|  | // Copyright 2021 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package runtime_test | 
|  |  | 
|  | import ( | 
|  | "fmt" | 
|  | "math" | 
|  | "math/rand" | 
|  | . "runtime" | 
|  | "testing" | 
|  | "time" | 
|  | ) | 
|  |  | 
|  | func TestGcPacer(t *testing.T) { | 
|  | t.Parallel() | 
|  |  | 
|  | const initialHeapBytes = 256 << 10 | 
|  | for _, e := range []*gcExecTest{ | 
|  | { | 
|  | // The most basic test case: a steady-state heap. | 
|  | // Growth to an O(MiB) heap, then constant heap size, alloc/scan rates. | 
|  | name:          "Steady", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(33.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n >= 25 { | 
|  | // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  |  | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // Same as the steady-state case, but lots of stacks to scan relative to the heap size. | 
|  | name:          "SteadyBigStacks", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(132.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(2048).sum(ramp(128<<20, 8)), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | // Check the same conditions as the steady-state case, except the old pacer can't | 
|  | // really handle this well, so don't check the goal ratio for it. | 
|  | n := len(c) | 
|  | if n >= 25 { | 
|  | // For the pacer redesign, assert something even stronger: at this alloc/scan rate, | 
|  | // it should be extremely close to the goal utilization. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  |  | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // Same as the steady-state case, but lots of globals to scan relative to the heap size. | 
|  | name:          "SteadyBigGlobals", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  128 << 20, | 
|  | nCores:        8, | 
|  | allocRate:     constant(132.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | // Check the same conditions as the steady-state case, except the old pacer can't | 
|  | // really handle this well, so don't check the goal ratio for it. | 
|  | n := len(c) | 
|  | if n >= 25 { | 
|  | // For the pacer redesign, assert something even stronger: at this alloc/scan rate, | 
|  | // it should be extremely close to the goal utilization. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  |  | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This tests the GC pacer's response to a small change in allocation rate. | 
|  | name:          "StepAlloc", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(33.0).sum(ramp(66.0, 1).delay(50)), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        100, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if (n >= 25 && n < 50) || n >= 75 { | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles | 
|  | // and then is able to settle again after a significant jump in allocation rate. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This tests the GC pacer's response to a large change in allocation rate. | 
|  | name:          "HeavyStepAlloc", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(33).sum(ramp(330, 1).delay(50)), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        100, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if (n >= 25 && n < 50) || n >= 75 { | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles | 
|  | // and then is able to settle again after a significant jump in allocation rate. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This tests the GC pacer's response to a change in the fraction of the scannable heap. | 
|  | name:          "StepScannableFrac", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(128.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12)), | 
|  | scannableFrac: constant(0.2).sum(unit(0.5).delay(50)), | 
|  | stackBytes:    constant(8192), | 
|  | length:        100, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if (n >= 25 && n < 50) || n >= 75 { | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles | 
|  | // and then is able to settle again after a significant jump in allocation rate. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // Tests the pacer for a high GOGC value with a large heap growth happening | 
|  | // in the middle. The purpose of the large heap growth is to check if GC | 
|  | // utilization ends up sensitive | 
|  | name:          "HighGOGC", | 
|  | gcPercent:     1500, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     random(7, 0x53).offset(165), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12), random(0.01, 0x1), unit(14).delay(25)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n > 12 { | 
|  | if n == 26 { | 
