| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "fmt" |
| "strings" |
| ) |
| |
| // Rewrite tree to use separate statements to enforce |
| // order of evaluation. Makes walk easier, because it |
| // can (after this runs) reorder at will within an expression. |
| // |
| // Rewrite x op= y into x = x op y. |
| // |
| // Introduce temporaries as needed by runtime routines. |
| // For example, the map runtime routines take the map key |
| // by reference, so make sure all map keys are addressable |
| // by copying them to temporaries as needed. |
| // The same is true for channel operations. |
| // |
| // Arrange that map index expressions only appear in direct |
| // assignments x = m[k] or m[k] = x, never in larger expressions. |
| // |
| // Arrange that receive expressions only appear in direct assignments |
| // x = <-c or as standalone statements <-c, never in larger expressions. |
| |
| // TODO(rsc): The temporary introduction during multiple assignments |
| // should be moved into this file, so that the temporaries can be cleaned |
| // and so that conversions implicit in the OAS2FUNC and OAS2RECV |
| // nodes can be made explicit and then have their temporaries cleaned. |
| |
| // TODO(rsc): Goto and multilevel break/continue can jump over |
| // inserted VARKILL annotations. Work out a way to handle these. |
| // The current implementation is safe, in that it will execute correctly. |
| // But it won't reuse temporaries as aggressively as it might, and |
| // it can result in unnecessary zeroing of those variables in the function |
| // prologue. |
| |
| // Order holds state during the ordering process. |
| type Order struct { |
| out *NodeList // list of generated statements |
| temp *NodeList // head of stack of temporary variables |
| free *NodeList // free list of NodeList* structs (for use in temp) |
| } |
| |
| // Order rewrites fn->nbody to apply the ordering constraints |
| // described in the comment at the top of the file. |
| func order(fn *Node) { |
| if Debug['W'] > 1 { |
| s := fmt.Sprintf("\nbefore order %v", fn.Nname.Sym) |
| dumplist(s, fn.Nbody) |
| } |
| |
| orderblock(&fn.Nbody) |
| } |
| |
| // Ordertemp allocates a new temporary with the given type, |
| // pushes it onto the temp stack, and returns it. |
| // If clear is true, ordertemp emits code to zero the temporary. |
| func ordertemp(t *Type, order *Order, clear bool) *Node { |
| var_ := temp(t) |
| if clear { |
| a := Nod(OAS, var_, nil) |
| typecheck(&a, Etop) |
| order.out = list(order.out, a) |
| } |
| |
| l := order.free |
| if l == nil { |
| l = new(NodeList) |
| } |
| order.free = l.Next |
| l.Next = order.temp |
| l.N = var_ |
| order.temp = l |
| return var_ |
| } |
| |
| // Ordercopyexpr behaves like ordertemp but also emits |
| // code to initialize the temporary to the value n. |
| // |
| // The clear argument is provided for use when the evaluation |
| // of tmp = n turns into a function call that is passed a pointer |
| // to the temporary as the output space. If the call blocks before |
| // tmp has been written, the garbage collector will still treat the |
| // temporary as live, so we must zero it before entering that call. |
| // Today, this only happens for channel receive operations. |
| // (The other candidate would be map access, but map access |
| // returns a pointer to the result data instead of taking a pointer |
| // to be filled in.) |
| func ordercopyexpr(n *Node, t *Type, order *Order, clear int) *Node { |
| var_ := ordertemp(t, order, clear != 0) |
| a := Nod(OAS, var_, n) |
| typecheck(&a, Etop) |
| order.out = list(order.out, a) |
| return var_ |
| } |
| |
| // Ordercheapexpr returns a cheap version of n. |
| // The definition of cheap is that n is a variable or constant. |
| // If not, ordercheapexpr allocates a new tmp, emits tmp = n, |
| // and then returns tmp. |
| func ordercheapexpr(n *Node, order *Order) *Node { |
| switch n.Op { |
| case ONAME, OLITERAL: |
| return n |
| } |
| |
| return ordercopyexpr(n, n.Type, order, 0) |
| } |
| |
| // Ordersafeexpr returns a safe version of n. |
| // The definition of safe is that n can appear multiple times |
