| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package pprof writes runtime profiling data in the format expected |
| // by the pprof visualization tool. |
| // |
| // # Profiling a Go program |
| // |
| // The first step to profiling a Go program is to enable profiling. |
| // Support for profiling benchmarks built with the standard testing |
| // package is built into go test. For example, the following command |
| // runs benchmarks in the current directory and writes the CPU and |
| // memory profiles to cpu.prof and mem.prof: |
| // |
| // go test -cpuprofile cpu.prof -memprofile mem.prof -bench . |
| // |
| // To add equivalent profiling support to a standalone program, add |
| // code like the following to your main function: |
| // |
| // var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`") |
| // var memprofile = flag.String("memprofile", "", "write memory profile to `file`") |
| // |
| // func main() { |
| // flag.Parse() |
| // if *cpuprofile != "" { |
| // f, err := os.Create(*cpuprofile) |
| // if err != nil { |
| // log.Fatal("could not create CPU profile: ", err) |
| // } |
| // defer f.Close() // error handling omitted for example |
| // if err := pprof.StartCPUProfile(f); err != nil { |
| // log.Fatal("could not start CPU profile: ", err) |
| // } |
| // defer pprof.StopCPUProfile() |
| // } |
| // |
| // // ... rest of the program ... |
| // |
| // if *memprofile != "" { |
| // f, err := os.Create(*memprofile) |
| // if err != nil { |
| // log.Fatal("could not create memory profile: ", err) |
| // } |
| // defer f.Close() // error handling omitted for example |
| // runtime.GC() // get up-to-date statistics |
| // if err := pprof.WriteHeapProfile(f); err != nil { |
| // log.Fatal("could not write memory profile: ", err) |
| // } |
| // } |
| // } |
| // |
| // There is also a standard HTTP interface to profiling data. Adding |
| // the following line will install handlers under the /debug/pprof/ |
| // URL to download live profiles: |
| // |
| // import _ "net/http/pprof" |
| // |
| // See the net/http/pprof package for more details. |
| // |
| // Profiles can then be visualized with the pprof tool: |
| // |
| // go tool pprof cpu.prof |
| // |
| // There are many commands available from the pprof command line. |
| // Commonly used commands include "top", which prints a summary of the |
| // top program hot-spots, and "web", which opens an interactive graph |
| // of hot-spots and their call graphs. Use "help" for information on |
| // all pprof commands. |
| // |
| // For more information about pprof, see |
| // https://github.com/google/pprof/blob/main/doc/README.md. |
| package pprof |
| |
| import ( |
| "bufio" |
| "fmt" |
| "internal/abi" |
| "io" |
| "runtime" |
| "sort" |
| "strings" |
| "sync" |
| "text/tabwriter" |
| "time" |
| "unsafe" |
| ) |
| |
| // BUG(rsc): Profiles are only as good as the kernel support used to generate them. |
| // See https://golang.org/issue/13841 for details about known problems. |
| |
| // A Profile is a collection of stack traces showing the call sequences |
| // that led to instances of a particular event, such as allocation. |
| // Packages can create and maintain their own profiles; the most common |
| // use is for tracking resources that must be explicitly closed, such as files |
| // or network connections. |
| // |
| // A Profile's methods can be called from multiple goroutines simultaneously. |
| // |
| // Each Profile has a unique name. A few profiles are predefined: |
| // |
| // goroutine - stack traces of all current goroutines |
| // heap - a sampling of memory allocations of live objects |
| // allocs - a sampling of all past memory allocations |
| // threadcreate - stack traces that led to the creation of new OS threads |
| // block - stack traces that led to blocking on synchronization primitives |
| // mutex - stack traces of holders of contended mutexes |
| // |
| // These predefined profiles maintain themselves and panic on an explicit |
| // [Profile.Add] or [Profile.Remove] method call. |
| // |
