blob: ffa7daf6b2be7e8f14005625c088a67358df96fb [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// “Abstract” syntax representation.
package ir
import (
"fmt"
"go/constant"
"sort"
"cmd/compile/internal/base"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// A Node is the abstract interface to an IR node.
type Node interface {
// Formatting
Format(s fmt.State, verb rune)
// Source position.
Pos() src.XPos
SetPos(x src.XPos)
// For making copies. For Copy and SepCopy.
copy() Node
doChildren(func(Node) bool) bool
editChildren(func(Node) Node)
// Abstract graph structure, for generic traversals.
Op() Op
Init() Nodes
// Fields specific to certain Ops only.
Type() *types.Type
SetType(t *types.Type)
Name() *Name
Sym() *types.Sym
Val() constant.Value
SetVal(v constant.Value)
// Storage for analysis passes.
Esc() uint16
SetEsc(x uint16)
Diag() bool
SetDiag(x bool)
Typecheck() uint8
SetTypecheck(x uint8)
NonNil() bool
MarkNonNil()
}
// Line returns n's position as a string. If n has been inlined,
// it uses the outermost position where n has been inlined.
func Line(n Node) string {
return base.FmtPos(n.Pos())
}
func IsSynthetic(n Node) bool {
name := n.Sym().Name
return name[0] == '.' || name[0] == '~'
}
// IsAutoTmp indicates if n was created by the compiler as a temporary,
// based on the setting of the .AutoTemp flag in n's Name.
func IsAutoTmp(n Node) bool {
if n == nil || n.Op() != ONAME {
return false
}
return n.Name().AutoTemp()
}
// mayBeShared reports whether n may occur in multiple places in the AST.
// Extra care must be taken when mutating such a node.
func MayBeShared(n Node) bool {
switch n.Op() {
case ONAME, OLITERAL, ONIL, OTYPE:
return true
}
return false
}
type InitNode interface {
Node
PtrInit() *Nodes
SetInit(x Nodes)
}
func TakeInit(n Node) Nodes {
init := n.Init()
if len(init) != 0 {
n.(InitNode).SetInit(nil)
}
return init
}
//go:generate stringer -type=Op -trimprefix=O node.go
type Op uint8
// Node ops.
const (
OXXX Op = iota
// names
ONAME // var or func name
// Unnamed arg or return value: f(int, string) (int, error) { etc }
// Also used for a qualified package identifier that hasn't been resolved yet.
ONONAME
OTYPE // type name
OPACK // import
OLITERAL // literal
ONIL // nil
// expressions
OADD // Left + Right
OSUB // Left - Right
OOR // Left | Right
OXOR // Left ^ Right
OADDSTR // +{List} (string addition, list elements are strings)
OADDR // &Left
OANDAND // Left && Right
OAPPEND // append(List); after walk, Left may contain elem type descriptor
OBYTES2STR // Type(Left) (Type is string, Left is a []byte)
OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
ORUNES2STR // Type(Left) (Type is string, Left is a []rune)
OSTR2BYTES // Type(Left) (Type is []byte, Left is a string)
OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
OSTR2RUNES // Type(Left) (Type is []rune, Left is a string)
// Left = Right or (if Colas=true) Left := Right
// If Colas, then Ninit includes a DCL node for Left.
OAS
// List = Rlist (x, y, z = a, b, c) or (if Colas=true) List := Rlist
// If Colas, then Ninit includes DCL nodes for List
OAS2
OAS2DOTTYPE // List = Right (x, ok = I.(int))
OAS2FUNC // List = Right (x, y = f())
OAS2MAPR // List = Right (x, ok = m["foo"])
OAS2RECV // List = Right (x, ok = <-c)
OASOP // Left Etype= Right (x += y)
OCALL // Left(List) (function call, method call or type conversion)
// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
// Prior to walk, they are: Left(List), where List is all regular arguments.
// After walk, List is a series of assignments to temporaries,
// and Rlist is an updated set of arguments.
// Nbody is all OVARLIVE nodes that are attached to OCALLxxx.
// TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
OCALLFUNC // Left(List/Rlist) (function call f(args))
OCALLMETH // Left(List/Rlist) (direct method call x.Method(args))
OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
OCALLPART // Left.Right (method expression x.Method, not called)
OCAP // cap(Left)
OCLOSE // close(Left)
OCLOSURE // func Type { Func.Closure.Nbody } (func literal)
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
OMAPLIT // Type{List} (composite literal, Type is map)
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
OARRAYLIT // Type{List} (composite literal, Type is array)
OSLICELIT // Type{List} (composite literal, Type is slice) Right.Int64() = slice length.
OPTRLIT // &Left (left is composite literal)
OCONV // Type(Left) (type conversion)
OCONVIFACE // Type(Left) (type conversion, to interface)
OCONVNOP // Type(Left) (type conversion, no effect)
OCOPY // copy(Left, Right)
ODCL // var Left (declares Left of type Left.Type)
// Used during parsing but don't last.
ODCLFUNC // func f() or func (r) f()
ODCLCONST // const pi = 3.14
ODCLTYPE // type Int int or type Int = int
ODELETE // delete(List)
ODOT // Left.Sym (Left is of struct type)
ODOTPTR // Left.Sym (Left is of pointer to struct type)
ODOTMETH // Left.Sym (Left is non-interface, Right is method name)
ODOTINTER // Left.Sym (Left is interface, Right is method name)
OXDOT // Left.Sym (before rewrite to one of the preceding)
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
OEQ // Left == Right
ONE // Left != Right
OLT // Left < Right
OLE // Left <= Right
OGE // Left >= Right
OGT // Left > Right
ODEREF // *Left
OINDEX // Left[Right] (index of array or slice)
OINDEXMAP // Left[Right] (index of map)
OKEY // Left:Right (key:value in struct/array/map literal)
OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
OLEN // len(Left)
OMAKE // make(List) (before type checking converts to one of the following)
OMAKECHAN // make(Type, Left) (type is chan)
OMAKEMAP // make(Type, Left) (type is map)
OMAKESLICE // make(Type, Left, Right) (type is slice)
OMAKESLICECOPY // makeslicecopy(Type, Left, Right) (type is slice; Left is length and Right is the copied from slice)
// OMAKESLICECOPY is created by the order pass and corresponds to:
// s = make(Type, Left); copy(s, Right)
//
// Bounded can be set on the node when Left == len(Right) is known at compile time.
//
// This node is created so the walk pass can optimize this pattern which would
// otherwise be hard to detect after the order pass.
OMUL // Left * Right
ODIV // Left / Right
OMOD // Left % Right
OLSH // Left << Right
ORSH // Left >> Right
OAND // Left & Right
OANDNOT // Left &^ Right
ONEW // new(Left); corresponds to calls to new in source code
ONOT // !Left
OBITNOT // ^Left
OPLUS // +Left
ONEG // -Left
OOROR // Left || Right
OPANIC // panic(Left)
OPRINT // print(List)
OPRINTN // println(List)
OPAREN // (Left)
OSEND // Left <- Right
OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice)
OSLICEARR // Left[List[0] : List[1]] (Left is pointer to array)
OSLICESTR // Left[List[0] : List[1]] (Left is string)
OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is pointer to array)
OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
ORECOVER // recover()
ORECV // <-Left
ORUNESTR // Type(Left) (Type is string, Left is rune)
OSELRECV2 // like OAS2: List = Rlist where len(List)=2, len(Rlist)=1, Rlist[0].Op = ORECV (appears as .Left of OCASE)
OIOTA // iota
OREAL // real(Left)
OIMAG // imag(Left)
OCOMPLEX // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call
OALIGNOF // unsafe.Alignof(Left)
OOFFSETOF // unsafe.Offsetof(Left)
OSIZEOF // unsafe.Sizeof(Left)
OMETHEXPR // method expression
OSTMTEXPR // statement expression (Init; Left)
// statements
OBLOCK // { List } (block of code)
OBREAK // break [Sym]
// OCASE: case List: Nbody (List==nil means default)
// For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL
// for nil), and, if a type-switch variable is specified, Rlist is an
// ONAME for the version of the type-switch variable with the specified
// type.
OCASE
OCONTINUE // continue [Sym]
ODEFER // defer Left (Left must be call)
OFALL // fallthrough
OFOR // for Ninit; Left; Right { Nbody }
// OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
// Ninit
// top: { Nbody } // Execute the body at least once
// cont: Right
// if Left { // And then test the loop condition
// List // Before looping to top, execute List
// goto top
// }
// OFORUNTIL is created by walk. There's no way to write this in Go code.
