| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements Float-to-string conversion functions. |
| // It is closely following the corresponding implementation |
| // in strconv/ftoa.go, but modified and simplified for Float. |
| |
| package big |
| |
| import ( |
| "bytes" |
| "fmt" |
| "strconv" |
| ) |
| |
| // Text converts the floating-point number x to a string according |
| // to the given format and precision prec. The format is one of: |
| // |
| // 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits |
| // 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits |
| // 'f' -ddddd.dddd, no exponent |
| // 'g' like 'e' for large exponents, like 'f' otherwise |
| // 'G' like 'E' for large exponents, like 'f' otherwise |
| // 'x' -0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent |
| // 'p' -0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard) |
| // 'b' -ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard) |
| // |
| // For the power-of-two exponent formats, the mantissa is printed in normalized form: |
| // |
| // 'x' hexadecimal mantissa in [1, 2), or 0 |
| // 'p' hexadecimal mantissa in [½, 1), or 0 |
| // 'b' decimal integer mantissa using x.Prec() bits, or 0 |
| // |
| // Note that the 'x' form is the one used by most other languages and libraries. |
| // |
| // If format is a different character, Text returns a "%" followed by the |
| // unrecognized format character. |
| // |
| // The precision prec controls the number of digits (excluding the exponent) |
| // printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats. |
| // For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point. |
| // For 'g' and 'G' it is the total number of digits. A negative precision selects |
| // the smallest number of decimal digits necessary to identify the value x uniquely |
| // using x.Prec() mantissa bits. |
| // The prec value is ignored for the 'b' and 'p' formats. |
| func (x *Float) Text(format byte, prec int) string { |
| cap := 10 // TODO(gri) determine a good/better value here |
| if prec > 0 { |
| cap += prec |
| } |
| return string(x.Append(make([]byte, 0, cap), format, prec)) |
| } |
| |
| // String formats x like x.Text('g', 10). |
| // (String must be called explicitly, Float.Format does not support %s verb.) |
| func (x *Float) String() string { |
| return x.Text('g', 10) |
| } |
| |
| // Append appends to buf the string form of the floating-point number x, |
| // as generated by x.Text, and returns the extended buffer. |
| func (x *Float) Append(buf []byte, fmt byte, prec int) []byte { |
| // sign |
| if x.neg { |
| buf = append(buf, '-') |
| } |
| |
| // Inf |
| if x.form == inf { |
| if !x.neg { |
| buf = append(buf, '+') |
| } |
| return append(buf, "Inf"...) |
| } |
| |
| // pick off easy formats |
| switch fmt { |
| case 'b': |
| return x.fmtB(buf) |
| case 'p': |
| return x.fmtP(buf) |
| case 'x': |
| return x.fmtX(buf, prec) |
| } |
| |
| // Algorithm: |
| // 1) convert Float to multiprecision decimal |
| // 2) round to desired precision |
| // 3) read digits out and format |
| |
| // 1) convert Float to multiprecision decimal |
| var d decimal // == 0.0 |
| if x.form == finite { |
| // x != 0 |
| d.init(x.mant, int(x.exp)-x.mant.bitLen()) |
| } |
| |
| // 2) round to desired precision |
| shortest := false |
| if prec < 0 { |
| shortest = true |
| roundShortest(&d, x) |
| // Precision for shortest representation mode. |
| switch fmt { |
| case 'e', 'E': |
| prec = len(d.mant) - 1 |
| case 'f': |
| prec = max(len(d.mant)-d.exp, 0) |
| case 'g', 'G': |
| prec = len(d.mant) |
| } |
| } else { |
| // round appropriately |
| switch fmt { |
| case 'e', 'E': |
| // one digit before and number of digits after decimal point |
| d.round(1 + prec) |