| // without violating the semantics of the original program, |
| // and that assigning to the safe version has the same effect |
| // as assigning to the original n. |
| // |
| // The intended use is to apply to x when rewriting x += y into x = x + y. |
| func ordersafeexpr(n *Node, order *Order) *Node { |
| switch n.Op { |
| case ONAME, OLITERAL: |
| return n |
| |
| case ODOT: |
| l := ordersafeexpr(n.Left, order) |
| if l == n.Left { |
| return n |
| } |
| a := Nod(OXXX, nil, nil) |
| *a = *n |
| a.Orig = a |
| a.Left = l |
| typecheck(&a, Erv) |
| return a |
| |
| case ODOTPTR, OIND: |
| l := ordercheapexpr(n.Left, order) |
| if l == n.Left { |
| return n |
| } |
| a := Nod(OXXX, nil, nil) |
| *a = *n |
| a.Orig = a |
| a.Left = l |
| typecheck(&a, Erv) |
| return a |
| |
| case OINDEX, OINDEXMAP: |
| var l *Node |
| if Isfixedarray(n.Left.Type) { |
| l = ordersafeexpr(n.Left, order) |
| } else { |
| l = ordercheapexpr(n.Left, order) |
| } |
| r := ordercheapexpr(n.Right, order) |
| if l == n.Left && r == n.Right { |
| return n |
| } |
| a := Nod(OXXX, nil, nil) |
| *a = *n |
| a.Orig = a |
| a.Left = l |
| a.Right = r |
| typecheck(&a, Erv) |
| return a |
| } |
| |
| Fatal("ordersafeexpr %v", Oconv(int(n.Op), 0)) |
| return nil // not reached |
| } |
| |
| // Istemp reports whether n is a temporary variable. |
| func istemp(n *Node) bool { |
| if n.Op != ONAME { |
| return false |
| } |
| return strings.HasPrefix(n.Sym.Name, "autotmp_") |
| } |
| |
| // Isaddrokay reports whether it is okay to pass n's address to runtime routines. |
| // Taking the address of a variable makes the liveness and optimization analyses |
| // lose track of where the variable's lifetime ends. To avoid hurting the analyses |
| // of ordinary stack variables, those are not 'isaddrokay'. Temporaries are okay, |
| // because we emit explicit VARKILL instructions marking the end of those |
| // temporaries' lifetimes. |
| func isaddrokay(n *Node) bool { |
| return islvalue(n) && (n.Op != ONAME || n.Class == PEXTERN || istemp(n)) |
| } |
| |
| // Orderaddrtemp ensures that *np is okay to pass by address to runtime routines. |
| // If the original argument *np is not okay, orderaddrtemp creates a tmp, emits |
| // tmp = *np, and then sets *np to the tmp variable. |
| func orderaddrtemp(np **Node, order *Order) { |
| n := *np |
| if isaddrokay(n) { |
| return |
| } |
| *np = ordercopyexpr(n, n.Type, order, 0) |
| } |
| |
| // Marktemp returns the top of the temporary variable stack. |
| func marktemp(order *Order) *NodeList { |
| return order.temp |
| } |
| |
| // Poptemp pops temporaries off the stack until reaching the mark, |
| // which must have been returned by marktemp. |
| func poptemp(mark *NodeList, order *Order) { |
| var l *NodeList |
| |
| for { |
| l = order.temp |
| if l == mark { |
| break |
| } |
| order.temp = l.Next |
| l.Next = order.free |
| order.free = l |
| } |
| } |
| |
| // Cleantempnopop emits to *out VARKILL instructions for each temporary |
| // above the mark on the temporary stack, but it does not pop them |
| // from the stack. |
| func cleantempnopop(mark *NodeList, order *Order, out **NodeList) { |
| var kill *Node |
| |
| for l := order.temp; l != mark; l = l.Next { |
| kill = Nod(OVARKILL, l.N, nil) |
| typecheck(&kill, Etop) |
| *out = list(*out, kill) |
| } |
| } |
| |
| // Cleantemp emits VARKILL instructions for each temporary above the |
| // mark on the temporary stack and removes them from the stack. |
| func cleantemp(top *NodeList, order *Order) { |
| cleantempnopop(top, order, &order.out) |
| poptemp(top, order) |
| } |
| |
| // Orderstmtlist orders each of the statements in the list. |
| func orderstmtlist(l *NodeList, order *Order) { |
| for ; l != nil; l = l.Next { |
| orderstmt(l.N, order) |
| } |
| } |
| |
| // Orderblock orders the block of statements *l onto a new list, |
| // and then replaces *l with that list. |
| func orderblock(l **NodeList) { |
| var order Order |
| mark := marktemp(&order) |
| orderstmtlist(*l, &order) |
| cleantemp(mark, &order) |
| *l = order.out |
| } |
| |
