variable within DCL list of pre-optimization function |
| dclIdx int32 |
| // Offset of var's child DIE with respect to containing subprogram DIE |
| offset int32 |
| } |
| |
| type relFixup struct { |
| refsym *LSym |
| relidx int32 |
| dclidx int32 |
| } |
| |
| type fnState struct { |
| // precursor function (really *gc.Node) |
| precursor interface{} |
| // abstract function symbol |
| absfn *LSym |
| } |
| |
| func NewDwarfFixupTable(ctxt *Link) *DwarfFixupTable { |
| return &DwarfFixupTable{ |
| ctxt: ctxt, |
| symtab: make(map[*LSym]int), |
| precursor: make(map[*LSym]fnState), |
| } |
| } |
| |
| func (ft *DwarfFixupTable) GetPrecursorFunc(s *LSym) interface{} { |
| if fnstate, found := ft.precursor[s]; found { |
| return fnstate.precursor |
| } |
| return nil |
| } |
| |
| func (ft *DwarfFixupTable) SetPrecursorFunc(s *LSym, fn interface{}) { |
| if _, found := ft.precursor[s]; found { |
| ft.ctxt.Diag("internal error: DwarfFixupTable.SetPrecursorFunc double call on %v", s) |
| } |
| |
| // initialize abstract function symbol now. This is done here so |
| // as to avoid data races later on during the parallel portion of |
| // the back end. |
| absfn := ft.ctxt.LookupDerived(s, dwarf.InfoPrefix+s.Name+dwarf.AbstractFuncSuffix) |
| absfn.Set(AttrDuplicateOK, true) |
| absfn.Type = objabi.SDWARFABSFCN |
| ft.ctxt.Data = append(ft.ctxt.Data, absfn) |
| |
| // In the case of "late" inlining (inlines that happen during |
| // wrapper generation as opposed to the main inlining phase) it's |
| // possible that we didn't cache the abstract function sym for the |
| // text symbol -- do so now if needed. See issue 38068. |
| if fn := s.Func(); fn != nil && fn.dwarfAbsFnSym == nil { |
| fn.dwarfAbsFnSym = absfn |
| } |
| |
| ft.precursor[s] = fnState{precursor: fn, absfn: absfn} |
| } |
| |
| // Make a note of a child DIE reference: relocation 'ridx' within symbol 's' |
| // is targeting child 'c' of DIE with symbol 'tgt'. |
| func (ft *DwarfFixupTable) ReferenceChildDIE(s *LSym, ridx int, tgt *LSym, dclidx int, inlIndex int) { |
| // Protect against concurrent access if multiple backend workers |
| ft.mu.Lock() |
| defer ft.mu.Unlock() |
| |
| // Create entry for symbol if not already present. |
| idx, found := ft.symtab[tgt] |
| if !found { |
| ft.svec = append(ft.svec, symFixups{inlIndex: int32(inlIndex)}) |
| idx = len(ft.svec) - 1 |
| ft.symtab[tgt] = idx |
| } |
| |
| // Do we have child DIE offsets available? If so, then apply them, |
| // otherwise create a fixup record. |
| sf := &ft.svec[idx] |
| if len(sf.doffsets) > 0 { |
| found := false |
| for _, do := range sf.doffsets { |
| if do.dclIdx == int32(dclidx) { |
| off := do.offset |
| s.R[ridx].Add += int64(off) |
| found = true |
| break |
| } |
| } |
| if !found { |
| ft.ctxt.Diag("internal error: DwarfFixupTable.ReferenceChildDIE unable to locate child DIE offset for dclIdx=%d src=%v tgt=%v", dclidx, s, tgt) |
| } |
| } else { |
| sf.fixups = append(sf.fixups, relFixup{s, int32(ridx), int32(dclidx)}) |
| } |
| } |
| |
| // Called once DWARF generation is complete for a given abstract function, |
| // whose children might have been referenced via a call above. Stores |
| // the offsets for any child DIEs (vars, params) so that they can be |
| // consumed later in on DwarfFixupTable.Finalize, which applies any |
| // outstanding fixups. |
| func (ft *DwarfFixupTable) RegisterChildDIEOffsets(s *LSym, vars []*dwarf.Var, coffsets []int32) { |
| // Length of these two slices should agree |
| if len(vars) != len(coffsets) { |