| case 'f': |
| // number of digits before and after decimal point |
| d.round(d.exp + prec) |
| case 'g', 'G': |
| if prec == 0 { |
| prec = 1 |
| } |
| d.round(prec) |
| } |
| } |
| |
| // 3) read digits out and format |
| switch fmt { |
| case 'e', 'E': |
| return fmtE(buf, fmt, prec, d) |
| case 'f': |
| return fmtF(buf, prec, d) |
| case 'g', 'G': |
| // trim trailing fractional zeros in %e format |
| eprec := prec |
| if eprec > len(d.mant) && len(d.mant) >= d.exp { |
| eprec = len(d.mant) |
| } |
| // %e is used if the exponent from the conversion |
| // is less than -4 or greater than or equal to the precision. |
| // If precision was the shortest possible, use eprec = 6 for |
| // this decision. |
| if shortest { |
| eprec = 6 |
| } |
| exp := d.exp - 1 |
| if exp < -4 || exp >= eprec { |
| if prec > len(d.mant) { |
| prec = len(d.mant) |
| } |
| return fmtE(buf, fmt+'e'-'g', prec-1, d) |
| } |
| if prec > d.exp { |
| prec = len(d.mant) |
| } |
| return fmtF(buf, max(prec-d.exp, 0), d) |
| } |
| |
| // unknown format |
| if x.neg { |
| buf = buf[:len(buf)-1] // sign was added prematurely - remove it again |
| } |
| return append(buf, '%', fmt) |
| } |
| |
| func roundShortest(d *decimal, x *Float) { |
| // if the mantissa is zero, the number is zero - stop now |
| if len(d.mant) == 0 { |
| return |
| } |
| |
| // Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp] |
| // (possibly exclusive) round to x for the given precision of x. |
| // Compute the lower and upper bound in decimal form and find the |
| // shortest decimal number d such that lower <= d <= upper. |
| |
| // TODO(gri) strconv/ftoa.do describes a shortcut in some cases. |
| // See if we can use it (in adjusted form) here as well. |
| |
| // 1) Compute normalized mantissa mant and exponent exp for x such |
| // that the lsb of mant corresponds to 1/2 ulp for the precision of |
| // x (i.e., for mant we want x.prec + 1 bits). |
| mant := nat(nil).set(x.mant) |
| exp := int(x.exp) - mant.bitLen() |
| s := mant.bitLen() - int(x.prec+1) |
| switch { |
| case s < 0: |
| mant = mant.shl(mant, uint(-s)) |
| case s > 0: |
| mant = mant.shr(mant, uint(+s)) |
| } |
| exp += s |
| // x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec |
| |
| // 2) Compute lower bound by subtracting 1/2 ulp. |
| var lower decimal |
| var tmp nat |
| lower.init(tmp.sub(mant, natOne), exp) |
| |
| // 3) Compute upper bound by adding 1/2 ulp. |
| var upper decimal |
| upper.init(tmp.add(mant, natOne), exp) |
| |
| // The upper and lower bounds are possible outputs only if |
| // the original mantissa is even, so that ToNearestEven rounding |
| // would round to the original mantissa and not the neighbors. |
| inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1 |
| |
| // Now we can figure out the minimum number of digits required. |
| // Walk along until d has distinguished itself from upper and lower. |
| for i, m := range d.mant { |
| l := lower.at(i) |
| u := upper.at(i) |
| |
| // Okay to round down (truncate) if lower has a different digit |
| // or if lower is inclusive and is exactly the result of rounding |
| // down (i.e., and we have reached the final digit of lower). |
| okdown := l != m || inclusive && i+1 == len(lower.mant) |
| |
| // Okay to round up if upper has a different digit and either upper |
| // is inclusive or upper is bigger than the result of rounding up. |
| okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant)) |
| |
| // If it's okay to do either, then round to the nearest one. |
| // If it's okay to do only one, do it. |
| switch { |
| case okdown && okup: |
| d.round(i + 1) |
| return |
| case okdown: |
| d.roundDown(i + 1) |
| return |
| case okup: |
| d.roundUp(i + 1) |
| return |
| } |