| // Orderexprinplace orders the side effects in *np and |
| // leaves them as the init list of the final *np. |
| func orderexprinplace(np **Node, outer *Order) { |
| n := *np |
| var order Order |
| orderexpr(&n, &order) |
| addinit(&n, order.out) |
| |
| // insert new temporaries from order |
| // at head of outer list. |
| lp := &order.temp |
| |
| for *lp != nil { |
| lp = &(*lp).Next |
| } |
| *lp = outer.temp |
| outer.temp = order.temp |
| |
| *np = n |
| } |
| |
| // Orderstmtinplace orders the side effects of the single statement *np |
| // and replaces it with the resulting statement list. |
| func orderstmtinplace(np **Node) { |
| n := *np |
| var order Order |
| mark := marktemp(&order) |
| orderstmt(n, &order) |
| cleantemp(mark, &order) |
| *np = liststmt(order.out) |
| } |
| |
| // Orderinit moves n's init list to order->out. |
| func orderinit(n *Node, order *Order) { |
| orderstmtlist(n.Ninit, order) |
| n.Ninit = nil |
| } |
| |
| // Ismulticall reports whether the list l is f() for a multi-value function. |
| // Such an f() could appear as the lone argument to a multi-arg function. |
| func ismulticall(l *NodeList) bool { |
| // one arg only |
| if l == nil || l.Next != nil { |
| return false |
| } |
| n := l.N |
| |
| // must be call |
| switch n.Op { |
| default: |
| return false |
| |
| case OCALLFUNC, OCALLMETH, OCALLINTER: |
| break |
| } |
| |
| // call must return multiple values |
| return n.Left.Type.Outtuple > 1 |
| } |
| |
| // Copyret emits t1, t2, ... = n, where n is a function call, |
| // and then returns the list t1, t2, .... |
| func copyret(n *Node, order *Order) *NodeList { |
| if n.Type.Etype != TSTRUCT || n.Type.Funarg == 0 { |
| Fatal("copyret %v %d", n.Type, n.Left.Type.Outtuple) |
| } |
| |
| var l1 *NodeList |
| var l2 *NodeList |
| var tl Iter |
| var tmp *Node |
| for t := Structfirst(&tl, &n.Type); t != nil; t = structnext(&tl) { |
| tmp = temp(t.Type) |
| l1 = list(l1, tmp) |
| l2 = list(l2, tmp) |
| } |
| |
| as := Nod(OAS2, nil, nil) |
| as.List = l1 |
| as.Rlist = list1(n) |
| typecheck(&as, Etop) |
| orderstmt(as, order) |
| |
| return l2 |
| } |
| |
| // Ordercallargs orders the list of call arguments *l. |
| func ordercallargs(l **NodeList, order *Order) { |
| if ismulticall(*l) { |
| // return f() where f() is multiple values. |
| *l = copyret((*l).N, order) |
| } else { |
| orderexprlist(*l, order) |
| } |
| } |
| |
| // Ordercall orders the call expression n. |
| // n->op is OCALLMETH/OCALLFUNC/OCALLINTER or a builtin like OCOPY. |
| func ordercall(n *Node, order *Order) { |
| orderexpr(&n.Left, order) |
| orderexpr(&n.Right, order) // ODDDARG temp |
| ordercallargs(&n.List, order) |
| } |
| |
| // Ordermapassign appends n to order->out, introducing temporaries |
| // to make sure that all map assignments have the form m[k] = x, |
| // where x is adressable. |
| // (Orderexpr has already been called on n, so we know k is addressable.) |
| // |
| // If n is m[k] = x where x is not addressable, the rewrite is: |
| // tmp = x |
| // m[k] = tmp |
| // |
| // If n is the multiple assignment form ..., m[k], ... = ..., the rewrite is |
| // t1 = m |
| // t2 = k |
| // ...., t3, ... = x |
| // t1[t2] = t3 |
| // |
| // The temporaries t1, t2 are needed in case the ... being assigned |
| // contain m or k. They are usually unnecessary, but in the unnecessary |
| // cases they are also typically registerizable, so not much harm done. |
| // And this only applies to the multiple-assignment form. |
| // We could do a more precise analysis if needed, like in walk.c. |
| // |
| // Ordermapassign also inserts these temporaries if needed for |
| // calling writebarrierfat with a pointer to n->right. |
| func ordermapassign(n *Node, order *Order) { |
| switch n.Op { |
| default: |
| Fatal("ordermapassign %v", Oconv(int(n.Op), 0)) |
| |
| case OAS: |
| order.out = list(order.out, n) |
| |
| // We call writebarrierfat only for values > 4 pointers long. See walk.c. |
| if (n.Left.Op == OINDEXMAP || (needwritebarrier(n.Left, n.Right) && n.Left.Type.Width > int64(4*Widthptr))) && !isaddrokay(n.Right) { |
| m := n.Left |
