|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package flate | 
|  |  | 
|  | import ( | 
|  | "math" | 
|  | "math/bits" | 
|  | "sort" | 
|  | ) | 
|  |  | 
|  | // hcode is a huffman code with a bit code and bit length. | 
|  | type hcode struct { | 
|  | code, len uint16 | 
|  | } | 
|  |  | 
|  | type huffmanEncoder struct { | 
|  | codes     []hcode | 
|  | freqcache []literalNode | 
|  | bitCount  [17]int32 | 
|  | lns       byLiteral // stored to avoid repeated allocation in generate | 
|  | lfs       byFreq    // stored to avoid repeated allocation in generate | 
|  | } | 
|  |  | 
|  | type literalNode struct { | 
|  | literal uint16 | 
|  | freq    int32 | 
|  | } | 
|  |  | 
|  | // A levelInfo describes the state of the constructed tree for a given depth. | 
|  | type levelInfo struct { | 
|  | // Our level.  for better printing | 
|  | level int32 | 
|  |  | 
|  | // The frequency of the last node at this level | 
|  | lastFreq int32 | 
|  |  | 
|  | // The frequency of the next character to add to this level | 
|  | nextCharFreq int32 | 
|  |  | 
|  | // The frequency of the next pair (from level below) to add to this level. | 
|  | // Only valid if the "needed" value of the next lower level is 0. | 
|  | nextPairFreq int32 | 
|  |  | 
|  | // The number of chains remaining to generate for this level before moving | 
|  | // up to the next level | 
|  | needed int32 | 
|  | } | 
|  |  | 
|  | // set sets the code and length of an hcode. | 
|  | func (h *hcode) set(code uint16, length uint16) { | 
|  | h.len = length | 
|  | h.code = code | 
|  | } | 
|  |  | 
|  | func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} } | 
|  |  | 
|  | func newHuffmanEncoder(size int) *huffmanEncoder { | 
|  | return &huffmanEncoder{codes: make([]hcode, size)} | 
|  | } | 
|  |  | 
|  | // Generates a HuffmanCode corresponding to the fixed literal table | 
|  | func generateFixedLiteralEncoding() *huffmanEncoder { | 
|  | h := newHuffmanEncoder(maxNumLit) | 
|  | codes := h.codes | 
|  | var ch uint16 | 
|  | for ch = 0; ch < maxNumLit; ch++ { | 
|  | var bits uint16 | 
|  | var size uint16 | 
|  | switch { | 
|  | case ch < 144: | 
|  | // size 8, 000110000  .. 10111111 | 
|  | bits = ch + 48 | 
|  | size = 8 | 
|  | break | 
|  | case ch < 256: | 
|  | // size 9, 110010000 .. 111111111 | 
|  | bits = ch + 400 - 144 | 
|  | size = 9 | 
|  | break | 
|  | case ch < 280: | 
|  | // size 7, 0000000 .. 0010111 | 
|  | bits = ch - 256 | 
|  | size = 7 | 
|  | break | 
|  | default: | 
|  | // size 8, 11000000 .. 11000111 | 
|  | bits = ch + 192 - 280 | 
|  | size = 8 | 
|  | } | 
|  | codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size} | 
|  | } | 
|  | return h | 
|  | } | 
|  |  | 
|  | func generateFixedOffsetEncoding() *huffmanEncoder { | 
|  | h := newHuffmanEncoder(30) | 
|  | codes := h.codes | 
|  | for ch := range codes { | 
|  | codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5} | 
|  | } | 
|  | return h | 
|  | } | 
|  |  | 
|  | var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding() | 
|  | var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding() | 
|  |  | 
|  | func (h *huffmanEncoder) bitLength(freq []int32) int { | 
|  | var total int | 
|  | for i, f := range freq { | 
|  | if f != 0 { | 
|  | total += int(f) * int(h.codes[i].len) | 
|  | } | 
|  | } | 
|  | return total | 
|  | } | 
|  |  | 
|  | const maxBitsLimit = 16 | 
|  |  | 
|  | // Return the number of literals assigned to each bit size in the Huffman encoding | 
|  | // | 
|  | // This method is only called when list.length >= 3 | 
|  | // The cases of 0, 1, and 2 literals are handled by special case code. | 
|  | // | 
|  | // list  An array of the literals with non-zero frequencies | 
|  | //             and their associated frequencies. The array is in order of increasing | 
|  | //             frequency, and has as its last element a special element with frequency | 
|  | //             MaxInt32 | 
|  | // maxBits     The maximum number of bits that should be used to encode any literal. | 