OFORUNTIL
OGOTO // goto Sym
OIF // if Ninit; Left { Nbody } else { Rlist }
OLABEL // Sym:
OGO // go Left (Left must be call)
ORANGE // for List = range Right { Nbody }
ORETURN // return List
OSELECT // select { List } (List is list of OCASE)
OSWITCH // switch Ninit; Left { List } (List is a list of OCASE)
// OTYPESW: Left := Right.(type) (appears as .Left of OSWITCH)
// Left is nil if there is no type-switch variable
OTYPESW
// types
OTCHAN // chan int
OTMAP // map[string]int
OTSTRUCT // struct{}
OTINTER // interface{}
// OTFUNC: func() - Left is receiver field, List is list of param fields, Rlist is
// list of result fields.
OTFUNC
OTARRAY // [8]int or [...]int
OTSLICE // []int
// misc
// intermediate representation of an inlined call. Uses Init (assignments
// for the captured variables, parameters, retvars, & INLMARK op),
// Body (body of the inlined function), and ReturnVars (list of
// return values)
OINLCALL // intermediary representation of an inlined call.
OEFACE // itable and data words of an empty-interface value.
OITAB // itable word of an interface value.
OIDATA // data word of an interface value in Left
OSPTR // base pointer of a slice or string.
OCFUNC // reference to c function pointer (not go func value)
OCHECKNIL // emit code to ensure pointer/interface not nil
OVARDEF // variable is about to be fully initialized
OVARKILL // variable is dead
OVARLIVE // variable is alive
ORESULT // result of a function call; Xoffset is stack offset
OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
OLINKSYMOFFSET // offset within a name
// arch-specific opcodes
OTAILCALL // tail call to another function
OGETG // runtime.getg() (read g pointer)
OEND
)
// Nodes is a pointer to a slice of *Node.
// For fields that are not used in most nodes, this is used instead of
// a slice to save space.
type Nodes []Node
// Append appends entries to Nodes.
func (n *Nodes) Append(a ...Node) {
if len(a) == 0 {
return
}
*n = append(*n, a...)
}
// Prepend prepends entries to Nodes.
// If a slice is passed in, this will take ownership of it.
func (n *Nodes) Prepend(a ...Node) {
if len(a) == 0 {
return
}
*n = append(a, *n...)
}
// Take clears n, returning its former contents.
func (n *Nodes) Take() []Node {
ret := *n
*n = nil
return ret
}
// Copy returns a copy of the content of the slice.
func (n Nodes) Copy() Nodes {
if n == nil {
return nil
}
c := make(Nodes, len(n))
copy(c, n)
return c
}
// NameQueue is a FIFO queue of *Name. The zero value of NameQueue is
// a ready-to-use empty queue.
type NameQueue struct {
ring []*Name
head, tail int
}
// Empty reports whether q contains no Names.
func (q *NameQueue) Empty() bool {
return q.head == q.tail
}
// PushRight appends n to the right of the queue.
func (q *NameQueue) PushRight(n *Name) {
if len(q.ring) == 0 {
q.ring = make([]*Name, 16)
} else if q.head+len(q.ring) == q.tail {
// Grow the ring.
nring := make([]*Name, len(q.ring)*2)
// Copy the old elements.
part := q.ring[q.head%len(q.ring):]
if q.tail-q.head <= len(part) {
part = part[:q.tail-q.head]
copy(nring, part)
} else {
pos := copy(nring, part)
copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
}
q.ring, q.head, q.tail = nring, 0, q.tail-q.head
}
q.ring[q.tail%len(q.ring)] = n
q.tail++
}
// PopLeft pops a Name from the left of the queue. It panics if q is
// empty.
func (q *NameQueue) PopLeft() *Name {
if q.Empty() {
panic("dequeue empty")
}
n := q.ring[q.head%len(q.ring)]
q.head++
return n
}
// NameSet is a set of Names.
type NameSet map[*Name]struct{}
// Has reports whether s contains n.
func (s NameSet) Has(n *Name) bool {
_, isPresent := s[n]
return isPresent
}
// Add adds n to s.
func (s *NameSet) Add(n *Name) {
if *s == nil {
*s = make(map[*Name]struct{})
}
(*s)[n] = struct{}{}
}
// Sorted returns s sorted according to less.
func (s NameSet) Sorted(less func(*Name, *Name) bool) []*Name {
var res []*Name
for n := range s {
res = append(res, n)
}
sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
return res
}
type PragmaFlag int16
const (
// Func pragmas.