| n.Left = ordertemp(m.Type, order, false) |
| a := Nod(OAS, m, n.Left) |
| typecheck(&a, Etop) |
| order.out = list(order.out, a) |
| } |
| |
| case OAS2, OAS2DOTTYPE, OAS2MAPR, OAS2FUNC: |
| var post *NodeList |
| var m *Node |
| var a *Node |
| for l := n.List; l != nil; l = l.Next { |
| if l.N.Op == OINDEXMAP { |
| m = l.N |
| if !istemp(m.Left) { |
| m.Left = ordercopyexpr(m.Left, m.Left.Type, order, 0) |
| } |
| if !istemp(m.Right) { |
| m.Right = ordercopyexpr(m.Right, m.Right.Type, order, 0) |
| } |
| l.N = ordertemp(m.Type, order, false) |
| a = Nod(OAS, m, l.N) |
| typecheck(&a, Etop) |
| post = list(post, a) |
| } |
| } |
| |
| order.out = list(order.out, n) |
| order.out = concat(order.out, post) |
| } |
| } |
| |
| // Orderstmt orders the statement n, appending to order->out. |
| // Temporaries created during the statement are cleaned |
| // up using VARKILL instructions as possible. |
| func orderstmt(n *Node, order *Order) { |
| if n == nil { |
| return |
| } |
| |
| lno := int(setlineno(n)) |
| |
| orderinit(n, order) |
| |
| switch n.Op { |
| default: |
| Fatal("orderstmt %v", Oconv(int(n.Op), 0)) |
| |
| case OVARKILL: |
| order.out = list(order.out, n) |
| |
| case OAS, |
| OAS2, |
| OCLOSE, |
| OCOPY, |
| OPRINT, |
| OPRINTN, |
| ORECOVER, |
| ORECV: |
| t := marktemp(order) |
| orderexpr(&n.Left, order) |
| orderexpr(&n.Right, order) |
| orderexprlist(n.List, order) |
| orderexprlist(n.Rlist, order) |
| switch n.Op { |
| case OAS, OAS2, OAS2DOTTYPE: |
| ordermapassign(n, order) |
| |
| default: |
| order.out = list(order.out, n) |
| } |
| |
| cleantemp(t, order) |
| |
| // Special: rewrite l op= r into l = l op r. |
| // This simplies quite a few operations; |
| // most important is that it lets us separate |
| // out map read from map write when l is |
| // a map index expression. |
| case OASOP: |
| t := marktemp(order) |
| |
| orderexpr(&n.Left, order) |
| n.Left = ordersafeexpr(n.Left, order) |
| tmp1 := treecopy(n.Left) |
| if tmp1.Op == OINDEXMAP { |
| tmp1.Etype = 0 // now an rvalue not an lvalue |
| } |
| tmp1 = ordercopyexpr(tmp1, n.Left.Type, order, 0) |
| n.Right = Nod(int(n.Etype), tmp1, n.Right) |
| typecheck(&n.Right, Erv) |
| orderexpr(&n.Right, order) |
| n.Etype = 0 |
| n.Op = OAS |
| ordermapassign(n, order) |
| cleantemp(t, order) |
| |
| // Special: make sure key is addressable, |
| // and make sure OINDEXMAP is not copied out. |
| case OAS2MAPR: |
| t := marktemp(order) |
| |
| orderexprlist(n.List, order) |
| r := n.Rlist.N |
| orderexpr(&r.Left, order) |
| orderexpr(&r.Right, order) |
| |
| // See case OINDEXMAP below. |
| if r.Right.Op == OARRAYBYTESTR { |
| r.Right.Op = OARRAYBYTESTRTMP |
| } |
| orderaddrtemp(&r.Right, order) |
| ordermapassign(n, order) |
| cleantemp(t, order) |
| |
| // Special: avoid copy of func call n->rlist->n. |
| case OAS2FUNC: |
| t := marktemp(order) |
| |
| orderexprlist(n.List, order) |
| ordercall(n.Rlist.N, order) |
| ordermapassign(n, order) |
| cleantemp(t, order) |
| |
| // Special: use temporary variables to hold result, |
| // so that assertI2Tetc can take address of temporary. |
| // No temporary for blank assignment. |
| case OAS2DOTTYPE: |
| t := marktemp(order) |
| |
| orderexprlist(n.List, order) |
| orderexpr(&n.Rlist.N.Left, order) // i in i.(T) |
| if isblank(n.List.N) { |
| order.out = list(order.out, n) |
| } else { |
| typ := n.Rlist.N.Type |
| tmp1 := ordertemp(typ, order, haspointers(typ)) |
| order.out = list(order.out, n) |
| r := Nod(OAS, n.List.N, tmp1) |
| typecheck(&r, Etop) |
| ordermapassign(r, order) |
| n.List = list(list1(tmp1), n.List.Next.N) |
| } |
| |
| cleantemp(t, order) |
| |
| // Special: use temporary variables to hold result, |
| // so that chanrecv can take address of temporary. |
| case OAS2RECV: |
| t := marktemp(order) |
| |
| orderexprlist(n.List, order) |
| orderexpr(&n.Rlist.N.Left, order) // arg to recv |
| ch := n.Rlist.N.Left.Type |
| tmp1 := ordertemp(ch.Type, order, haspointers(ch.Type)) |
| var tmp2 *Node |
| if !isblank(n.List.Next.N) { |
| tmp2 = ordertemp(n.List.Next.N.Type, order, false) |
| } else { |