|  | // In the 26th cycle there's a heap growth. Overshoot is expected to maintain | 
|  | // a stable utilization, but we should *never* overshoot more than GOGC of | 
|  | // the next cycle. | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.90, 15) | 
|  | } else { | 
|  | // Give a wider goal range here. With such a high GOGC value we're going to be | 
|  | // forced to undershoot. | 
|  | // | 
|  | // TODO(mknyszek): Instead of placing a 0.95 limit on the trigger, make the limit | 
|  | // based on absolute bytes, that's based somewhat in how the minimum heap size | 
|  | // is determined. | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.90, 1.05) | 
|  | } | 
|  |  | 
|  | // Ensure utilization remains stable despite a growth in live heap size | 
|  | // at GC #25. This test fails prior to the GC pacer redesign. | 
|  | // | 
|  | // Because GOGC is so large, we should also be really close to the goal utilization. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, GCGoalUtilization+0.03) | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.03) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This test makes sure that in the face of a varying (in this case, oscillating) allocation | 
|  | // rate, the pacer does a reasonably good job of staying abreast of the changes. | 
|  | name:          "OscAlloc", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     oscillate(13, 0, 8).offset(67), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n > 12 { | 
|  | // After the 12th GC, the heap will stop growing. Now, just make sure that: | 
|  | // 1. Utilization isn't varying _too_ much, and | 
|  | // 2. The pacer is mostly keeping up with the goal. | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | assertInRange(t, "GC utilization", c[n-1].gcUtilization, 0.25, 0.3) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This test is the same as OscAlloc, but instead of oscillating, the allocation rate is jittery. | 
|  | name:          "JitterAlloc", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     random(13, 0xf).offset(132), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12), random(0.01, 0xe)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n > 12 { | 
|  | // After the 12th GC, the heap will stop growing. Now, just make sure that: | 
|  | // 1. Utilization isn't varying _too_ much, and | 
|  | // 2. The pacer is mostly keeping up with the goal. | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.025) | 
|  | assertInRange(t, "GC utilization", c[n-1].gcUtilization, 0.25, 0.275) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This test is the same as JitterAlloc, but with a much higher allocation rate. | 
|  | // The jitter is proportionally the same. | 
|  | name:          "HeavyJitterAlloc", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     random(33.0, 0x0).offset(330), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12), random(0.01, 0x152)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n > 13 { | 
|  | // After the 12th GC, the heap will stop growing. Now, just make sure that: | 
|  | // 1. Utilization isn't varying _too_ much, and | 
|  | // 2. The pacer is mostly keeping up with the goal. | 
|  | // We start at the 13th here because we want to use the 12th as a reference. | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | // Unlike the other tests, GC utilization here will vary more and tend higher. | 
|  | // Just make sure it's not going too crazy. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.05) | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[11].gcUtilization, 0.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This test sets a slow allocation rate and a small heap (close to the minimum heap size) | 
|  | // to try to minimize the difference between the trigger and the goal. | 
|  | name:          "SmallHeapSlowAlloc", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(1.0), | 
|  | scanRate:      constant(2048.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 3)), | 
|  | scannableFrac: constant(0.01), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n > 4 { | 
|  | // After the 4th GC, the heap will stop growing. | 
|  | // First, let's make sure we're finishing near the goal, with some extra | 
|  | // room because we're probably going to be triggering early. | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.925, 1.025) | 
|  | // Next, let's make sure there's some minimum distance between the goal | 
|  | // and the trigger. It should be proportional to the runway (hence the | 
|  | // trigger ratio check, instead of a check against the runway). | 
|  | assertInRange(t, "trigger ratio", c[n-1].triggerRatio(), 0.925, 0.975) | 