| ft.ctxt.Diag("internal error: RegisterChildDIEOffsets vars/offsets length mismatch") |
| return |
| } |
| |
| // Generate the slice of declOffset's based in vars/coffsets |
| doffsets := make([]declOffset, len(coffsets)) |
| for i := range coffsets { |
| doffsets[i].dclIdx = vars[i].ChildIndex |
| doffsets[i].offset = coffsets[i] |
| } |
| |
| ft.mu.Lock() |
| defer ft.mu.Unlock() |
| |
| // Store offsets for this symbol. |
| idx, found := ft.symtab[s] |
| if !found { |
| sf := symFixups{inlIndex: -1, defseen: true, doffsets: doffsets} |
| ft.svec = append(ft.svec, sf) |
| ft.symtab[s] = len(ft.svec) - 1 |
| } else { |
| sf := &ft.svec[idx] |
| sf.doffsets = doffsets |
| sf.defseen = true |
| } |
| } |
| |
| func (ft *DwarfFixupTable) processFixups(slot int, s *LSym) { |
| sf := &ft.svec[slot] |
| for _, f := range sf.fixups { |
| dfound := false |
| for _, doffset := range sf.doffsets { |
| if doffset.dclIdx == f.dclidx { |
| f.refsym.R[f.relidx].Add += int64(doffset.offset) |
| dfound = true |
| break |
| } |
| } |
| if !dfound { |
| ft.ctxt.Diag("internal error: DwarfFixupTable has orphaned fixup on %v targeting %v relidx=%d dclidx=%d", f.refsym, s, f.relidx, f.dclidx) |
| } |
| } |
| } |
| |
| // return the LSym corresponding to the 'abstract subprogram' DWARF |
| // info entry for a function. |
| func (ft *DwarfFixupTable) AbsFuncDwarfSym(fnsym *LSym) *LSym { |
| // Protect against concurrent access if multiple backend workers |
| ft.mu.Lock() |
| defer ft.mu.Unlock() |
| |
| if fnstate, found := ft.precursor[fnsym]; found { |
| return fnstate.absfn |
| } |
| ft.ctxt.Diag("internal error: AbsFuncDwarfSym requested for %v, not seen during inlining", fnsym) |
| return nil |
| } |
| |
| // Called after all functions have been compiled; the main job of this |
| // function is to identify cases where there are outstanding fixups. |
| // This scenario crops up when we have references to variables of an |
| // inlined routine, but that routine is defined in some other package. |
| // This helper walks through and locate these fixups, then invokes a |
| // helper to create an abstract subprogram DIE for each one. |
| func (ft *DwarfFixupTable) Finalize(myimportpath string, trace bool) { |
| if trace { |
| ft.ctxt.Logf("DwarfFixupTable.Finalize invoked for %s\n", myimportpath) |
| } |
| |
| // Collect up the keys from the precursor map, then sort the |
| // resulting list (don't want to rely on map ordering here). |
| fns := make([]*LSym, len(ft.precursor)) |
| idx := 0 |
| for fn := range ft.precursor { |
| fns[idx] = fn |
| idx++ |
| } |
| sort.Sort(BySymName(fns)) |
| |
| // Should not be called during parallel portion of compilation. |
| if ft.ctxt.InParallel { |
| ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize call during parallel backend") |
| } |
| |
| // Generate any missing abstract functions. |
| for _, s := range fns { |
| absfn := ft.AbsFuncDwarfSym(s) |
| slot, found := ft.symtab[absfn] |
| if !found || !ft.svec[slot].defseen { |
| ft.ctxt.GenAbstractFunc(s) |
| } |
| } |
| |
| // Apply fixups. |
| for _, s := range fns { |
| absfn := ft.AbsFuncDwarfSym(s) |
| slot, found := ft.symtab[absfn] |
| if !found { |
| ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize orphan abstract function for %v", s) |
| } else { |
| ft.processFixups(slot, s) |
| } |
| } |
| } |
| |
| type BySymName []*LSym |
| |
| func (s BySymName) Len() int { return len(s) } |
| func (s BySymName) Less(i, j int) bool { return s[i].Name < s[j].Name } |
| func (s BySymName) Swap(i, j int) { s[i], s[j] = s[j], s[i] } |