| tmp2 = ordertemp(Types[TBOOL], order, false) |
| } |
| order.out = list(order.out, n) |
| r := Nod(OAS, n.List.N, tmp1) |
| typecheck(&r, Etop) |
| ordermapassign(r, order) |
| r = Nod(OAS, n.List.Next.N, tmp2) |
| typecheck(&r, Etop) |
| ordermapassign(r, order) |
| n.List = list(list1(tmp1), tmp2) |
| cleantemp(t, order) |
| |
| // Special: does not save n onto out. |
| case OBLOCK, OEMPTY: |
| orderstmtlist(n.List, order) |
| |
| // Special: n->left is not an expression; save as is. |
| case OBREAK, |
| OCONTINUE, |
| ODCL, |
| ODCLCONST, |
| ODCLTYPE, |
| OFALL, |
| OXFALL, |
| OGOTO, |
| OLABEL, |
| ORETJMP: |
| order.out = list(order.out, n) |
| |
| // Special: handle call arguments. |
| case OCALLFUNC, OCALLINTER, OCALLMETH: |
| t := marktemp(order) |
| |
| ordercall(n, order) |
| order.out = list(order.out, n) |
| cleantemp(t, order) |
| |
| // Special: order arguments to inner call but not call itself. |
| case ODEFER, OPROC: |
| t := marktemp(order) |
| |
| switch n.Left.Op { |
| // Delete will take the address of the key. |
| // Copy key into new temp and do not clean it |
| // (it persists beyond the statement). |
| case ODELETE: |
| orderexprlist(n.Left.List, order) |
| |
| t1 := marktemp(order) |
| np := &n.Left.List.Next.N // map key |
| *np = ordercopyexpr(*np, (*np).Type, order, 0) |
| poptemp(t1, order) |
| |
| default: |
| ordercall(n.Left, order) |
| } |
| |
| order.out = list(order.out, n) |
| cleantemp(t, order) |
| |
| case ODELETE: |
| t := marktemp(order) |
| orderexpr(&n.List.N, order) |
| orderexpr(&n.List.Next.N, order) |
| orderaddrtemp(&n.List.Next.N, order) // map key |
| order.out = list(order.out, n) |
| cleantemp(t, order) |
| |
| // Clean temporaries from condition evaluation at |
| // beginning of loop body and after for statement. |
| case OFOR: |
| t := marktemp(order) |
| |
| orderexprinplace(&n.Ntest, order) |
| var l *NodeList |
| cleantempnopop(t, order, &l) |
| n.Nbody = concat(l, n.Nbody) |
| orderblock(&n.Nbody) |
| orderstmtinplace(&n.Nincr) |
| order.out = list(order.out, n) |
| cleantemp(t, order) |
| |
| // Clean temporaries from condition at |
| // beginning of both branches. |
| case OIF: |
| t := marktemp(order) |
| |
| orderexprinplace(&n.Ntest, order) |
| var l *NodeList |
| cleantempnopop(t, order, &l) |
| n.Nbody = concat(l, n.Nbody) |
| l = nil |
| cleantempnopop(t, order, &l) |
| n.Nelse = concat(l, n.Nelse) |
| poptemp(t, order) |
| orderblock(&n.Nbody) |
| orderblock(&n.Nelse) |
| order.out = list(order.out, n) |
| |
| // Special: argument will be converted to interface using convT2E |
| // so make sure it is an addressable temporary. |
| case OPANIC: |
| t := marktemp(order) |
| |
| orderexpr(&n.Left, order) |
| if !Isinter(n.Left.Type) { |
| orderaddrtemp(&n.Left, order) |
| } |
| order.out = list(order.out, n) |
| cleantemp(t, order) |
| |
| // n->right is the expression being ranged over. |
| // order it, and then make a copy if we need one. |
| // We almost always do, to ensure that we don't |
| // see any value changes made during the loop. |
| // Usually the copy is cheap (e.g., array pointer, chan, slice, string are all tiny). |
| // The exception is ranging over an array value (not a slice, not a pointer to array), |
| // which must make a copy to avoid seeing updates made during |
| // the range body. Ranging over an array value is uncommon though. |
| case ORANGE: |
| t := marktemp(order) |
| |
| orderexpr(&n.Right, order) |
| switch n.Type.Etype { |
| default: |
| Fatal("orderstmt range %v", n.Type) |
| |
| // Mark []byte(str) range expression to reuse string backing storage. |
| // It is safe because the storage cannot be mutated. |
| case TARRAY: |
| if n.Right.Op == OSTRARRAYBYTE { |
| n.Right.Op = OSTRARRAYBYTETMP |
| } |
| if count(n.List) < 2 || isblank(n.List.Next.N) { |
| // for i := range x will only use x once, to compute len(x). |
| // No need to copy it. |
| break |
| } |
| fallthrough |
| |
| // chan, string, slice, array ranges use value multiple times. |
| // make copy. |
| // fall through |
| case TCHAN, TSTRING: |
| r := n.Right |
| |
| if r.Type.Etype == TSTRING && r.Type != Types[TSTRING] { |