|  | } | 
|  | if n > 25 { | 
|  | // Double-check that GC utilization looks OK. | 
|  |  | 
|  | // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  | // Make sure GC utilization has mostly levelled off. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.05) | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[11].gcUtilization, 0.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This test sets a slow allocation rate and a medium heap (around 10x the min heap size) | 
|  | // to try to minimize the difference between the trigger and the goal. | 
|  | name:          "MediumHeapSlowAlloc", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(1.0), | 
|  | scanRate:      constant(2048.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 8)), | 
|  | scannableFrac: constant(0.01), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n > 9 { | 
|  | // After the 4th GC, the heap will stop growing. | 
|  | // First, let's make sure we're finishing near the goal, with some extra | 
|  | // room because we're probably going to be triggering early. | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.925, 1.025) | 
|  | // Next, let's make sure there's some minimum distance between the goal | 
|  | // and the trigger. It should be proportional to the runway (hence the | 
|  | // trigger ratio check, instead of a check against the runway). | 
|  | assertInRange(t, "trigger ratio", c[n-1].triggerRatio(), 0.925, 0.975) | 
|  | } | 
|  | if n > 25 { | 
|  | // Double-check that GC utilization looks OK. | 
|  |  | 
|  | // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  | // Make sure GC utilization has mostly levelled off. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.05) | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[11].gcUtilization, 0.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This test sets a slow allocation rate and a large heap to try to minimize the | 
|  | // difference between the trigger and the goal. | 
|  | name:          "LargeHeapSlowAlloc", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   math.MaxInt64, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(1.0), | 
|  | scanRate:      constant(2048.0), | 
|  | growthRate:    constant(4.0).sum(ramp(-3.0, 12)), | 
|  | scannableFrac: constant(0.01), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n > 13 { | 
|  | // After the 4th GC, the heap will stop growing. | 
|  | // First, let's make sure we're finishing near the goal. | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | // Next, let's make sure there's some minimum distance between the goal | 
|  | // and the trigger. It should be around the default minimum heap size. | 
|  | assertInRange(t, "runway", c[n-1].runway(), DefaultHeapMinimum-64<<10, DefaultHeapMinimum+64<<10) | 
|  | } | 
|  | if n > 25 { | 
|  | // Double-check that GC utilization looks OK. | 
|  |  | 
|  | // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  | // Make sure GC utilization has mostly levelled off. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.05) | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[11].gcUtilization, 0.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // The most basic test case with a memory limit: a steady-state heap. | 
|  | // Growth to an O(MiB) heap, then constant heap size, alloc/scan rates. | 
|  | // Provide a lot of room for the limit. Essentially, this should behave just like | 
|  | // the "Steady" test. Note that we don't simulate non-heap overheads, so the | 
|  | // memory limit and the heap limit are identical. | 
|  | name:          "SteadyMemoryLimit", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   512 << 20, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(33.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if peak := c[n-1].heapPeak; peak >= applyMemoryLimitHeapGoalHeadroom(512<<20) { | 
|  | t.Errorf("peak heap size reaches heap limit: %d", peak) | 
|  | } | 
|  | if n >= 25 { | 
|  | // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  |  | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This is the same as the previous test, but gcPercent = -1, so the heap *should* grow | 
|  | // all the way to the peak. | 
|  | name:          "SteadyMemoryLimitNoGCPercent", | 
|  | gcPercent:     -1, | 
|  | memoryLimit:   512 << 20, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(33.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(2.0).sum(ramp(-1.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if goal := c[n-1].heapGoal; goal != applyMemoryLimitHeapGoalHeadroom(512<<20) { | 
|  | t.Errorf("heap goal is not the heap limit: %d", goal) | 
|  | } | 
|  | if n >= 25 { | 