| // The CPU profile is not available as a Profile. It has a special API, |
| // the [StartCPUProfile] and [StopCPUProfile] functions, because it streams |
| // output to a writer during profiling. |
| // |
| // # Heap profile |
| // |
| // The heap profile reports statistics as of the most recently completed |
| // garbage collection; it elides more recent allocation to avoid skewing |
| // the profile away from live data and toward garbage. |
| // If there has been no garbage collection at all, the heap profile reports |
| // all known allocations. This exception helps mainly in programs running |
| // without garbage collection enabled, usually for debugging purposes. |
| // |
| // The heap profile tracks both the allocation sites for all live objects in |
| // the application memory and for all objects allocated since the program start. |
| // Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects |
| // flags select which to display, defaulting to -inuse_space (live objects, |
| // scaled by size). |
| // |
| // # Allocs profile |
| // |
| // The allocs profile is the same as the heap profile but changes the default |
| // pprof display to -alloc_space, the total number of bytes allocated since |
| // the program began (including garbage-collected bytes). |
| // |
| // # Block profile |
| // |
| // The block profile tracks time spent blocked on synchronization primitives, |
| // such as [sync.Mutex], [sync.RWMutex], [sync.WaitGroup], [sync.Cond], and |
| // channel send/receive/select. |
| // |
| // Stack traces correspond to the location that blocked (for example, |
| // [sync.Mutex.Lock]). |
| // |
| // Sample values correspond to cumulative time spent blocked at that stack |
| // trace, subject to time-based sampling specified by |
| // [runtime.SetBlockProfileRate]. |
| // |
| // # Mutex profile |
| // |
| // The mutex profile tracks contention on mutexes, such as [sync.Mutex], |
| // [sync.RWMutex], and runtime-internal locks. |
| // |
| // Stack traces correspond to the end of the critical section causing |
| // contention. For example, a lock held for a long time while other goroutines |
| // are waiting to acquire the lock will report contention when the lock is |
| // finally unlocked (that is, at [sync.Mutex.Unlock]). |
| // |
| // Sample values correspond to the approximate cumulative time other goroutines |
| // spent blocked waiting for the lock, subject to event-based sampling |
| // specified by [runtime.SetMutexProfileFraction]. For example, if a caller |
| // holds a lock for 1s while 5 other goroutines are waiting for the entire |
| // second to acquire the lock, its unlock call stack will report 5s of |
| // contention. |
| // |
| // Runtime-internal locks are always reported at the location |
| // "runtime._LostContendedRuntimeLock". More detailed stack traces for |
| // runtime-internal locks can be obtained by setting |
| // `GODEBUG=runtimecontentionstacks=1` (see package [runtime] docs for |
| // caveats). |
| type Profile struct { |
| name string |
| mu sync.Mutex |
| m map[any][]uintptr |
| count func() int |
| write func(io.Writer, int) error |
| } |
| |
| // profiles records all registered profiles. |
| var profiles struct { |
| mu sync.Mutex |
| m map[string]*Profile |
| } |
| |
| var goroutineProfile = &Profile{ |
| name: "goroutine", |
| count: countGoroutine, |
| write: writeGoroutine, |
| } |
| |
| var threadcreateProfile = &Profile{ |
| name: "threadcreate", |
| count: countThreadCreate, |
| write: writeThreadCreate, |
| } |
| |
| var heapProfile = &Profile{ |
| name: "heap", |
| count: countHeap, |
| write: writeHeap, |
| } |
| |
| var allocsProfile = &Profile{ |
| name: "allocs", |
| count: countHeap, // identical to heap profile |
| write: writeAlloc, |
| } |
| |
| var blockProfile = &Profile{ |
| name: "block", |
| count: countBlock, |
| write: writeBlock, |
| } |
| |
| var mutexProfile = &Profile{ |
| name: "mutex", |
| count: countMutex, |
| write: writeMutex, |
| } |
| |
| func lockProfiles() { |
| profiles.mu.Lock() |
| if profiles.m == nil { |