| r = Nod(OCONV, r, nil) |
| r.Type = Types[TSTRING] |
| typecheck(&r, Erv) |
| } |
| |
| n.Right = ordercopyexpr(r, r.Type, order, 0) |
| |
| // copy the map value in case it is a map literal. |
| // TODO(rsc): Make tmp = literal expressions reuse tmp. |
| // For maps tmp is just one word so it hardly matters. |
| case TMAP: |
| r := n.Right |
| |
| n.Right = ordercopyexpr(r, r.Type, order, 0) |
| |
| // n->alloc is the temp for the iterator. |
| n.Alloc = ordertemp(Types[TUINT8], order, true) |
| } |
| |
| for l := n.List; l != nil; l = l.Next { |
| orderexprinplace(&l.N, order) |
| } |
| orderblock(&n.Nbody) |
| order.out = list(order.out, n) |
| cleantemp(t, order) |
| |
| case ORETURN: |
| ordercallargs(&n.List, order) |
| order.out = list(order.out, n) |
| |
| // Special: clean case temporaries in each block entry. |
| // Select must enter one of its blocks, so there is no |
| // need for a cleaning at the end. |
| // Doubly special: evaluation order for select is stricter |
| // than ordinary expressions. Even something like p.c |
| // has to be hoisted into a temporary, so that it cannot be |
| // reordered after the channel evaluation for a different |
| // case (if p were nil, then the timing of the fault would |
| // give this away). |
| case OSELECT: |
| t := marktemp(order) |
| |
| var tmp1 *Node |
| var tmp2 *Node |
| var r *Node |
| for l := n.List; l != nil; l = l.Next { |
| if l.N.Op != OXCASE { |
| Fatal("order select case %v", Oconv(int(l.N.Op), 0)) |
| } |
| r = l.N.Left |
| setlineno(l.N) |
| |
| // Append any new body prologue to ninit. |
| // The next loop will insert ninit into nbody. |
| if l.N.Ninit != nil { |
| Fatal("order select ninit") |
| } |
| if r != nil { |
| switch r.Op { |
| default: |
| Yyerror("unknown op in select %v", Oconv(int(r.Op), 0)) |
| Dump("select case", r) |
| |
| // If this is case x := <-ch or case x, y := <-ch, the case has |
| // the ODCL nodes to declare x and y. We want to delay that |
| // declaration (and possible allocation) until inside the case body. |
| // Delete the ODCL nodes here and recreate them inside the body below. |
| case OSELRECV, OSELRECV2: |
| if r.Colas { |
| t = r.Ninit |
| if t != nil && t.N.Op == ODCL && t.N.Left == r.Left { |
| t = t.Next |
| } |
| if t != nil && t.N.Op == ODCL && t.N.Left == r.Ntest { |
| t = t.Next |
| } |
| if t == nil { |
| r.Ninit = nil |
| } |
| } |
| |
| if r.Ninit != nil { |
| Yyerror("ninit on select recv") |
| dumplist("ninit", r.Ninit) |
| } |
| |
| // case x = <-c |
| // case x, ok = <-c |
| // r->left is x, r->ntest is ok, r->right is ORECV, r->right->left is c. |
| // r->left == N means 'case <-c'. |
| // c is always evaluated; x and ok are only evaluated when assigned. |
| orderexpr(&r.Right.Left, order) |
| |
| if r.Right.Left.Op != ONAME { |
| r.Right.Left = ordercopyexpr(r.Right.Left, r.Right.Left.Type, order, 0) |
| } |
| |
| // Introduce temporary for receive and move actual copy into case body. |
| // avoids problems with target being addressed, as usual. |
| // NOTE: If we wanted to be clever, we could arrange for just one |
| // temporary per distinct type, sharing the temp among all receives |
| // with that temp. Similarly one ok bool could be shared among all |
| // the x,ok receives. Not worth doing until there's a clear need. |
| if r.Left != nil && isblank(r.Left) { |
| r.Left = nil |
| } |
| if r.Left != nil { |
| // use channel element type for temporary to avoid conversions, |
| // such as in case interfacevalue = <-intchan. |
| // the conversion happens in the OAS instead. |
| tmp1 = r.Left |
| |
| if r.Colas { |
| tmp2 = Nod(ODCL, tmp1, nil) |
| typecheck(&tmp2, Etop) |
| l.N.Ninit = list(l.N.Ninit, tmp2) |
| } |
| |
| r.Left = ordertemp(r.Right.Left.Type.Type, order, haspointers(r.Right.Left.Type.Type)) |
| tmp2 = Nod(OAS, tmp1, r.Left) |
| typecheck(&tmp2, Etop) |
| l.N.Ninit = list(l.N.Ninit, tmp2) |
| } |
| |
| if r.Ntest != nil && isblank(r.Ntest) { |
| r.Ntest = nil |
| } |
| if r.Ntest != nil { |
| tmp1 = r.Ntest |
| if r.Colas { |
| tmp2 = Nod(ODCL, tmp1, nil) |
| typecheck(&tmp2, Etop) |