|  | //             Must be less than 16. | 
|  | // return      An integer array in which array[i] indicates the number of literals | 
|  | //             that should be encoded in i bits. | 
|  | func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 { | 
|  | if maxBits >= maxBitsLimit { | 
|  | panic("flate: maxBits too large") | 
|  | } | 
|  | n := int32(len(list)) | 
|  | list = list[0 : n+1] | 
|  | list[n] = maxNode() | 
|  |  | 
|  | // The tree can't have greater depth than n - 1, no matter what. This | 
|  | // saves a little bit of work in some small cases | 
|  | if maxBits > n-1 { | 
|  | maxBits = n - 1 | 
|  | } | 
|  |  | 
|  | // Create information about each of the levels. | 
|  | // A bogus "Level 0" whose sole purpose is so that | 
|  | // level1.prev.needed==0.  This makes level1.nextPairFreq | 
|  | // be a legitimate value that never gets chosen. | 
|  | var levels [maxBitsLimit]levelInfo | 
|  | // leafCounts[i] counts the number of literals at the left | 
|  | // of ancestors of the rightmost node at level i. | 
|  | // leafCounts[i][j] is the number of literals at the left | 
|  | // of the level j ancestor. | 
|  | var leafCounts [maxBitsLimit][maxBitsLimit]int32 | 
|  |  | 
|  | for level := int32(1); level <= maxBits; level++ { | 
|  | // For every level, the first two items are the first two characters. | 
|  | // We initialize the levels as if we had already figured this out. | 
|  | levels[level] = levelInfo{ | 
|  | level:        level, | 
|  | lastFreq:     list[1].freq, | 
|  | nextCharFreq: list[2].freq, | 
|  | nextPairFreq: list[0].freq + list[1].freq, | 
|  | } | 
|  | leafCounts[level][level] = 2 | 
|  | if level == 1 { | 
|  | levels[level].nextPairFreq = math.MaxInt32 | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need a total of 2*n - 2 items at top level and have already generated 2. | 
|  | levels[maxBits].needed = 2*n - 4 | 
|  |  | 
|  | level := maxBits | 
|  | for { | 
|  | l := &levels[level] | 
|  | if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { | 
|  | // We've run out of both leafs and pairs. | 
|  | // End all calculations for this level. | 
|  | // To make sure we never come back to this level or any lower level, | 
|  | // set nextPairFreq impossibly large. | 
|  | l.needed = 0 | 
|  | levels[level+1].nextPairFreq = math.MaxInt32 | 
|  | level++ | 
|  | continue | 
|  | } | 
|  |  | 
|  | prevFreq := l.lastFreq | 
|  | if l.nextCharFreq < l.nextPairFreq { | 
|  | // The next item on this row is a leaf node. | 
|  | n := leafCounts[level][level] + 1 | 
|  | l.lastFreq = l.nextCharFreq | 
|  | // Lower leafCounts are the same of the previous node. | 
|  | leafCounts[level][level] = n | 
|  | l.nextCharFreq = list[n].freq | 
|  | } else { | 
|  | // The next item on this row is a pair from the previous row. | 
|  | // nextPairFreq isn't valid until we generate two | 
|  | // more values in the level below | 
|  | l.lastFreq = l.nextPairFreq | 
|  | // Take leaf counts from the lower level, except counts[level] remains the same. | 
|  | copy(leafCounts[level][:level], leafCounts[level-1][:level]) | 
|  | levels[l.level-1].needed = 2 | 
|  | } | 
|  |  | 
|  | if l.needed--; l.needed == 0 { | 
|  | // We've done everything we need to do for this level. | 
|  | // Continue calculating one level up. Fill in nextPairFreq | 
|  | // of that level with the sum of the two nodes we've just calculated on | 
|  | // this level. | 
|  | if l.level == maxBits { | 
|  | // All done! | 
|  | break | 
|  | } | 
|  | levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq | 
|  | level++ | 
|  | } else { | 
|  | // If we stole from below, move down temporarily to replenish it. | 
|  | for levels[level-1].needed > 0 { | 
|  | level-- | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Somethings is wrong if at the end, the top level is null or hasn't used | 
|  | // all of the leaves. | 
|  | if leafCounts[maxBits][maxBits] != n { | 
|  | panic("leafCounts[maxBits][maxBits] != n") | 