| // Initial built-in profiles. |
| profiles.m = map[string]*Profile{ |
| "goroutine": goroutineProfile, |
| "threadcreate": threadcreateProfile, |
| "heap": heapProfile, |
| "allocs": allocsProfile, |
| "block": blockProfile, |
| "mutex": mutexProfile, |
| } |
| } |
| } |
| |
| func unlockProfiles() { |
| profiles.mu.Unlock() |
| } |
| |
| // NewProfile creates a new profile with the given name. |
| // If a profile with that name already exists, NewProfile panics. |
| // The convention is to use a 'import/path.' prefix to create |
| // separate name spaces for each package. |
| // For compatibility with various tools that read pprof data, |
| // profile names should not contain spaces. |
| func NewProfile(name string) *Profile { |
| lockProfiles() |
| defer unlockProfiles() |
| if name == "" { |
| panic("pprof: NewProfile with empty name") |
| } |
| if profiles.m[name] != nil { |
| panic("pprof: NewProfile name already in use: " + name) |
| } |
| p := &Profile{ |
| name: name, |
| m: map[any][]uintptr{}, |
| } |
| profiles.m[name] = p |
| return p |
| } |
| |
| // Lookup returns the profile with the given name, or nil if no such profile exists. |
| func Lookup(name string) *Profile { |
| lockProfiles() |
| defer unlockProfiles() |
| return profiles.m[name] |
| } |
| |
| // Profiles returns a slice of all the known profiles, sorted by name. |
| func Profiles() []*Profile { |
| lockProfiles() |
| defer unlockProfiles() |
| |
| all := make([]*Profile, 0, len(profiles.m)) |
| for _, p := range profiles.m { |
| all = append(all, p) |
| } |
| |
| sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name }) |
| return all |
| } |
| |
| // Name returns this profile's name, which can be passed to [Lookup] to reobtain the profile. |
| func (p *Profile) Name() string { |
| return p.name |
| } |
| |
| // Count returns the number of execution stacks currently in the profile. |
| func (p *Profile) Count() int { |
| p.mu.Lock() |
| defer p.mu.Unlock() |
| if p.count != nil { |
| return p.count() |
| } |
| return len(p.m) |
| } |
| |
| // Add adds the current execution stack to the profile, associated with value. |
| // Add stores value in an internal map, so value must be suitable for use as |
| // a map key and will not be garbage collected until the corresponding |
| // call to [Profile.Remove]. Add panics if the profile already contains a stack for value. |
| // |
| // The skip parameter has the same meaning as [runtime.Caller]'s skip |
| // and controls where the stack trace begins. Passing skip=0 begins the |
| // trace in the function calling Add. For example, given this |
| // execution stack: |
| // |
| // Add |
| // called from rpc.NewClient |
| // called from mypkg.Run |
| // called from main.main |
| // |
| // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. |
| // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. |
| func (p *Profile) Add(value any, skip int) { |
| if p.name == "" { |
| panic("pprof: use of uninitialized Profile") |
| } |
| if p.write != nil { |
| panic("pprof: Add called on built-in Profile " + p.name) |
| } |
| |
| stk := make([]uintptr, 32) |
| n := runtime.Callers(skip+1, stk[:]) |
| stk = stk[:n] |
| if len(stk) == 0 { |
| // The value for skip is too large, and there's no stack trace to record. |
| stk = []uintptr{abi.FuncPCABIInternal(lostProfileEvent)} |
| } |
| |
| p.mu.Lock() |
| defer p.mu.Unlock() |
| if p.m[value] != nil { |
| panic("pprof: Profile.Add of duplicate value") |
| } |
| p.m[value] = stk |
| } |
| |
| // Remove removes the execution stack associated with value from the profile. |
| // It is a no-op if the value is not in the profile. |
| func (p *Profile) Remove(value any) { |
| p.mu.Lock() |
| defer p.mu.Unlock() |
| delete(p.m, value) |
| } |
| |
| // WriteTo writes a pprof-formatted snapshot of the profile to w. |
| // If a write to w returns an error, WriteTo returns that error. |
| // Otherwise, WriteTo returns nil. |
| // |
| // The debug parameter enables additional output. |
| // Passing debug=0 writes the gzip-compressed protocol buffer described |