| l.N.Ninit = list(l.N.Ninit, tmp2) |
| } |
| |
| r.Ntest = ordertemp(tmp1.Type, order, false) |
| tmp2 = Nod(OAS, tmp1, r.Ntest) |
| typecheck(&tmp2, Etop) |
| l.N.Ninit = list(l.N.Ninit, tmp2) |
| } |
| |
| orderblock(&l.N.Ninit) |
| |
| case OSEND: |
| if r.Ninit != nil { |
| Yyerror("ninit on select send") |
| dumplist("ninit", r.Ninit) |
| } |
| |
| // case c <- x |
| // r->left is c, r->right is x, both are always evaluated. |
| orderexpr(&r.Left, order) |
| |
| if !istemp(r.Left) { |
| r.Left = ordercopyexpr(r.Left, r.Left.Type, order, 0) |
| } |
| orderexpr(&r.Right, order) |
| if !istemp(r.Right) { |
| r.Right = ordercopyexpr(r.Right, r.Right.Type, order, 0) |
| } |
| } |
| } |
| |
| orderblock(&l.N.Nbody) |
| } |
| |
| // Now that we have accumulated all the temporaries, clean them. |
| // Also insert any ninit queued during the previous loop. |
| // (The temporary cleaning must follow that ninit work.) |
| for l := n.List; l != nil; l = l.Next { |
| cleantempnopop(t, order, &l.N.Ninit) |
| l.N.Nbody = concat(l.N.Ninit, l.N.Nbody) |
| l.N.Ninit = nil |
| } |
| |
| order.out = list(order.out, n) |
| poptemp(t, order) |
| |
| // Special: value being sent is passed as a pointer; make it addressable. |
| case OSEND: |
| t := marktemp(order) |
| |
| orderexpr(&n.Left, order) |
| orderexpr(&n.Right, order) |
| orderaddrtemp(&n.Right, order) |
| order.out = list(order.out, n) |
| cleantemp(t, order) |
| |
| // TODO(rsc): Clean temporaries more aggressively. |
| // Note that because walkswitch will rewrite some of the |
| // switch into a binary search, this is not as easy as it looks. |
| // (If we ran that code here we could invoke orderstmt on |
| // the if-else chain instead.) |
| // For now just clean all the temporaries at the end. |
| // In practice that's fine. |
| case OSWITCH: |
| t := marktemp(order) |
| |
| orderexpr(&n.Ntest, order) |
| for l := n.List; l != nil; l = l.Next { |
| if l.N.Op != OXCASE { |
| Fatal("order switch case %v", Oconv(int(l.N.Op), 0)) |
| } |
| orderexprlistinplace(l.N.List, order) |
| orderblock(&l.N.Nbody) |
| } |
| |
| order.out = list(order.out, n) |
| cleantemp(t, order) |
| } |
| |
| lineno = int32(lno) |
| } |
| |
| // Orderexprlist orders the expression list l into order. |
| func orderexprlist(l *NodeList, order *Order) { |
| for ; l != nil; l = l.Next { |
| orderexpr(&l.N, order) |
| } |
| } |
| |
| // Orderexprlist orders the expression list l but saves |
| // the side effects on the individual expression ninit lists. |
| func orderexprlistinplace(l *NodeList, order *Order) { |
| for ; l != nil; l = l.Next { |
| orderexprinplace(&l.N, order) |
| } |
| } |
| |
| // Orderexpr orders a single expression, appending side |
| // effects to order->out as needed. |
| func orderexpr(np **Node, order *Order) { |
| n := *np |
| if n == nil { |
| return |
| } |
| |
| lno := int(setlineno(n)) |
| orderinit(n, order) |
| |
| switch n.Op { |
| default: |
| orderexpr(&n.Left, order) |
| orderexpr(&n.Right, order) |
| orderexprlist(n.List, order) |
| orderexprlist(n.Rlist, order) |
| |
| // Addition of strings turns into a function call. |
| // Allocate a temporary to hold the strings. |
| // Fewer than 5 strings use direct runtime helpers. |
| case OADDSTR: |
| orderexprlist(n.List, order) |
| |
| if count(n.List) > 5 { |
| t := typ(TARRAY) |
| t.Bound = int64(count(n.List)) |
| t.Type = Types[TSTRING] |
| n.Alloc = ordertemp(t, order, false) |
| } |
| |
| // Mark string(byteSlice) arguments to reuse byteSlice backing |
| // buffer during conversion. String concatenation does not |
| // memorize the strings for later use, so it is safe. |
| // However, we can do it only if there is at least one non-empty string literal. |
| // Otherwise if all other arguments are empty strings, |
| // concatstrings will return the reference to the temp string |
| // to the caller. |
| hasbyte := false |
| |
| haslit := false |
| for l := n.List; l != nil; l = l.Next { |
| hasbyte = hasbyte || l.N.Op == OARRAYBYTESTR |
| haslit = haslit || l.N.Op == OLITERAL && len(l.N.Val.U.Sval) != 0 |
| } |
| |
| if haslit && hasbyte { |
| for l := n.List; l != nil; l = l.Next { |