Nointerface PragmaFlag = 1 << iota
Noescape // func parameters don't escape
Norace // func must not have race detector annotations
Nosplit // func should not execute on separate stack
Noinline // func should not be inlined
NoCheckPtr // func should not be instrumented by checkptr
CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all
UintptrEscapes // pointers converted to uintptr escape
// Runtime-only func pragmas.
// See ../../../../runtime/README.md for detailed descriptions.
Systemstack // func must run on system stack
Nowritebarrier // emit compiler error instead of write barrier
Nowritebarrierrec // error on write barrier in this or recursive callees
Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees
// Runtime and cgo type pragmas
NotInHeap // values of this type must not be heap allocated
// Go command pragmas
GoBuildPragma
RegisterParams // TODO remove after register abi is working
)
func AsNode(n types.Object) Node {
if n == nil {
return nil
}
return n.(Node)
}
var BlankNode Node
func IsConst(n Node, ct constant.Kind) bool {
return ConstType(n) == ct
}
// isNil reports whether n represents the universal untyped zero value "nil".
func IsNil(n Node) bool {
// Check n.Orig because constant propagation may produce typed nil constants,
// which don't exist in the Go spec.
return n != nil && Orig(n).Op() == ONIL
}
func IsBlank(n Node) bool {
if n == nil {
return false
}
return n.Sym().IsBlank()
}
// IsMethod reports whether n is a method.
// n must be a function or a method.
func IsMethod(n Node) bool {
return n.Type().Recv() != nil
}
func HasNamedResults(fn *Func) bool {
typ := fn.Type()
return typ.NumResults() > 0 && types.OrigSym(typ.Results().Field(0).Sym) != nil
}
// HasUniquePos reports whether n has a unique position that can be
// used for reporting error messages.
//
// It's primarily used to distinguish references to named objects,
// whose Pos will point back to their declaration position rather than
// their usage position.
func HasUniquePos(n Node) bool {
switch n.Op() {
case ONAME, OPACK:
return false
case OLITERAL, ONIL, OTYPE:
if n.Sym() != nil {
return false
}
}
if !n.Pos().IsKnown() {
if base.Flag.K != 0 {
base.Warn("setlineno: unknown position (line 0)")
}
return false
}
return true
}
func SetPos(n Node) src.XPos {
lno := base.Pos
if n != nil && HasUniquePos(n) {
base.Pos = n.Pos()
}
return lno
}
// The result of InitExpr MUST be assigned back to n, e.g.
// n.Left = InitExpr(init, n.Left)
func InitExpr(init []Node, expr Node) Node {
if len(init) == 0 {
return expr
}
n, ok := expr.(InitNode)
if !ok || MayBeShared(n) {
// Introduce OCONVNOP to hold init list.
n = NewConvExpr(base.Pos, OCONVNOP, nil, expr)
n.SetType(expr.Type())
n.SetTypecheck(1)
}
n.PtrInit().Prepend(init...)
return n
}
// what's the outer value that a write to n affects?
// outer value means containing struct or array.
func OuterValue(n Node) Node {
for {
switch nn := n; nn.Op() {
case OXDOT:
base.Fatalf("OXDOT in walk")
case ODOT:
nn := nn.(*SelectorExpr)
n = nn.X
continue
case OPAREN:
nn := nn.(*ParenExpr)
n = nn.X
continue
case OCONVNOP:
nn := nn.(*ConvExpr)
n = nn.X
continue
case OINDEX:
nn := nn.(*IndexExpr)
if nn.X.Type() == nil {
base.Fatalf("OuterValue needs type for %v", nn.X)
}
if nn.X.Type().IsArray() {
n = nn.X
continue
}
}
return n
}
}
const (
EscUnknown = iota
EscNone // Does not escape to heap, result, or parameters.
EscHeap // Reachable from the heap
EscNever // By construction will not escape.
)