|  | // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  |  | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This test ensures that the pacer doesn't fall over even when the live heap exceeds | 
|  | // the memory limit. It also makes sure GC utilization actually rises to push back. | 
|  | name:          "ExceedMemoryLimit", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   512 << 20, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(33.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(3.5).sum(ramp(-2.5, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n > 12 { | 
|  | // We're way over the memory limit, so we want to make sure our goal is set | 
|  | // as low as it possibly can be. | 
|  | if goal, live := c[n-1].heapGoal, c[n-1].heapLive; goal != live { | 
|  | t.Errorf("heap goal is not equal to live heap: %d != %d", goal, live) | 
|  | } | 
|  | } | 
|  | if n >= 25 { | 
|  | // Due to memory pressure, we should scale to 100% GC CPU utilization. | 
|  | // Note that in practice this won't actually happen because of the CPU limiter, | 
|  | // but it's not the pacer's job to limit CPU usage. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, 1.0, 0.005) | 
|  |  | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. | 
|  | // In this case, that just means it's not wavering around a whole bunch. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // Same as the previous test, but with gcPercent = -1. | 
|  | name:          "ExceedMemoryLimitNoGCPercent", | 
|  | gcPercent:     -1, | 
|  | memoryLimit:   512 << 20, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(33.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(3.5).sum(ramp(-2.5, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n < 10 { | 
|  | if goal := c[n-1].heapGoal; goal != applyMemoryLimitHeapGoalHeadroom(512<<20) { | 
|  | t.Errorf("heap goal is not the heap limit: %d", goal) | 
|  | } | 
|  | } | 
|  | if n > 12 { | 
|  | // We're way over the memory limit, so we want to make sure our goal is set | 
|  | // as low as it possibly can be. | 
|  | if goal, live := c[n-1].heapGoal, c[n-1].heapLive; goal != live { | 
|  | t.Errorf("heap goal is not equal to live heap: %d != %d", goal, live) | 
|  | } | 
|  | } | 
|  | if n >= 25 { | 
|  | // Due to memory pressure, we should scale to 100% GC CPU utilization. | 
|  | // Note that in practice this won't actually happen because of the CPU limiter, | 
|  | // but it's not the pacer's job to limit CPU usage. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, 1.0, 0.005) | 
|  |  | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. | 
|  | // In this case, that just means it's not wavering around a whole bunch. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // This test ensures that the pacer maintains the memory limit as the heap grows. | 
|  | name:          "MaintainMemoryLimit", | 
|  | gcPercent:     100, | 
|  | memoryLimit:   512 << 20, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(33.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(3.0).sum(ramp(-2.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if n > 12 { | 
|  | // We're trying to saturate the memory limit. | 
|  | if goal := c[n-1].heapGoal; goal != applyMemoryLimitHeapGoalHeadroom(512<<20) { | 
|  | t.Errorf("heap goal is not the heap limit: %d", goal) | 
|  | } | 
|  | } | 
|  | if n >= 25 { | 
|  | // At this alloc/scan rate, the pacer should be extremely close to the goal utilization, | 
|  | // even with the additional memory pressure. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  |  | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles and | 
|  | // that it's meeting its goal. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | { | 
|  | // Same as the previous test, but with gcPercent = -1. | 
|  | name:          "MaintainMemoryLimitNoGCPercent", | 
|  | gcPercent:     -1, | 
|  | memoryLimit:   512 << 20, | 
|  | globalsBytes:  32 << 10, | 
|  | nCores:        8, | 
|  | allocRate:     constant(33.0), | 
|  | scanRate:      constant(1024.0), | 
|  | growthRate:    constant(3.0).sum(ramp(-2.0, 12)), | 
|  | scannableFrac: constant(1.0), | 
|  | stackBytes:    constant(8192), | 
|  | length:        50, | 
|  | checker: func(t *testing.T, c []gcCycleResult) { | 
|  | n := len(c) | 
|  | if goal := c[n-1].heapGoal; goal != applyMemoryLimitHeapGoalHeadroom(512<<20) { | 
|  | t.Errorf("heap goal is not the heap limit: %d", goal) | 
|  | } | 
|  | if n >= 25 { | 
|  | // At this alloc/scan rate, the pacer should be extremely close to the goal utilization, | 
|  | // even with the additional memory pressure. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) | 
|  |  | 