| if l.N.Op == OARRAYBYTESTR { |
| l.N.Op = OARRAYBYTESTRTMP |
| } |
| } |
| } |
| |
| case OCMPSTR: |
| orderexpr(&n.Left, order) |
| orderexpr(&n.Right, order) |
| |
| // Mark string(byteSlice) arguments to reuse byteSlice backing |
| // buffer during conversion. String comparison does not |
| // memorize the strings for later use, so it is safe. |
| if n.Left.Op == OARRAYBYTESTR { |
| n.Left.Op = OARRAYBYTESTRTMP |
| } |
| if n.Right.Op == OARRAYBYTESTR { |
| n.Right.Op = OARRAYBYTESTRTMP |
| } |
| |
| // key must be addressable |
| case OINDEXMAP: |
| orderexpr(&n.Left, order) |
| |
| orderexpr(&n.Right, order) |
| |
| // For x = m[string(k)] where k is []byte, the allocation of |
| // backing bytes for the string can be avoided by reusing |
| // the []byte backing array. This is a special case that it |
| // would be nice to handle more generally, but because |
| // there are no []byte-keyed maps, this specific case comes |
| // up in important cases in practice. See issue 3512. |
| // Nothing can change the []byte we are not copying before |
| // the map index, because the map access is going to |
| // be forced to happen immediately following this |
| // conversion (by the ordercopyexpr a few lines below). |
| if n.Etype == 0 && n.Right.Op == OARRAYBYTESTR { |
| n.Right.Op = OARRAYBYTESTRTMP |
| } |
| |
| orderaddrtemp(&n.Right, order) |
| if n.Etype == 0 { |
| // use of value (not being assigned); |
| // make copy in temporary. |
| n = ordercopyexpr(n, n.Type, order, 0) |
| } |
| |
| // concrete type (not interface) argument must be addressable |
| // temporary to pass to runtime. |
| case OCONVIFACE: |
| orderexpr(&n.Left, order) |
| |
| if !Isinter(n.Left.Type) { |
| orderaddrtemp(&n.Left, order) |
| } |
| |
| case OANDAND, OOROR: |
| mark := marktemp(order) |
| orderexpr(&n.Left, order) |
| |
| // Clean temporaries from first branch at beginning of second. |
| // Leave them on the stack so that they can be killed in the outer |
| // context in case the short circuit is taken. |
| var l *NodeList |
| |
| cleantempnopop(mark, order, &l) |
| n.Right.Ninit = concat(l, n.Right.Ninit) |
| orderexprinplace(&n.Right, order) |
| |
| case OAPPEND, |
| OCALLFUNC, |
| OCALLINTER, |
| OCALLMETH, |
| OCAP, |
| OCOMPLEX, |
| OCOPY, |
| OIMAG, |
| OLEN, |
| OMAKECHAN, |
| OMAKEMAP, |
| OMAKESLICE, |
| ONEW, |
| OREAL, |
| ORECOVER: |
| ordercall(n, order) |
| n = ordercopyexpr(n, n.Type, order, 0) |
| |
| case OCLOSURE: |
| if n.Noescape && n.Func.Cvars != nil { |
| n.Alloc = ordertemp(Types[TUINT8], order, false) // walk will fill in correct type |
| } |
| |
| case OARRAYLIT, OCALLPART: |
| orderexpr(&n.Left, order) |
| orderexpr(&n.Right, order) |
| orderexprlist(n.List, order) |
| orderexprlist(n.Rlist, order) |
| if n.Noescape { |
| n.Alloc = ordertemp(Types[TUINT8], order, false) // walk will fill in correct type |
| } |
| |
| case ODDDARG: |
| if n.Noescape { |
| // The ddd argument does not live beyond the call it is created for. |
| // Allocate a temporary that will be cleaned up when this statement |
| // completes. We could be more aggressive and try to arrange for it |
| // to be cleaned up when the call completes. |
| n.Alloc = ordertemp(n.Type.Type, order, false) |
| } |
| |
| case ODOTTYPE, ODOTTYPE2: |
| orderexpr(&n.Left, order) |
| // TODO(rsc): The Isfat is for consistency with componentgen and walkexpr. |
| // It needs to be removed in all three places. |
| // That would allow inlining x.(struct{*int}) the same as x.(*int). |
| if !isdirectiface(n.Type) || Isfat(n.Type) || flag_race != 0 { |
| n = ordercopyexpr(n, n.Type, order, 1) |
| } |
| |
| case ORECV: |
| orderexpr(&n.Left, order) |
| n = ordercopyexpr(n, n.Type, order, 1) |
| |
| case OEQ, ONE: |
| orderexpr(&n.Left, order) |
| orderexpr(&n.Right, order) |
| t := n.Left.Type |
| if t.Etype == TSTRUCT || Isfixedarray(t) { |
| // for complex comparisons, we need both args to be |
| // addressable so we can pass them to the runtime. |
| orderaddrtemp(&n.Left, order) |
| |
| orderaddrtemp(&n.Right, order) |
| } |
| } |
| |
| lineno = int32(lno) |
| |
| *np = n |
| } |