| } |
| } |
| |
| // %e: d.ddddde±dd |
| func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte { |
| // first digit |
| ch := byte('0') |
| if len(d.mant) > 0 { |
| ch = d.mant[0] |
| } |
| buf = append(buf, ch) |
| |
| // .moredigits |
| if prec > 0 { |
| buf = append(buf, '.') |
| i := 1 |
| m := min(len(d.mant), prec+1) |
| if i < m { |
| buf = append(buf, d.mant[i:m]...) |
| i = m |
| } |
| for ; i <= prec; i++ { |
| buf = append(buf, '0') |
| } |
| } |
| |
| // e± |
| buf = append(buf, fmt) |
| var exp int64 |
| if len(d.mant) > 0 { |
| exp = int64(d.exp) - 1 // -1 because first digit was printed before '.' |
| } |
| if exp < 0 { |
| ch = '-' |
| exp = -exp |
| } else { |
| ch = '+' |
| } |
| buf = append(buf, ch) |
| |
| // dd...d |
| if exp < 10 { |
| buf = append(buf, '0') // at least 2 exponent digits |
| } |
| return strconv.AppendInt(buf, exp, 10) |
| } |
| |
| // %f: ddddddd.ddddd |
| func fmtF(buf []byte, prec int, d decimal) []byte { |
| // integer, padded with zeros as needed |
| if d.exp > 0 { |
| m := min(len(d.mant), d.exp) |
| buf = append(buf, d.mant[:m]...) |
| for ; m < d.exp; m++ { |
| buf = append(buf, '0') |
| } |
| } else { |
| buf = append(buf, '0') |
| } |
| |
| // fraction |
| if prec > 0 { |
| buf = append(buf, '.') |
| for i := 0; i < prec; i++ { |
| buf = append(buf, d.at(d.exp+i)) |
| } |
| } |
| |
| return buf |
| } |
| |
| // fmtB appends the string of x in the format mantissa "p" exponent |
| // with a decimal mantissa and a binary exponent, or 0" if x is zero, |
| // and returns the extended buffer. |
| // The mantissa is normalized such that is uses x.Prec() bits in binary |
| // representation. |
| // The sign of x is ignored, and x must not be an Inf. |
| // (The caller handles Inf before invoking fmtB.) |
| func (x *Float) fmtB(buf []byte) []byte { |
| if x.form == zero { |
| return append(buf, '0') |
| } |
| |
| if debugFloat && x.form != finite { |
| panic("non-finite float") |
| } |
| // x != 0 |
| |
| // adjust mantissa to use exactly x.prec bits |
| m := x.mant |
| switch w := uint32(len(x.mant)) * _W; { |
| case w < x.prec: |
| m = nat(nil).shl(m, uint(x.prec-w)) |
| case w > x.prec: |
| m = nat(nil).shr(m, uint(w-x.prec)) |
| } |
| |
| buf = append(buf, m.utoa(10)...) |
| buf = append(buf, 'p') |
| e := int64(x.exp) - int64(x.prec) |
| if e >= 0 { |
| buf = append(buf, '+') |
| } |
| return strconv.AppendInt(buf, e, 10) |
| } |
| |
| // fmtX appends the string of x in the format "0x1." mantissa "p" exponent |
| // with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero, |
| // and returns the extended buffer. |
| // A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0. |
| // The sign of x is ignored, and x must not be an Inf. |
| // (The caller handles Inf before invoking fmtX.) |
| func (x *Float) fmtX(buf []byte, prec int) []byte { |
| if x.form == zero { |
| buf = append(buf, "0x0"...) |
| if prec > 0 { |
| buf = append(buf, '.') |
| for i := 0; i < prec; i++ { |
| buf = append(buf, '0') |
| } |
| } |
| buf = append(buf, "p+00"...) |
| return buf |
| } |
| |
| if debugFloat && x.form != finite { |
| panic("non-finite float") |
| } |
| |
| // round mantissa to n bits |
| var n uint |
| if prec < 0 { |
| n = 1 + (x.MinPrec()-1+3)/4*4 // round MinPrec up to 1 mod 4 |
| } else { |
| n = 1 + 4*uint(prec) |
| } |
| // n%4 == 1 |
| x = new(Float).SetPrec(n).SetMode(x.mode).Set(x) |
| |
| // adjust mantissa to use exactly n bits |
| m := x.mant |
| switch w := uint(len(x.mant)) * _W; { |
| case w < n: |
| m = nat(nil).shl(m, n-w) |
| case w > n: |
| m = nat(nil).shr(m, w-n) |
| } |
| exp := x.exp - 1 |
| |
| hm := m.utoa(16) |
| if debugFloat && hm[0] != '1' { |
| panic("incorrect mantissa: " + string(hm)) |
| } |
