|  | // Copyright 2017 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package big | 
|  |  | 
|  | import ( | 
|  | "fmt" | 
|  | "math" | 
|  | "math/rand" | 
|  | "testing" | 
|  | ) | 
|  |  | 
|  | // TestFloatSqrt64 tests that Float.Sqrt of numbers with 53bit mantissa | 
|  | // behaves like float math.Sqrt. | 
|  | func TestFloatSqrt64(t *testing.T) { | 
|  | for i := 0; i < 1e5; i++ { | 
|  | if i == 1e2 && testing.Short() { | 
|  | break | 
|  | } | 
|  | r := rand.Float64() | 
|  |  | 
|  | got := new(Float).SetPrec(53) | 
|  | got.Sqrt(NewFloat(r)) | 
|  | want := NewFloat(math.Sqrt(r)) | 
|  | if got.Cmp(want) != 0 { | 
|  | t.Fatalf("Sqrt(%g) =\n got %g;\nwant %g", r, got, want) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | func TestFloatSqrt(t *testing.T) { | 
|  | for _, test := range []struct { | 
|  | x    string | 
|  | want string | 
|  | }{ | 
|  | // Test values were generated on Wolfram Alpha using query | 
|  | //   'sqrt(N) to 350 digits' | 
|  | // 350 decimal digits give up to 1000 binary digits. | 
|  | {"0.03125", "0.17677669529663688110021109052621225982120898442211850914708496724884155980776337985629844179095519659187673077886403712811560450698134215158051518713749197892665283324093819909447499381264409775757143376369499645074628431682460775184106467733011114982619404115381053858929018135497032545349940642599871090667456829147610370507757690729404938184321879"}, | 
|  | {"0.125", "0.35355339059327376220042218105242451964241796884423701829416993449768311961552675971259688358191039318375346155772807425623120901396268430316103037427498395785330566648187639818894998762528819551514286752738999290149256863364921550368212935466022229965238808230762107717858036270994065090699881285199742181334913658295220741015515381458809876368643757"}, | 
|  | {"0.5", "0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078636750692311545614851246241802792536860632206074854996791570661133296375279637789997525057639103028573505477998580298513726729843100736425870932044459930477616461524215435716072541988130181399762570399484362669827316590441482031030762917619752737287514"}, | 
|  | {"2.0", "1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714701095599716059702745345968620147285174186408891986095523292304843087143214508397626036279952514079896872533965463318088296406206152583523950547457503"}, | 
|  | {"3.0", "1.7320508075688772935274463415058723669428052538103806280558069794519330169088000370811461867572485756756261414154067030299699450949989524788116555120943736485280932319023055820679748201010846749232650153123432669033228866506722546689218379712270471316603678615880190499865373798593894676503475065760507566183481296061009476021871903250831458295239598"}, | 
|  | {"4.0", "2.0"}, | 
|  |  | 
|  | {"1p512", "1p256"}, | 
|  | {"4p1024", "2p512"}, | 
|  | {"9p2048", "3p1024"}, | 
|  |  | 
|  | {"1p-1024", "1p-512"}, | 
|  | {"4p-2048", "2p-1024"}, | 
|  | {"9p-4096", "3p-2048"}, | 
|  | } { | 
|  | for _, prec := range []uint{24, 53, 64, 65, 100, 128, 129, 200, 256, 400, 600, 800, 1000} { | 
|  | x := new(Float).SetPrec(prec) | 
|  | x.Parse(test.x, 10) | 
|  |  | 
|  | got := new(Float).SetPrec(prec).Sqrt(x) | 
|  | want := new(Float).SetPrec(prec) | 
|  | want.Parse(test.want, 10) | 
|  | if got.Cmp(want) != 0 { | 
|  | t.Errorf("prec = %d, Sqrt(%v) =\ngot  %g;\nwant %g", | 
|  | prec, test.x, got, want) | 
|  | } | 
|  |  | 
|  | // Square test. | 
|  | // If got holds the square root of x to precision p, then | 
|  | //   got = √x + k | 
|  | // for some k such that |k| < 2**(-p). Thus, | 
|  | //   got² = (√x + k)² = x + 2k√n + k² | 
|  | // and the error must satisfy | 
|  | //   err = |got² - x| ≈ | 2k√n | < 2**(-p+1)*√n | 
|  | // Ignoring the k² term for simplicity. | 
|  |  | 
|  | // err = |got² - x| | 
|  | // (but do intermediate steps with 32 guard digits to | 
|  | // avoid introducing spurious rounding-related errors) | 
|  | sq := new(Float).SetPrec(prec+32).Mul(got, got) | 
|  | diff := new(Float).Sub(sq, x) | 
|  | err := diff.Abs(diff).SetPrec(prec) | 
|  |  | 
|  | // maxErr = 2**(-p+1)*√x | 
|  | one := new(Float).SetPrec(prec).SetInt64(1) | 
|  | maxErr := new(Float).Mul(new(Float).SetMantExp(one, -int(prec)+1), got) | 
|  |  | 
|  | if err.Cmp(maxErr) >= 0 { | 
|  | t.Errorf("prec = %d, Sqrt(%v) =\ngot err  %g;\nwant maxErr %g", | 
|  | prec, test.x, err, maxErr) | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | func TestFloatSqrtSpecial(t *testing.T) { | 
|  | for _, test := range []struct { | 
|  | x    *Float | 
|  | want *Float | 
|  | }{ | 
|  | {NewFloat(+0), NewFloat(+0)}, | 
|  | {NewFloat(-0), NewFloat(-0)}, | 
|  | {NewFloat(math.Inf(+1)), NewFloat(math.Inf(+1))}, | 
|  | } { | 
|  | got := new(Float).Sqrt(test.x) | 
|  | if got.neg != test.want.neg || got.form != test.want.form { | 
|  | t.Errorf("Sqrt(%v) = %v (neg: %v); want %v (neg: %v)", | 
|  | test.x, got, got.neg, test.want, test.want.neg) | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | // Benchmarks | 
|  |  | 
|  | func BenchmarkFloatSqrt(b *testing.B) { | 
|  | for _, prec := range []uint{64, 128, 256, 1e3, 1e4, 1e5, 1e6} { | 
|  | x := NewFloat(2) | 
|  | z := new(Float).SetPrec(prec) | 
|  | b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) { | 
|  | b.ReportAllocs() | 
|  | for n := 0; n < b.N; n++ { | 
|  | z.Sqrt(x) | 
|  | } | 
|  | }) | 
|  | } | 
|  | } |