| // in https://github.com/google/pprof/tree/master/proto#overview. |
| // Passing debug=1 writes the legacy text format with comments |
| // translating addresses to function names and line numbers, so that a |
| // programmer can read the profile without tools. |
| // |
| // The predefined profiles may assign meaning to other debug values; |
| // for example, when printing the "goroutine" profile, debug=2 means to |
| // print the goroutine stacks in the same form that a Go program uses |
| // when dying due to an unrecovered panic. |
| func (p *Profile) WriteTo(w io.Writer, debug int) error { |
| if p.name == "" { |
| panic("pprof: use of zero Profile") |
| } |
| if p.write != nil { |
| return p.write(w, debug) |
| } |
| |
| // Obtain consistent snapshot under lock; then process without lock. |
| p.mu.Lock() |
| all := make([][]uintptr, 0, len(p.m)) |
| for _, stk := range p.m { |
| all = append(all, stk) |
| } |
| p.mu.Unlock() |
| |
| // Map order is non-deterministic; make output deterministic. |
| sort.Slice(all, func(i, j int) bool { |
| t, u := all[i], all[j] |
| for k := 0; k < len(t) && k < len(u); k++ { |
| if t[k] != u[k] { |
| return t[k] < u[k] |
| } |
| } |
| return len(t) < len(u) |
| }) |
| |
| return printCountProfile(w, debug, p.name, stackProfile(all)) |
| } |
| |
| type stackProfile [][]uintptr |
| |
| func (x stackProfile) Len() int { return len(x) } |
| func (x stackProfile) Stack(i int) []uintptr { return x[i] } |
| func (x stackProfile) Label(i int) *labelMap { return nil } |
| |
| // A countProfile is a set of stack traces to be printed as counts |
| // grouped by stack trace. There are multiple implementations: |
| // all that matters is that we can find out how many traces there are |
| // and obtain each trace in turn. |
| type countProfile interface { |
| Len() int |
| Stack(i int) []uintptr |
| Label(i int) *labelMap |
| } |
| |
| // printCountCycleProfile outputs block profile records (for block or mutex profiles) |
| // as the pprof-proto format output. Translations from cycle count to time duration |
| // are done because The proto expects count and time (nanoseconds) instead of count |
| // and the number of cycles for block, contention profiles. |
| func printCountCycleProfile(w io.Writer, countName, cycleName string, records []runtime.BlockProfileRecord) error { |
| // Output profile in protobuf form. |
| b := newProfileBuilder(w) |
| b.pbValueType(tagProfile_PeriodType, countName, "count") |
| b.pb.int64Opt(tagProfile_Period, 1) |
| b.pbValueType(tagProfile_SampleType, countName, "count") |
| b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds") |
| |
| cpuGHz := float64(runtime_cyclesPerSecond()) / 1e9 |
| |
| values := []int64{0, 0} |
| var locs []uint64 |
| for _, r := range records { |
| values[0] = r.Count |
| values[1] = int64(float64(r.Cycles) / cpuGHz) |
| // For count profiles, all stack addresses are |
| // return PCs, which is what appendLocsForStack expects. |
| locs = b.appendLocsForStack(locs[:0], r.Stack()) |
| b.pbSample(values, locs, nil) |
| } |
| b.build() |
| return nil |
| } |
| |
| // printCountProfile prints a countProfile at the specified debug level. |
| // The profile will be in compressed proto format unless debug is nonzero. |
| func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { |
| // Build count of each stack. |
| var buf strings.Builder |
| key := func(stk []uintptr, lbls *labelMap) string { |
| buf.Reset() |
| fmt.Fprintf(&buf, "@") |
| for _, pc := range stk { |
| fmt.Fprintf(&buf, " %#x", pc) |
| } |
| if lbls != nil { |
| buf.WriteString("\n# labels: ") |
| buf.WriteString(lbls.String()) |
| } |
| return buf.String() |
| } |
| count := map[string]int{} |
| index := map[string]int{} |
| var keys []string |
| n := p.Len() |
| for i := 0; i < n; i++ { |
| k := key(p.Stack(i), p.Label(i)) |
| if count[k] == 0 { |
| index[k] = i |
| keys = append(keys, k) |
| } |
| count[k]++ |
| } |
| |
| sort.Sort(&keysByCount{keys, count}) |
| |
| if debug > 0 { |
| // Print debug profile in legacy format |
| tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) |
| fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len()) |
| for _, k := range keys { |
| fmt.Fprintf(tw, "%d %s\n", count[k], k) |
| printStackRecord(tw, p.Stack(index[k]), false) |
| } |
| return tw.Flush() |
| } |
| |
| // Output profile in protobuf form. |
| b := newProfileBuilder(w) |
| b.pbValueType(tagProfile_PeriodType, name, "count") |
| b.pb.int64Opt(tagProfile_Period, 1) |
| b.pbValueType(tagProfile_SampleType, name, "count") |
| |
| values := []int64{0} |
| var locs []uint64 |
| for _, k := range keys { |
| values[0] = int64(count[k]) |
| // For count profiles, all stack addresses are |
| // return PCs, which is what appendLocsForStack expects. |
| locs = b.appendLocsForStack(locs[:0], p.Stack(index[k])) |
| idx := index[k] |
| var labels func() |
| if p.Label(idx) != nil { |
| labels = func() { |
| for k, v := range *p.Label(idx) { |
| b.pbLabel(tagSample_Label, k, v, 0) |
| } |
| } |
| } |
| b.pbSample(values, locs, labels) |
| } |
| b.build() |
| return nil |
| } |
| |
| // keysByCount sorts keys with higher counts first, breaking ties by key string order. |
| type keysByCount struct { |
| keys []string |
| count map[string]int |
| } |
| |
| func (x *keysByCount) Len() int { return len(x.keys) } |
| func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } |
| func (x *keysByCount) Less(i, j int) bool { |
| ki, kj := x.keys[i], x.keys[j] |
| ci, cj := x.count[ki], x.count[kj] |
| if ci != cj { |
| return ci > cj |
| } |
| return ki < kj |
| } |
| |
| // printStackRecord prints the function + source line information |
| // for a single stack trace. |
| func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { |
| show := allFrames |
| frames := runtime.CallersFrames(stk) |
| for { |
| frame, more := frames.Next() |
| name := frame.Function |
| if name == "" { |
| show = true |
| fmt.Fprintf(w, "#\t%#x\n", frame.PC) |
| } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { |
| // Hide runtime.goexit and any runtime functions at the beginning. |
| // This is useful mainly for allocation traces. |
| show = true |
| fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) |
| } |
| if !more { |
| break |
| } |
| } |
| if !show { |
| // We didn't print anything; do it again, |
| // and this time include runtime functions. |
| printStackRecord(w, stk, true) |
| return |
| } |
| fmt.Fprintf(w, "\n") |
| } |
| |
| // Interface to system profiles. |
| |
| // WriteHeapProfile is shorthand for [Lookup]("heap").WriteTo(w, 0). |
| // It is preserved for backwards compatibility. |
| func WriteHeapProfile(w io.Writer) error { |
| return writeHeap(w, 0) |
| } |
| |
| // countHeap returns the number of records in the heap profile. |
| func countHeap() int { |
| n, _ := runtime.MemProfile(nil, true) |
| return n |
| } |
| |
| // writeHeap writes the current runtime heap profile to w. |
| func writeHeap(w io.Writer, debug int) error { |
| return writeHeapInternal(w, debug, "") |
| } |
| |
| // writeAlloc writes the current runtime heap profile to w |
| // with the total allocation space as the default sample type. |
| func writeAlloc(w io.Writer, debug int) error { |
| return writeHeapInternal(w, debug, "alloc_space") |
| } |
| |
| func writeHeapInternal(w io.Writer, debug int, defaultSampleType string) error { |
| var memStats *runtime.MemStats |
| if debug != 0 { |
| // Read mem stats first, so that our other allocations |
| // do not appear in the statistics. |
| memStats = new(runtime.MemStats) |
| runtime.ReadMemStats(memStats) |
| } |
| |
| // Find out how many records there are (MemProfile(nil, true)), |
| // allocate that many records, and get the data. |
| // There's a race—more records might be added between |
| // the two calls—so allocate a few extra records for safety |
| // and also try again if we're very unlucky. |
| // The loop should only execute one iteration in the common case. |
| var p []runtime.MemProfileRecord |
| n, ok := runtime.MemProfile(nil, true) |
| for { |
