|  | // Copyright 2014 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package runtime | 
|  |  | 
|  | import ( | 
|  | "internal/cpu" | 
|  | "internal/goarch" | 
|  | "unsafe" | 
|  | ) | 
|  |  | 
|  | const ( | 
|  | c0 = uintptr((8-goarch.PtrSize)/4*2860486313 + (goarch.PtrSize-4)/4*33054211828000289) | 
|  | c1 = uintptr((8-goarch.PtrSize)/4*3267000013 + (goarch.PtrSize-4)/4*23344194077549503) | 
|  | ) | 
|  |  | 
|  | func memhash0(p unsafe.Pointer, h uintptr) uintptr { | 
|  | return h | 
|  | } | 
|  |  | 
|  | func memhash8(p unsafe.Pointer, h uintptr) uintptr { | 
|  | return memhash(p, h, 1) | 
|  | } | 
|  |  | 
|  | func memhash16(p unsafe.Pointer, h uintptr) uintptr { | 
|  | return memhash(p, h, 2) | 
|  | } | 
|  |  | 
|  | func memhash128(p unsafe.Pointer, h uintptr) uintptr { | 
|  | return memhash(p, h, 16) | 
|  | } | 
|  |  | 
|  | //go:nosplit | 
|  | func memhash_varlen(p unsafe.Pointer, h uintptr) uintptr { | 
|  | ptr := getclosureptr() | 
|  | size := *(*uintptr)(unsafe.Pointer(ptr + unsafe.Sizeof(h))) | 
|  | return memhash(p, h, size) | 
|  | } | 
|  |  | 
|  | // runtime variable to check if the processor we're running on | 
|  | // actually supports the instructions used by the AES-based | 
|  | // hash implementation. | 
|  | var useAeshash bool | 
|  |  | 
|  | // in asm_*.s | 
|  | func memhash(p unsafe.Pointer, h, s uintptr) uintptr | 
|  | func memhash32(p unsafe.Pointer, h uintptr) uintptr | 
|  | func memhash64(p unsafe.Pointer, h uintptr) uintptr | 
|  | func strhash(p unsafe.Pointer, h uintptr) uintptr | 
|  |  | 
|  | func strhashFallback(a unsafe.Pointer, h uintptr) uintptr { | 
|  | x := (*stringStruct)(a) | 
|  | return memhashFallback(x.str, h, uintptr(x.len)) | 
|  | } | 
|  |  | 
|  | // NOTE: Because NaN != NaN, a map can contain any | 
|  | // number of (mostly useless) entries keyed with NaNs. | 
|  | // To avoid long hash chains, we assign a random number | 
|  | // as the hash value for a NaN. | 
|  |  | 
|  | func f32hash(p unsafe.Pointer, h uintptr) uintptr { | 
|  | f := *(*float32)(p) | 
|  | switch { | 
|  | case f == 0: | 
|  | return c1 * (c0 ^ h) // +0, -0 | 
|  | case f != f: | 
|  | return c1 * (c0 ^ h ^ uintptr(fastrand())) // any kind of NaN | 
|  | default: | 
|  | return memhash(p, h, 4) | 
|  | } | 
|  | } | 
|  |  | 
|  | func f64hash(p unsafe.Pointer, h uintptr) uintptr { | 
|  | f := *(*float64)(p) | 
|  | switch { | 
|  | case f == 0: | 
|  | return c1 * (c0 ^ h) // +0, -0 | 
|  | case f != f: | 
|  | return c1 * (c0 ^ h ^ uintptr(fastrand())) // any kind of NaN | 
|  | default: | 
|  | return memhash(p, h, 8) | 
|  | } | 
|  | } | 
|  |  | 
|  | func c64hash(p unsafe.Pointer, h uintptr) uintptr { | 
|  | x := (*[2]float32)(p) | 
|  | return f32hash(unsafe.Pointer(&x[1]), f32hash(unsafe.Pointer(&x[0]), h)) | 
|  | } | 
|  |  | 
|  | func c128hash(p unsafe.Pointer, h uintptr) uintptr { | 
|  | x := (*[2]float64)(p) | 
|  | return f64hash(unsafe.Pointer(&x[1]), f64hash(unsafe.Pointer(&x[0]), h)) | 