|  | // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles and | 
|  | // that it's meeting its goal. | 
|  | assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) | 
|  | assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) | 
|  | } | 
|  | }, | 
|  | }, | 
|  | // TODO(mknyszek): Write a test that exercises the pacer's hard goal. | 
|  | // This is difficult in the idealized model this testing framework places | 
|  | // the pacer in, because the calculated overshoot is directly proportional | 
|  | // to the runway for the case of the expected work. | 
|  | // However, it is still possible to trigger this case if something exceptional | 
|  | // happens between calls to revise; the framework just doesn't support this yet. | 
|  | } { | 
|  | e := e | 
|  | t.Run(e.name, func(t *testing.T) { | 
|  | t.Parallel() | 
|  |  | 
|  | c := NewGCController(e.gcPercent, e.memoryLimit) | 
|  | var bytesAllocatedBlackLast int64 | 
|  | results := make([]gcCycleResult, 0, e.length) | 
|  | for i := 0; i < e.length; i++ { | 
|  | cycle := e.next() | 
|  | c.StartCycle(cycle.stackBytes, e.globalsBytes, cycle.scannableFrac, e.nCores) | 
|  |  | 
|  | // Update pacer incrementally as we complete scan work. | 
|  | const ( | 
|  | revisePeriod = 500 * time.Microsecond | 
|  | rateConv     = 1024 * float64(revisePeriod) / float64(time.Millisecond) | 
|  | ) | 
|  | var nextHeapMarked int64 | 
|  | if i == 0 { | 
|  | nextHeapMarked = initialHeapBytes | 
|  | } else { | 
|  | nextHeapMarked = int64(float64(int64(c.HeapMarked())-bytesAllocatedBlackLast) * cycle.growthRate) | 
|  | } | 
|  | globalsScanWorkLeft := int64(e.globalsBytes) | 
|  | stackScanWorkLeft := int64(cycle.stackBytes) | 
|  | heapScanWorkLeft := int64(float64(nextHeapMarked) * cycle.scannableFrac) | 
|  | doWork := func(work int64) (int64, int64, int64) { | 
|  | var deltas [3]int64 | 
|  |  | 
|  | // Do globals work first, then stacks, then heap. | 
|  | for i, workLeft := range []*int64{&globalsScanWorkLeft, &stackScanWorkLeft, &heapScanWorkLeft} { | 
|  | if *workLeft == 0 { | 
|  | continue | 
|  | } | 
|  | if *workLeft > work { | 
|  | deltas[i] += work | 
|  | *workLeft -= work | 
|  | work = 0 | 
|  | break | 
|  | } else { | 
|  | deltas[i] += *workLeft | 
|  | work -= *workLeft | 
|  | *workLeft = 0 | 
|  | } | 
|  | } | 
|  | return deltas[0], deltas[1], deltas[2] | 
|  | } | 
|  | var ( | 
|  | gcDuration          int64 | 
|  | assistTime          int64 | 
|  | bytesAllocatedBlack int64 | 
|  | ) | 
|  | for heapScanWorkLeft+stackScanWorkLeft+globalsScanWorkLeft > 0 { | 
|  | // Simulate GC assist pacing. | 
|  | // | 
|  | // Note that this is an idealized view of the GC assist pacing | 
|  | // mechanism. | 
|  |  | 
|  | // From the assist ratio and the alloc and scan rates, we can idealize what | 
|  | // the GC CPU utilization looks like. | 
|  | // | 
|  | // We start with assistRatio = (bytes of scan work) / (bytes of runway) (by definition). | 
|  | // | 
|  | // Over revisePeriod, we can also calculate how many bytes are scanned and | 
|  | // allocated, given some GC CPU utilization u: | 
|  | // | 
|  | //     bytesScanned   = scanRate  * rateConv * nCores * u | 
|  | //     bytesAllocated = allocRate * rateConv * nCores * (1 - u) | 
|  | // | 
|  | // During revisePeriod, assistRatio is kept constant, and GC assists kick in to | 
|  | // maintain it. Specifically, they act to prevent too many bytes being allocated | 
|  | // compared to how many bytes are scanned. It directly defines the ratio of | 
|  | // bytesScanned to bytesAllocated over this period, hence: | 
|  | // | 
|  | //     assistRatio = bytesScanned / bytesAllocated | 
|  | // | 
|  | // From this, we can solve for utilization, because everything else has already | 
|  | // been determined: | 
|  | // | 
|  | //     assistRatio = (scanRate * rateConv * nCores * u) / (allocRate * rateConv * nCores * (1 - u)) | 
|  | //     assistRatio = (scanRate * u) / (allocRate * (1 - u)) | 
|  | //     assistRatio * allocRate * (1-u) = scanRate * u | 
|  | //     assistRatio * allocRate - assistRatio * allocRate * u = scanRate * u | 
|  | //     assistRatio * allocRate = assistRatio * allocRate * u + scanRate * u | 
|  | //     assistRatio * allocRate = (assistRatio * allocRate + scanRate) * u | 
|  | //     u = (assistRatio * allocRate) / (assistRatio * allocRate + scanRate) | 
|  | // | 
|  | // Note that this may give a utilization that is _less_ than GCBackgroundUtilization, | 
|  | // which isn't possible in practice because of dedicated workers. Thus, this case | 
|  | // must be interpreted as GC assists not kicking in at all, and just round up. All | 