| // Allocate room for a slightly bigger profile, |
| // in case a few more entries have been added |
| // since the call to MemProfile. |
| p = make([]runtime.MemProfileRecord, n+50) |
| n, ok = runtime.MemProfile(p, true) |
| if ok { |
| p = p[0:n] |
| break |
| } |
| // Profile grew; try again. |
| } |
| |
| if debug == 0 { |
| return writeHeapProto(w, p, int64(runtime.MemProfileRate), defaultSampleType) |
| } |
| |
| sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() }) |
| |
| b := bufio.NewWriter(w) |
| tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0) |
| w = tw |
| |
| var total runtime.MemProfileRecord |
| for i := range p { |
| r := &p[i] |
| total.AllocBytes += r.AllocBytes |
| total.AllocObjects += r.AllocObjects |
| total.FreeBytes += r.FreeBytes |
| total.FreeObjects += r.FreeObjects |
| } |
| |
| // Technically the rate is MemProfileRate not 2*MemProfileRate, |
| // but early versions of the C++ heap profiler reported 2*MemProfileRate, |
| // so that's what pprof has come to expect. |
| rate := 2 * runtime.MemProfileRate |
| |
| // pprof reads a profile with alloc == inuse as being a "2-column" profile |
| // (objects and bytes, not distinguishing alloc from inuse), |
| // but then such a profile can't be merged using pprof *.prof with |
| // other 4-column profiles where alloc != inuse. |
| // The easiest way to avoid this bug is to adjust allocBytes so it's never == inuseBytes. |
| // pprof doesn't use these header values anymore except for checking equality. |
| inUseBytes := total.InUseBytes() |
| allocBytes := total.AllocBytes |
| if inUseBytes == allocBytes { |
| allocBytes++ |
| } |
| |
| fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", |
| total.InUseObjects(), inUseBytes, |
| total.AllocObjects, allocBytes, |
| rate) |
| |
| for i := range p { |
| r := &p[i] |
| fmt.Fprintf(w, "%d: %d [%d: %d] @", |
| r.InUseObjects(), r.InUseBytes(), |
| r.AllocObjects, r.AllocBytes) |
| for _, pc := range r.Stack() { |
| fmt.Fprintf(w, " %#x", pc) |
| } |
| fmt.Fprintf(w, "\n") |
| printStackRecord(w, r.Stack(), false) |
| } |
| |
| // Print memstats information too. |
| // Pprof will ignore, but useful for people |
| s := memStats |
| fmt.Fprintf(w, "\n# runtime.MemStats\n") |
| fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) |
| fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) |
| fmt.Fprintf(w, "# Sys = %d\n", s.Sys) |
| fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) |
| fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) |
| fmt.Fprintf(w, "# Frees = %d\n", s.Frees) |
| |
| fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) |
| fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) |
| fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) |
| fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) |
| fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) |
| fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) |
| |
| fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) |
| fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) |
| fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) |
| fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) |
| fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys) |
| fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys) |
| |
| fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) |
| fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC) |
| fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) |
| fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd) |
| fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) |
| fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC) |
| fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction) |
| fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) |
| |
| // Also flush out MaxRSS on supported platforms. |
| addMaxRSS(w) |
| |
| tw.Flush() |
| return b.Flush() |
| } |
| |
| // countThreadCreate returns the size of the current ThreadCreateProfile. |
| func countThreadCreate() int { |
| n, _ := runtime.ThreadCreateProfile(nil) |