| buf = append(buf, "0x1"...) |
| if len(hm) > 1 { |
| buf = append(buf, '.') |
| buf = append(buf, hm[1:]...) |
| } |
| |
| buf = append(buf, 'p') |
| exp64 := int64(exp) |
| if exp64 >= 0 { |
| buf = append(buf, '+') |
| } else { |
| exp64 = -exp64 |
| buf = append(buf, '-') |
| } |
| // Force at least two exponent digits, to match fmt. |
| if exp64 < 10 { |
| buf = append(buf, '0') |
| } |
| return strconv.AppendInt(buf, exp64, 10) |
| } |
| |
| // fmtP appends the string of x in the format "0x." mantissa "p" exponent |
| // with a hexadecimal mantissa and a binary exponent, or "0" if x is zero, |
| // and returns the extended buffer. |
| // The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0. |
| // The sign of x is ignored, and x must not be an Inf. |
| // (The caller handles Inf before invoking fmtP.) |
| func (x *Float) fmtP(buf []byte) []byte { |
| if x.form == zero { |
| return append(buf, '0') |
| } |
| |
| if debugFloat && x.form != finite { |
| panic("non-finite float") |
| } |
| // x != 0 |
| |
| // remove trailing 0 words early |
| // (no need to convert to hex 0's and trim later) |
| m := x.mant |
| i := 0 |
| for i < len(m) && m[i] == 0 { |
| i++ |
| } |
| m = m[i:] |
| |
| buf = append(buf, "0x."...) |
| buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...) |
| buf = append(buf, 'p') |
| if x.exp >= 0 { |
| buf = append(buf, '+') |
| } |
| return strconv.AppendInt(buf, int64(x.exp), 10) |
| } |
| |
| func min(x, y int) int { |
| if x < y { |
| return x |
| } |
| return y |
| } |
| |
| var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter |
| |
| // Format implements fmt.Formatter. It accepts all the regular |
| // formats for floating-point numbers ('b', 'e', 'E', 'f', 'F', |
| // 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the |
| // interpretation of 'p'. The 'v' format is handled like 'g'. |
| // Format also supports specification of the minimum precision |
| // in digits, the output field width, as well as the format flags |
| // '+' and ' ' for sign control, '0' for space or zero padding, |
| // and '-' for left or right justification. See the fmt package |
| // for details. |
| func (x *Float) Format(s fmt.State, format rune) { |
| prec, hasPrec := s.Precision() |
| if !hasPrec { |
| prec = 6 // default precision for 'e', 'f' |
| } |
| |
| switch format { |
| case 'e', 'E', 'f', 'b', 'p', 'x': |
| // nothing to do |
| case 'F': |
| // (*Float).Text doesn't support 'F'; handle like 'f' |
| format = 'f' |
| case 'v': |
| // handle like 'g' |
| format = 'g' |
| fallthrough |
| case 'g', 'G': |
| if !hasPrec { |
| prec = -1 // default precision for 'g', 'G' |
| } |
| default: |
| fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String()) |
| return |
| } |
| var buf []byte |
| buf = x.Append(buf, byte(format), prec) |
| if len(buf) == 0 { |
| buf = []byte("?") // should never happen, but don't crash |
| } |
| // len(buf) > 0 |
| |
| var sign string |
| switch { |
| case buf[0] == '-': |
| sign = "-" |
| buf = buf[1:] |
| case buf[0] == '+': |
| // +Inf |
| sign = "+" |
| if s.Flag(' ') { |
| sign = " " |
| } |
| buf = buf[1:] |
| case s.Flag('+'): |
| sign = "+" |
| case s.Flag(' '): |
| sign = " " |
| } |
| |
| var padding int |
| if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) { |
| padding = width - len(sign) - len(buf) |
| } |
| |
| switch { |
| case s.Flag('0') && !x.IsInf(): |
| // 0-padding on left |
| writeMultiple(s, sign, 1) |
| writeMultiple(s, "0", padding) |
| s.Write(buf) |
| case s.Flag('-'): |
| // padding on right |
| writeMultiple(s, sign, 1) |
| s.Write(buf) |
| writeMultiple(s, " ", padding) |
| default: |
| // padding on left |
| writeMultiple(s, " ", padding) |
| writeMultiple(s, sign, 1) |
| s.Write(buf) |
| } |
| } |