|  | // downstream values will then have this accounted for. | 
|  | assistRatio := c.AssistWorkPerByte() | 
|  | utilization := assistRatio * cycle.allocRate / (assistRatio*cycle.allocRate + cycle.scanRate) | 
|  | if utilization < GCBackgroundUtilization { | 
|  | utilization = GCBackgroundUtilization | 
|  | } | 
|  |  | 
|  | // Knowing the utilization, calculate bytesScanned and bytesAllocated. | 
|  | bytesScanned := int64(cycle.scanRate * rateConv * float64(e.nCores) * utilization) | 
|  | bytesAllocated := int64(cycle.allocRate * rateConv * float64(e.nCores) * (1 - utilization)) | 
|  |  | 
|  | // Subtract work from our model. | 
|  | globalsScanned, stackScanned, heapScanned := doWork(bytesScanned) | 
|  |  | 
|  | // doWork may not use all of bytesScanned. | 
|  | // In this case, the GC actually ends sometime in this period. | 
|  | // Let's figure out when, exactly, and adjust bytesAllocated too. | 
|  | actualElapsed := revisePeriod | 
|  | actualAllocated := bytesAllocated | 
|  | if actualScanned := globalsScanned + stackScanned + heapScanned; actualScanned < bytesScanned { | 
|  | // actualScanned = scanRate * rateConv * (t / revisePeriod) * nCores * u | 
|  | // => t = actualScanned * revisePeriod / (scanRate * rateConv * nCores * u) | 
|  | actualElapsed = time.Duration(float64(actualScanned) * float64(revisePeriod) / (cycle.scanRate * rateConv * float64(e.nCores) * utilization)) | 
|  | actualAllocated = int64(cycle.allocRate * rateConv * float64(actualElapsed) / float64(revisePeriod) * float64(e.nCores) * (1 - utilization)) | 
|  | } | 
|  |  | 
|  | // Ask the pacer to revise. | 
|  | c.Revise(GCControllerReviseDelta{ | 
|  | HeapLive:        actualAllocated, | 
|  | HeapScan:        int64(float64(actualAllocated) * cycle.scannableFrac), | 
|  | HeapScanWork:    heapScanned, | 
|  | StackScanWork:   stackScanned, | 
|  | GlobalsScanWork: globalsScanned, | 
|  | }) | 
|  |  | 
|  | // Accumulate variables. | 
|  | assistTime += int64(float64(actualElapsed) * float64(e.nCores) * (utilization - GCBackgroundUtilization)) | 
|  | gcDuration += int64(actualElapsed) | 
|  | bytesAllocatedBlack += actualAllocated | 
|  | } | 
|  |  | 
|  | // Put together the results, log them, and concatenate them. | 
|  | result := gcCycleResult{ | 
|  | cycle:         i + 1, | 
|  | heapLive:      c.HeapMarked(), | 
|  | heapScannable: int64(float64(int64(c.HeapMarked())-bytesAllocatedBlackLast) * cycle.scannableFrac), | 
|  | heapTrigger:   c.Triggered(), | 
|  | heapPeak:      c.HeapLive(), | 
|  | heapGoal:      c.HeapGoal(), | 
|  | gcUtilization: float64(assistTime)/(float64(gcDuration)*float64(e.nCores)) + GCBackgroundUtilization, | 
|  | } | 
|  | t.Log("GC", result.String()) | 
|  | results = append(results, result) | 
|  |  | 
|  | // Run the checker for this test. | 
|  | e.check(t, results) | 
|  |  | 
|  | c.EndCycle(uint64(nextHeapMarked+bytesAllocatedBlack), assistTime, gcDuration, e.nCores) | 
|  |  | 
|  | bytesAllocatedBlackLast = bytesAllocatedBlack | 
|  | } | 
|  | }) | 
|  | } | 
|  | } | 
|  |  | 
|  | type gcExecTest struct { | 
|  | name string | 
|  |  | 
|  | gcPercent    int | 
|  | memoryLimit  int64 | 
|  | globalsBytes uint64 | 
|  | nCores       int | 
|  |  | 
|  | allocRate     float64Stream // > 0, KiB / cpu-ms | 
|  | scanRate      float64Stream // > 0, KiB / cpu-ms | 
|  | growthRate    float64Stream // > 0 | 
|  | scannableFrac float64Stream // Clamped to [0, 1] | 
|  | stackBytes    float64Stream // Multiple of 2048. | 
|  | length        int | 
|  |  | 
|  | checker func(*testing.T, []gcCycleResult) | 
|  | } | 
|  |  | 
|  | // minRate is an arbitrary minimum for allocRate, scanRate, and growthRate. | 
|  | // These values just cannot be zero. | 
|  | const minRate = 0.0001 | 
|  |  | 
|  | func (e *gcExecTest) next() gcCycle { | 
|  | return gcCycle{ | 
|  | allocRate:     e.allocRate.min(minRate)(), | 
|  | scanRate:      e.scanRate.min(minRate)(), | 
|  | growthRate:    e.growthRate.min(minRate)(), | 
|  | scannableFrac: e.scannableFrac.limit(0, 1)(), | 
|  | stackBytes:    uint64(e.stackBytes.quantize(2048).min(0)()), | 
|  | } | 
|  | } | 
|  |  | 
|  | func (e *gcExecTest) check(t *testing.T, results []gcCycleResult) { | 
|  | t.Helper() | 
|  |  | 
|  | // Do some basic general checks first. | 
|  | n := len(results) | 
|  | switch n { | 
|  | case 0: | 
|  | t.Fatal("no results passed to check") | 
|  | return | 
|  | case 1: | 
|  | if results[0].cycle != 1 { | 
|  | t.Error("first cycle has incorrect number") | 
|  | } | 
|  | default: | 
|  | if results[n-1].cycle != results[n-2].cycle+1 { | 
|  | t.Error("cycle numbers out of order") | 
|  | } | 
|  | } | 