| return n |
| } |
| |
| // writeThreadCreate writes the current runtime ThreadCreateProfile to w. |
| func writeThreadCreate(w io.Writer, debug int) error { |
| // Until https://golang.org/issues/6104 is addressed, wrap |
| // ThreadCreateProfile because there's no point in tracking labels when we |
| // don't get any stack-traces. |
| return writeRuntimeProfile(w, debug, "threadcreate", func(p []runtime.StackRecord, _ []unsafe.Pointer) (n int, ok bool) { |
| return runtime.ThreadCreateProfile(p) |
| }) |
| } |
| |
| // countGoroutine returns the number of goroutines. |
| func countGoroutine() int { |
| return runtime.NumGoroutine() |
| } |
| |
| // runtime_goroutineProfileWithLabels is defined in runtime/mprof.go |
| func runtime_goroutineProfileWithLabels(p []runtime.StackRecord, labels []unsafe.Pointer) (n int, ok bool) |
| |
| // writeGoroutine writes the current runtime GoroutineProfile to w. |
| func writeGoroutine(w io.Writer, debug int) error { |
| if debug >= 2 { |
| return writeGoroutineStacks(w) |
| } |
| return writeRuntimeProfile(w, debug, "goroutine", runtime_goroutineProfileWithLabels) |
| } |
| |
| func writeGoroutineStacks(w io.Writer) error { |
| // We don't know how big the buffer needs to be to collect |
| // all the goroutines. Start with 1 MB and try a few times, doubling each time. |
| // Give up and use a truncated trace if 64 MB is not enough. |
| buf := make([]byte, 1<<20) |
| for i := 0; ; i++ { |
| n := runtime.Stack(buf, true) |
| if n < len(buf) { |
| buf = buf[:n] |
| break |
| } |
| if len(buf) >= 64<<20 { |
| // Filled 64 MB - stop there. |
| break |
| } |
| buf = make([]byte, 2*len(buf)) |
| } |
| _, err := w.Write(buf) |
| return err |
| } |
| |
| func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord, []unsafe.Pointer) (int, bool)) error { |
| // Find out how many records there are (fetch(nil)), |
| // allocate that many records, and get the data. |
| // There's a race—more records might be added between |
| // the two calls—so allocate a few extra records for safety |
| // and also try again if we're very unlucky. |
| // The loop should only execute one iteration in the common case. |
| var p []runtime.StackRecord |
| var labels []unsafe.Pointer |
| n, ok := fetch(nil, nil) |
| for { |
| // Allocate room for a slightly bigger profile, |
| // in case a few more entries have been added |
| // since the call to ThreadProfile. |
| p = make([]runtime.StackRecord, n+10) |
| labels = make([]unsafe.Pointer, n+10) |
| n, ok = fetch(p, labels) |
| if ok { |
| p = p[0:n] |
| break |
| } |
| // Profile grew; try again. |
| } |
| |
| return printCountProfile(w, debug, name, &runtimeProfile{p, labels}) |
| } |
| |
| type runtimeProfile struct { |
| stk []runtime.StackRecord |
| labels []unsafe.Pointer |
| } |
| |
| func (p *runtimeProfile) Len() int { return len(p.stk) } |
| func (p *runtimeProfile) Stack(i int) []uintptr { return p.stk[i].Stack() } |
| func (p *runtimeProfile) Label(i int) *labelMap { return (*labelMap)(p.labels[i]) } |
| |
| var cpu struct { |
| sync.Mutex |
| profiling bool |
| done chan bool |
| } |
| |
| // StartCPUProfile enables CPU profiling for the current process. |
| // While profiling, the profile will be buffered and written to w. |
| // StartCPUProfile returns an error if profiling is already enabled. |
| // |
| // On Unix-like systems, StartCPUProfile does not work by default for |
| // Go code built with -buildmode=c-archive or -buildmode=c-shared. |
| // StartCPUProfile relies on the SIGPROF signal, but that signal will |
| // be delivered to the main program's SIGPROF signal handler (if any) |
| // not to the one used by Go. To make it work, call [os/signal.Notify] |
| // for [syscall.SIGPROF], but note that doing so may break any profiling |
| // being done by the main program. |
| func StartCPUProfile(w io.Writer) error { |
| // The runtime routines allow a variable profiling rate, |
| // but in practice operating systems cannot trigger signals |
| // at more than about 500 Hz, and our processing of the |