|  | } | 
|  |  | 
|  | func interhash(p unsafe.Pointer, h uintptr) uintptr { | 
|  | a := (*iface)(p) | 
|  | tab := a.tab | 
|  | if tab == nil { | 
|  | return h | 
|  | } | 
|  | t := tab._type | 
|  | if t.equal == nil { | 
|  | // Check hashability here. We could do this check inside | 
|  | // typehash, but we want to report the topmost type in | 
|  | // the error text (e.g. in a struct with a field of slice type | 
|  | // we want to report the struct, not the slice). | 
|  | panic(errorString("hash of unhashable type " + t.string())) | 
|  | } | 
|  | if isDirectIface(t) { | 
|  | return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0) | 
|  | } else { | 
|  | return c1 * typehash(t, a.data, h^c0) | 
|  | } | 
|  | } | 
|  |  | 
|  | func nilinterhash(p unsafe.Pointer, h uintptr) uintptr { | 
|  | a := (*eface)(p) | 
|  | t := a._type | 
|  | if t == nil { | 
|  | return h | 
|  | } | 
|  | if t.equal == nil { | 
|  | // See comment in interhash above. | 
|  | panic(errorString("hash of unhashable type " + t.string())) | 
|  | } | 
|  | if isDirectIface(t) { | 
|  | return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0) | 
|  | } else { | 
|  | return c1 * typehash(t, a.data, h^c0) | 
|  | } | 
|  | } | 
|  |  | 
|  | // typehash computes the hash of the object of type t at address p. | 
|  | // h is the seed. | 
|  | // This function is seldom used. Most maps use for hashing either | 
|  | // fixed functions (e.g. f32hash) or compiler-generated functions | 
|  | // (e.g. for a type like struct { x, y string }). This implementation | 
|  | // is slower but more general and is used for hashing interface types | 
|  | // (called from interhash or nilinterhash, above) or for hashing in | 
|  | // maps generated by reflect.MapOf (reflect_typehash, below). | 
|  | // Note: this function must match the compiler generated | 
|  | // functions exactly. See issue 37716. | 
|  | func typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr { | 
|  | if t.tflag&tflagRegularMemory != 0 { | 
|  | // Handle ptr sizes specially, see issue 37086. | 
|  | switch t.size { | 
|  | case 4: | 
|  | return memhash32(p, h) | 
|  | case 8: | 
|  | return memhash64(p, h) | 
|  | default: | 
|  | return memhash(p, h, t.size) | 
|  | } | 
|  | } | 
|  | switch t.kind & kindMask { | 
|  | case kindFloat32: | 
|  | return f32hash(p, h) | 
|  | case kindFloat64: | 
|  | return f64hash(p, h) | 
|  | case kindComplex64: | 
|  | return c64hash(p, h) | 
|  | case kindComplex128: | 
|  | return c128hash(p, h) | 
|  | case kindString: | 
|  | return strhash(p, h) | 
|  | case kindInterface: | 
|  | i := (*interfacetype)(unsafe.Pointer(t)) | 
|  | if len(i.mhdr) == 0 { | 
|  | return nilinterhash(p, h) | 
|  | } | 
|  | return interhash(p, h) | 
|  | case kindArray: | 
|  | a := (*arraytype)(unsafe.Pointer(t)) | 
|  | for i := uintptr(0); i < a.len; i++ { | 
|  | h = typehash(a.elem, add(p, i*a.elem.size), h) | 
|  | } | 
|  | return h | 
|  | case kindStruct: | 
|  | s := (*structtype)(unsafe.Pointer(t)) | 