|  | if u := results[n-1].gcUtilization; u < 0 || u > 1 { | 
|  | t.Fatal("GC utilization not within acceptable bounds") | 
|  | } | 
|  | if s := results[n-1].heapScannable; s < 0 { | 
|  | t.Fatal("heapScannable is negative") | 
|  | } | 
|  | if e.checker == nil { | 
|  | t.Fatal("test-specific checker is missing") | 
|  | } | 
|  |  | 
|  | // Run the test-specific checker. | 
|  | e.checker(t, results) | 
|  | } | 
|  |  | 
|  | type gcCycle struct { | 
|  | allocRate     float64 | 
|  | scanRate      float64 | 
|  | growthRate    float64 | 
|  | scannableFrac float64 | 
|  | stackBytes    uint64 | 
|  | } | 
|  |  | 
|  | type gcCycleResult struct { | 
|  | cycle int | 
|  |  | 
|  | // These come directly from the pacer, so uint64. | 
|  | heapLive    uint64 | 
|  | heapTrigger uint64 | 
|  | heapGoal    uint64 | 
|  | heapPeak    uint64 | 
|  |  | 
|  | // These are produced by the simulation, so int64 and | 
|  | // float64 are more appropriate, so that we can check for | 
|  | // bad states in the simulation. | 
|  | heapScannable int64 | 
|  | gcUtilization float64 | 
|  | } | 
|  |  | 
|  | func (r *gcCycleResult) goalRatio() float64 { | 
|  | return float64(r.heapPeak) / float64(r.heapGoal) | 
|  | } | 
|  |  | 
|  | func (r *gcCycleResult) runway() float64 { | 
|  | return float64(r.heapGoal - r.heapTrigger) | 
|  | } | 
|  |  | 
|  | func (r *gcCycleResult) triggerRatio() float64 { | 
|  | return float64(r.heapTrigger-r.heapLive) / float64(r.heapGoal-r.heapLive) | 
|  | } | 
|  |  | 
|  | func (r *gcCycleResult) String() string { | 
|  | return fmt.Sprintf("%d %2.1f%% %d->%d->%d (goal: %d)", r.cycle, r.gcUtilization*100, r.heapLive, r.heapTrigger, r.heapPeak, r.heapGoal) | 
|  | } | 
|  |  | 
|  | func assertInEpsilon(t *testing.T, name string, a, b, epsilon float64) { | 
|  | t.Helper() | 
|  | assertInRange(t, name, a, b-epsilon, b+epsilon) | 
|  | } | 
|  |  | 
|  | func assertInRange(t *testing.T, name string, a, min, max float64) { | 
|  | t.Helper() | 
|  | if a < min || a > max { | 
|  | t.Errorf("%s not in range (%f, %f): %f", name, min, max, a) | 
|  | } | 
|  | } | 
|  |  | 
|  | // float64Stream is a function that generates an infinite stream of | 
|  | // float64 values when called repeatedly. | 
|  | type float64Stream func() float64 | 
|  |  | 
|  | // constant returns a stream that generates the value c. | 
|  | func constant(c float64) float64Stream { | 
|  | return func() float64 { | 
|  | return c | 
|  | } | 
|  | } | 
|  |  | 
|  | // unit returns a stream that generates a single peak with | 
|  | // amplitude amp, followed by zeroes. | 
|  | // | 
|  | // In another manner of speaking, this is the Kronecker delta. | 
|  | func unit(amp float64) float64Stream { | 
|  | dropped := false | 
|  | return func() float64 { | 
|  | if dropped { | 
|  | return 0 | 
|  | } | 
|  | dropped = true | 
|  | return amp | 
|  | } | 
|  | } | 
|  |  | 
|  | // oscillate returns a stream that oscillates sinusoidally | 
|  | // with the given amplitude, phase, and period. | 
|  | func oscillate(amp, phase float64, period int) float64Stream { | 
|  | var cycle int | 
|  | return func() float64 { | 
|  | p := float64(cycle)/float64(period)*2*math.Pi + phase | 
|  | cycle++ | 
|  | if cycle == period { | 
|  | cycle = 0 | 
|  | } | 
|  | return math.Sin(p) * amp | 
|  | } | 
|  | } | 
|  |  | 
|  | // ramp returns a stream that moves from zero to height | 
|  | // over the course of length steps. | 
|  | func ramp(height float64, length int) float64Stream { | 
|  | var cycle int | 
|  | return func() float64 { | 
|  | h := height * float64(cycle) / float64(length) | 
|  | if cycle < length { | 
|  | cycle++ | 
|  | } | 
|  | return h | 
|  | } | 
|  | } | 
|  |  | 
|  | // random returns a stream that generates random numbers | 
|  | // between -amp and amp. | 
|  | func random(amp float64, seed int64) float64Stream { | 
|  | r := rand.New(rand.NewSource(seed)) | 
|  | return func() float64 { | 
|  | return ((r.Float64() - 0.5) * 2) * amp | 
|  | } | 
|  | } | 
|  |  | 
|  | // delay returns a new stream which is a buffered version | 
|  | // of f: it returns zero for cycles steps, followed by f. | 
|  | func (f float64Stream) delay(cycles int) float64Stream { | 
|  | zeroes := 0 | 
|  | return func() float64 { | 
|  | if zeroes < cycles { | 
|  | zeroes++ | 
|  | return 0 | 
|  | } | 
|  | return f() | 
|  | } | 
|  | } | 
|  |  | 
|  | // scale returns a new stream that is f, but attenuated by a | 
|  | // constant factor. | 
|  | func (f float64Stream) scale(amt float64) float64Stream { | 
|  | return func() float64 { | 
|  | return f() * amt | 
|  | } | 
|  | } | 
|  |  | 
|  | // offset returns a new stream that is f but offset by amt | 