| // signal is not cheap (mostly getting the stack trace). |
| // 100 Hz is a reasonable choice: it is frequent enough to |
| // produce useful data, rare enough not to bog down the |
| // system, and a nice round number to make it easy to |
| // convert sample counts to seconds. Instead of requiring |
| // each client to specify the frequency, we hard code it. |
| const hz = 100 |
| |
| cpu.Lock() |
| defer cpu.Unlock() |
| if cpu.done == nil { |
| cpu.done = make(chan bool) |
| } |
| // Double-check. |
| if cpu.profiling { |
| return fmt.Errorf("cpu profiling already in use") |
| } |
| cpu.profiling = true |
| runtime.SetCPUProfileRate(hz) |
| go profileWriter(w) |
| return nil |
| } |
| |
| // readProfile, provided by the runtime, returns the next chunk of |
| // binary CPU profiling stack trace data, blocking until data is available. |
| // If profiling is turned off and all the profile data accumulated while it was |
| // on has been returned, readProfile returns eof=true. |
| // The caller must save the returned data and tags before calling readProfile again. |
| func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool) |
| |
| func profileWriter(w io.Writer) { |
| b := newProfileBuilder(w) |
| var err error |
| for { |
| time.Sleep(100 * time.Millisecond) |
| data, tags, eof := readProfile() |
| if e := b.addCPUData(data, tags); e != nil && err == nil { |
| err = e |
| } |
| if eof { |
| break |
| } |
| } |
| if err != nil { |
| // The runtime should never produce an invalid or truncated profile. |
| // It drops records that can't fit into its log buffers. |
| panic("runtime/pprof: converting profile: " + err.Error()) |
| } |
| b.build() |
| cpu.done <- true |
| } |
| |
| // StopCPUProfile stops the current CPU profile, if any. |
| // StopCPUProfile only returns after all the writes for the |
| // profile have completed. |
| func StopCPUProfile() { |
| cpu.Lock() |
| defer cpu.Unlock() |
| |
| if !cpu.profiling { |
| return |
| } |
| cpu.profiling = false |
| runtime.SetCPUProfileRate(0) |
| <-cpu.done |
| } |
| |
| // countBlock returns the number of records in the blocking profile. |
| func countBlock() int { |
| n, _ := runtime.BlockProfile(nil) |
| return n |
| } |
| |
| // countMutex returns the number of records in the mutex profile. |
| func countMutex() int { |
| n, _ := runtime.MutexProfile(nil) |
| return n |
| } |
| |
| // writeBlock writes the current blocking profile to w. |
| func writeBlock(w io.Writer, debug int) error { |
| return writeProfileInternal(w, debug, "contention", runtime.BlockProfile) |
| } |
| |
| // writeMutex writes the current mutex profile to w. |
| func writeMutex(w io.Writer, debug int) error { |
| return writeProfileInternal(w, debug, "mutex", runtime.MutexProfile) |
| } |
| |
| // writeProfileInternal writes the current blocking or mutex profile depending on the passed parameters. |
| func writeProfileInternal(w io.Writer, debug int, name string, runtimeProfile func([]runtime.BlockProfileRecord) (int, bool)) error { |
| var p []runtime.BlockProfileRecord |
| n, ok := runtimeProfile(nil) |
| for { |
| p = make([]runtime.BlockProfileRecord, n+50) |
| n, ok = runtimeProfile(p) |
| if ok { |
| p = p[:n] |
| break |
| } |
| } |
| |
| sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) |
| |
| if debug <= 0 { |
| return printCountCycleProfile(w, "contentions", "delay", p) |
| } |
| |
| b := bufio.NewWriter(w) |
| tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) |
| w = tw |
| |
| fmt.Fprintf(w, "--- %v:\n", name) |
| fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) |
| if name == "mutex" { |
| fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) |
| } |
| for i := range p { |
| r := &p[i] |
| fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) |
| for _, pc := range r.Stack() { |
| fmt.Fprintf(w, " %#x", pc) |
| } |
| fmt.Fprint(w, "\n") |
| if debug > 0 { |
| printStackRecord(w, r.Stack(), true) |
| } |
| } |
| |
| if tw != nil { |
| tw.Flush() |
| } |
| return b.Flush() |
| } |
| |
| func runtime_cyclesPerSecond() int64 |