|  | for _, f := range s.fields { | 
|  | if f.name.isBlank() { | 
|  | continue | 
|  | } | 
|  | h = typehash(f.typ, add(p, f.offset), h) | 
|  | } | 
|  | return h | 
|  | default: | 
|  | // Should never happen, as typehash should only be called | 
|  | // with comparable types. | 
|  | panic(errorString("hash of unhashable type " + t.string())) | 
|  | } | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_typehash reflect.typehash | 
|  | func reflect_typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr { | 
|  | return typehash(t, p, h) | 
|  | } | 
|  |  | 
|  | func memequal0(p, q unsafe.Pointer) bool { | 
|  | return true | 
|  | } | 
|  | func memequal8(p, q unsafe.Pointer) bool { | 
|  | return *(*int8)(p) == *(*int8)(q) | 
|  | } | 
|  | func memequal16(p, q unsafe.Pointer) bool { | 
|  | return *(*int16)(p) == *(*int16)(q) | 
|  | } | 
|  | func memequal32(p, q unsafe.Pointer) bool { | 
|  | return *(*int32)(p) == *(*int32)(q) | 
|  | } | 
|  | func memequal64(p, q unsafe.Pointer) bool { | 
|  | return *(*int64)(p) == *(*int64)(q) | 
|  | } | 
|  | func memequal128(p, q unsafe.Pointer) bool { | 
|  | return *(*[2]int64)(p) == *(*[2]int64)(q) | 
|  | } | 
|  | func f32equal(p, q unsafe.Pointer) bool { | 
|  | return *(*float32)(p) == *(*float32)(q) | 
|  | } | 
|  | func f64equal(p, q unsafe.Pointer) bool { | 
|  | return *(*float64)(p) == *(*float64)(q) | 
|  | } | 
|  | func c64equal(p, q unsafe.Pointer) bool { | 
|  | return *(*complex64)(p) == *(*complex64)(q) | 
|  | } | 
|  | func c128equal(p, q unsafe.Pointer) bool { | 
|  | return *(*complex128)(p) == *(*complex128)(q) | 
|  | } | 
|  | func strequal(p, q unsafe.Pointer) bool { | 
|  | return *(*string)(p) == *(*string)(q) | 
|  | } | 
|  | func interequal(p, q unsafe.Pointer) bool { | 
|  | x := *(*iface)(p) | 
|  | y := *(*iface)(q) | 
|  | return x.tab == y.tab && ifaceeq(x.tab, x.data, y.data) | 
|  | } | 
|  | func nilinterequal(p, q unsafe.Pointer) bool { | 
|  | x := *(*eface)(p) | 
|  | y := *(*eface)(q) | 
|  | return x._type == y._type && efaceeq(x._type, x.data, y.data) | 
|  | } | 
|  | func efaceeq(t *_type, x, y unsafe.Pointer) bool { | 
|  | if t == nil { | 
|  | return true | 
|  | } | 
|  | eq := t.equal | 
|  | if eq == nil { | 
|  | panic(errorString("comparing uncomparable type " + t.string())) | 
|  | } | 
|  | if isDirectIface(t) { | 
|  | // Direct interface types are ptr, chan, map, func, and single-element structs/arrays thereof. | 
|  | // Maps and funcs are not comparable, so they can't reach here. | 
|  | // Ptrs, chans, and single-element items can be compared directly using ==. | 
|  | return x == y | 
|  | } | 
|  | return eq(x, y) | 
|  | } | 
|  | func ifaceeq(tab *itab, x, y unsafe.Pointer) bool { | 
|  | if tab == nil { | 
|  | return true | 
|  | } | 
|  | t := tab._type | 
|  | eq := t.equal | 
|  | if eq == nil { | 
|  | panic(errorString("comparing uncomparable type " + t.string())) | 
|  | } | 
|  | if isDirectIface(t) { | 