|  | } | 
|  |  | 
|  | bitCount := h.bitCount[:maxBits+1] | 
|  | bits := 1 | 
|  | counts := &leafCounts[maxBits] | 
|  | for level := maxBits; level > 0; level-- { | 
|  | // chain.leafCount gives the number of literals requiring at least "bits" | 
|  | // bits to encode. | 
|  | bitCount[bits] = counts[level] - counts[level-1] | 
|  | bits++ | 
|  | } | 
|  | return bitCount | 
|  | } | 
|  |  | 
|  | // Look at the leaves and assign them a bit count and an encoding as specified | 
|  | // in RFC 1951 3.2.2 | 
|  | func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) { | 
|  | code := uint16(0) | 
|  | for n, bits := range bitCount { | 
|  | code <<= 1 | 
|  | if n == 0 || bits == 0 { | 
|  | continue | 
|  | } | 
|  | // The literals list[len(list)-bits] .. list[len(list)-bits] | 
|  | // are encoded using "bits" bits, and get the values | 
|  | // code, code + 1, ....  The code values are | 
|  | // assigned in literal order (not frequency order). | 
|  | chunk := list[len(list)-int(bits):] | 
|  |  | 
|  | h.lns.sort(chunk) | 
|  | for _, node := range chunk { | 
|  | h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)} | 
|  | code++ | 
|  | } | 
|  | list = list[0 : len(list)-int(bits)] | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update this Huffman Code object to be the minimum code for the specified frequency count. | 
|  | // | 
|  | // freq  An array of frequencies, in which frequency[i] gives the frequency of literal i. | 
|  | // maxBits  The maximum number of bits to use for any literal. | 
|  | func (h *huffmanEncoder) generate(freq []int32, maxBits int32) { | 
|  | if h.freqcache == nil { | 
|  | // Allocate a reusable buffer with the longest possible frequency table. | 
|  | // Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit. | 
|  | // The largest of these is maxNumLit, so we allocate for that case. | 
|  | h.freqcache = make([]literalNode, maxNumLit+1) | 
|  | } | 
|  | list := h.freqcache[:len(freq)+1] | 
|  | // Number of non-zero literals | 
|  | count := 0 | 
|  | // Set list to be the set of all non-zero literals and their frequencies | 
|  | for i, f := range freq { | 
|  | if f != 0 { | 
|  | list[count] = literalNode{uint16(i), f} | 
|  | count++ | 
|  | } else { | 
|  | list[count] = literalNode{} | 
|  | h.codes[i].len = 0 | 
|  | } | 
|  | } | 
|  | list[len(freq)] = literalNode{} | 
|  |  | 
|  | list = list[:count] | 
|  | if count <= 2 { | 
|  | // Handle the small cases here, because they are awkward for the general case code. With | 
|  | // two or fewer literals, everything has bit length 1. | 
|  | for i, node := range list { | 
|  | // "list" is in order of increasing literal value. | 
|  | h.codes[node.literal].set(uint16(i), 1) | 
|  | } | 
|  | return | 
|  | } | 
|  | h.lfs.sort(list) | 
|  |  | 
|  | // Get the number of literals for each bit count | 
|  | bitCount := h.bitCounts(list, maxBits) | 
|  | // And do the assignment | 
|  | h.assignEncodingAndSize(bitCount, list) | 
|  | } | 
|  |  | 
|  | type byLiteral []literalNode | 
|  |  | 
|  | func (s *byLiteral) sort(a []literalNode) { | 
|  | *s = byLiteral(a) | 
|  | sort.Sort(s) | 
|  | } | 
|  |  | 
|  | func (s byLiteral) Len() int { return len(s) } | 
|  |  | 
|  | func (s byLiteral) Less(i, j int) bool { | 
|  | return s[i].literal < s[j].literal | 
|  | } | 
|  |  | 
|  | func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] } | 
|  |  | 
|  | type byFreq []literalNode | 
|  |  | 
|  | func (s *byFreq) sort(a []literalNode) { | 
|  | *s = byFreq(a) | 
|  | sort.Sort(s) | 
|  | } | 
|  |  | 
|  | func (s byFreq) Len() int { return len(s) } | 
|  |  | 
|  | func (s byFreq) Less(i, j int) bool { | 
|  | if s[i].freq == s[j].freq { | 
|  | return s[i].literal < s[j].literal | 
|  | } | 
|  | return s[i].freq < s[j].freq | 
|  | } | 
|  |  | 
|  | func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] } | 
|  |  | 
|  | func reverseBits(number uint16, bitLength byte) uint16 { | 
|  | return bits.Reverse16(number << (16 - bitLength)) | 
|  | } |