|  | // at each step. | 
|  | func (f float64Stream) offset(amt float64) float64Stream { | 
|  | return func() float64 { | 
|  | old := f() | 
|  | return old + amt | 
|  | } | 
|  | } | 
|  |  | 
|  | // sum returns a new stream that is the sum of all input streams | 
|  | // at each step. | 
|  | func (f float64Stream) sum(fs ...float64Stream) float64Stream { | 
|  | return func() float64 { | 
|  | sum := f() | 
|  | for _, s := range fs { | 
|  | sum += s() | 
|  | } | 
|  | return sum | 
|  | } | 
|  | } | 
|  |  | 
|  | // quantize returns a new stream that rounds f to a multiple | 
|  | // of mult at each step. | 
|  | func (f float64Stream) quantize(mult float64) float64Stream { | 
|  | return func() float64 { | 
|  | r := f() / mult | 
|  | if r < 0 { | 
|  | return math.Ceil(r) * mult | 
|  | } | 
|  | return math.Floor(r) * mult | 
|  | } | 
|  | } | 
|  |  | 
|  | // min returns a new stream that replaces all values produced | 
|  | // by f lower than min with min. | 
|  | func (f float64Stream) min(min float64) float64Stream { | 
|  | return func() float64 { | 
|  | return math.Max(min, f()) | 
|  | } | 
|  | } | 
|  |  | 
|  | // max returns a new stream that replaces all values produced | 
|  | // by f higher than max with max. | 
|  | func (f float64Stream) max(max float64) float64Stream { | 
|  | return func() float64 { | 
|  | return math.Min(max, f()) | 
|  | } | 
|  | } | 
|  |  | 
|  | // limit returns a new stream that replaces all values produced | 
|  | // by f lower than min with min and higher than max with max. | 
|  | func (f float64Stream) limit(min, max float64) float64Stream { | 
|  | return func() float64 { | 
|  | v := f() | 
|  | if v < min { | 
|  | v = min | 
|  | } else if v > max { | 
|  | v = max | 
|  | } | 
|  | return v | 
|  | } | 
|  | } | 
|  |  | 
|  | func applyMemoryLimitHeapGoalHeadroom(goal uint64) uint64 { | 
|  | headroom := goal / 100 * MemoryLimitHeapGoalHeadroomPercent | 
|  | if headroom < MemoryLimitMinHeapGoalHeadroom { | 
|  | headroom = MemoryLimitMinHeapGoalHeadroom | 
|  | } | 
|  | if goal < headroom || goal-headroom < headroom { | 
|  | goal = headroom | 
|  | } else { | 
|  | goal -= headroom | 
|  | } | 
|  | return goal | 
|  | } | 
|  |  | 
|  | func TestIdleMarkWorkerCount(t *testing.T) { | 
|  | const workers = 10 | 
|  | c := NewGCController(100, math.MaxInt64) | 
|  | c.SetMaxIdleMarkWorkers(workers) | 
|  | for i := 0; i < workers; i++ { | 
|  | if !c.NeedIdleMarkWorker() { | 
|  | t.Fatalf("expected to need idle mark workers: i=%d", i) | 
|  | } | 
|  | if !c.AddIdleMarkWorker() { | 
|  | t.Fatalf("expected to be able to add an idle mark worker: i=%d", i) | 
|  | } | 
|  | } | 
|  | if c.NeedIdleMarkWorker() { | 
|  | t.Fatalf("expected to not need idle mark workers") | 
|  | } | 
|  | if c.AddIdleMarkWorker() { | 
|  | t.Fatalf("expected to not be able to add an idle mark worker") | 
|  | } | 
|  | for i := 0; i < workers; i++ { | 
|  | c.RemoveIdleMarkWorker() | 
|  | if !c.NeedIdleMarkWorker() { | 
|  | t.Fatalf("expected to need idle mark workers after removal: i=%d", i) | 
|  | } | 
|  | } | 
|  | for i := 0; i < workers-1; i++ { | 
|  | if !c.AddIdleMarkWorker() { | 
|  | t.Fatalf("expected to be able to add idle mark workers after adding again: i=%d", i) | 
|  | } | 
|  | } | 
|  | for i := 0; i < 10; i++ { | 
|  | if !c.AddIdleMarkWorker() { | 
|  | t.Fatalf("expected to be able to add idle mark workers interleaved: i=%d", i) | 
|  | } | 
|  | if c.AddIdleMarkWorker() { | 
|  | t.Fatalf("expected to not be able to add idle mark workers interleaved: i=%d", i) | 
|  | } | 
|  | c.RemoveIdleMarkWorker() | 
|  | } | 
|  | // Support the max being below the count. | 
|  | c.SetMaxIdleMarkWorkers(0) | 
|  | if c.NeedIdleMarkWorker() { | 
|  | t.Fatalf("expected to not need idle mark workers after capacity set to 0") | 
|  | } | 
|  | if c.AddIdleMarkWorker() { | 
|  | t.Fatalf("expected to not be able to add idle mark workers after capacity set to 0") | 
|  | } | 
|  | for i := 0; i < workers-1; i++ { | 
|  | c.RemoveIdleMarkWorker() | 
|  | } | 
|  | if c.NeedIdleMarkWorker() { | 
|  | t.Fatalf("expected to not need idle mark workers after capacity set to 0") | 
|  | } | 
|  | if c.AddIdleMarkWorker() { | 
|  | t.Fatalf("expected to not be able to add idle mark workers after capacity set to 0") | 
|  | } | 
|  | c.SetMaxIdleMarkWorkers(1) | 
|  | if !c.NeedIdleMarkWorker() { | 
|  | t.Fatalf("expected to need idle mark workers after capacity set to 1") | 
|  | } | 
|  | if !c.AddIdleMarkWorker() { | 
|  | t.Fatalf("expected to be able to add idle mark workers after capacity set to 1") | 
|  | } | 
|  | } |