|  | // See comment in efaceeq. | 
|  | return x == y | 
|  | } | 
|  | return eq(x, y) | 
|  | } | 
|  |  | 
|  | // Testing adapters for hash quality tests (see hash_test.go) | 
|  | func stringHash(s string, seed uintptr) uintptr { | 
|  | return strhash(noescape(unsafe.Pointer(&s)), seed) | 
|  | } | 
|  |  | 
|  | func bytesHash(b []byte, seed uintptr) uintptr { | 
|  | s := (*slice)(unsafe.Pointer(&b)) | 
|  | return memhash(s.array, seed, uintptr(s.len)) | 
|  | } | 
|  |  | 
|  | func int32Hash(i uint32, seed uintptr) uintptr { | 
|  | return memhash32(noescape(unsafe.Pointer(&i)), seed) | 
|  | } | 
|  |  | 
|  | func int64Hash(i uint64, seed uintptr) uintptr { | 
|  | return memhash64(noescape(unsafe.Pointer(&i)), seed) | 
|  | } | 
|  |  | 
|  | func efaceHash(i any, seed uintptr) uintptr { | 
|  | return nilinterhash(noescape(unsafe.Pointer(&i)), seed) | 
|  | } | 
|  |  | 
|  | func ifaceHash(i interface { | 
|  | F() | 
|  | }, seed uintptr) uintptr { | 
|  | return interhash(noescape(unsafe.Pointer(&i)), seed) | 
|  | } | 
|  |  | 
|  | const hashRandomBytes = goarch.PtrSize / 4 * 64 | 
|  |  | 
|  | // used in asm_{386,amd64,arm64}.s to seed the hash function | 
|  | var aeskeysched [hashRandomBytes]byte | 
|  |  | 
|  | // used in hash{32,64}.go to seed the hash function | 
|  | var hashkey [4]uintptr | 
|  |  | 
|  | func alginit() { | 
|  | // Install AES hash algorithms if the instructions needed are present. | 
|  | if (GOARCH == "386" || GOARCH == "amd64") && | 
|  | cpu.X86.HasAES && // AESENC | 
|  | cpu.X86.HasSSSE3 && // PSHUFB | 
|  | cpu.X86.HasSSE41 { // PINSR{D,Q} | 
|  | initAlgAES() | 
|  | return | 
|  | } | 
|  | if GOARCH == "arm64" && cpu.ARM64.HasAES { | 
|  | initAlgAES() | 
|  | return | 
|  | } | 
|  | getRandomData((*[len(hashkey) * goarch.PtrSize]byte)(unsafe.Pointer(&hashkey))[:]) | 
|  | hashkey[0] |= 1 // make sure these numbers are odd | 
|  | hashkey[1] |= 1 | 
|  | hashkey[2] |= 1 | 
|  | hashkey[3] |= 1 | 
|  | } | 
|  |  | 
|  | func initAlgAES() { | 
|  | useAeshash = true | 
|  | // Initialize with random data so hash collisions will be hard to engineer. | 
|  | getRandomData(aeskeysched[:]) | 
|  | } | 
|  |  | 
|  | // Note: These routines perform the read with a native endianness. | 
|  | func readUnaligned32(p unsafe.Pointer) uint32 { | 
|  | q := (*[4]byte)(p) | 
|  | if goarch.BigEndian { | 
|  | return uint32(q[3]) | uint32(q[2])<<8 | uint32(q[1])<<16 | uint32(q[0])<<24 | 
|  | } | 
|  | return uint32(q[0]) | uint32(q[1])<<8 | uint32(q[2])<<16 | uint32(q[3])<<24 | 
|  | } | 
|  |  | 
|  | func readUnaligned64(p unsafe.Pointer) uint64 { | 
|  | q := (*[8]byte)(p) | 
|  | if goarch.BigEndian { | 
|  | return uint64(q[7]) | uint64(q[6])<<8 | uint64(q[5])<<16 | uint64(q[4])<<24 | | 
|  | uint64(q[3])<<32 | uint64(q[2])<<40 | uint64(q[1])<<48 | uint64(q[0])<<56 | 
|  | } | 
|  | return uint64(q[0]) | uint64(q[1])<<8 | uint64(q[2])<<16 | uint64(q[3])<<24 | uint64(q[4])<<32 | uint64(q[5])<<40 | uint64(q[6])<<48 | uint64(q[7])<<56 | 
|  | } |