|  | // Copyright 2016 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package big | 
|  |  | 
|  | import "math/rand" | 
|  |  | 
|  | // ProbablyPrime reports whether x is probably prime, | 
|  | // applying the Miller-Rabin test with n pseudorandomly chosen bases | 
|  | // as well as a Baillie-PSW test. | 
|  | // | 
|  | // If x is prime, ProbablyPrime returns true. | 
|  | // If x is chosen randomly and not prime, ProbablyPrime probably returns false. | 
|  | // The probability of returning true for a randomly chosen non-prime is at most ¼ⁿ. | 
|  | // | 
|  | // ProbablyPrime is 100% accurate for inputs less than 2⁶⁴. | 
|  | // See Menezes et al., Handbook of Applied Cryptography, 1997, pp. 145-149, | 
|  | // and FIPS 186-4 Appendix F for further discussion of the error probabilities. | 
|  | // | 
|  | // ProbablyPrime is not suitable for judging primes that an adversary may | 
|  | // have crafted to fool the test. | 
|  | // | 
|  | // As of Go 1.8, ProbablyPrime(0) is allowed and applies only a Baillie-PSW test. | 
|  | // Before Go 1.8, ProbablyPrime applied only the Miller-Rabin tests, and ProbablyPrime(0) panicked. | 
|  | func (x *Int) ProbablyPrime(n int) bool { | 
|  | // Note regarding the doc comment above: | 
|  | // It would be more precise to say that the Baillie-PSW test uses the | 
|  | // extra strong Lucas test as its Lucas test, but since no one knows | 
|  | // how to tell any of the Lucas tests apart inside a Baillie-PSW test | 
|  | // (they all work equally well empirically), that detail need not be | 
|  | // documented or implicitly guaranteed. | 
|  | // The comment does avoid saying "the" Baillie-PSW test | 
|  | // because of this general ambiguity. | 
|  |  | 
|  | if n < 0 { | 
|  | panic("negative n for ProbablyPrime") | 
|  | } | 
|  | if x.neg || len(x.abs) == 0 { | 
|  | return false | 
|  | } | 
|  |  | 
|  | // primeBitMask records the primes < 64. | 
|  | const primeBitMask uint64 = 1<<2 | 1<<3 | 1<<5 | 1<<7 | | 
|  | 1<<11 | 1<<13 | 1<<17 | 1<<19 | 1<<23 | 1<<29 | 1<<31 | | 
|  | 1<<37 | 1<<41 | 1<<43 | 1<<47 | 1<<53 | 1<<59 | 1<<61 | 
|  |  | 
|  | w := x.abs[0] | 
|  | if len(x.abs) == 1 && w < 64 { | 
|  | return primeBitMask&(1<<w) != 0 | 
|  | } | 
|  |  | 
|  | if w&1 == 0 { | 
|  | return false // x is even | 
|  | } | 
|  |  | 
|  | const primesA = 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 37 | 
|  | const primesB = 29 * 31 * 41 * 43 * 47 * 53 | 
|  |  | 
|  | var rA, rB uint32 | 
|  | switch _W { | 
|  | case 32: | 
|  | rA = uint32(x.abs.modW(primesA)) | 
|  | rB = uint32(x.abs.modW(primesB)) | 
|  | case 64: | 
|  | r := x.abs.modW((primesA * primesB) & _M) | 
|  | rA = uint32(r % primesA) | 
|  | rB = uint32(r % primesB) | 
|  | default: | 
|  | panic("math/big: invalid word size") | 
|  | } | 
|  |  | 
|  | if rA%3 == 0 || rA%5 == 0 || rA%7 == 0 || rA%11 == 0 || rA%13 == 0 || rA%17 == 0 || rA%19 == 0 || rA%23 == 0 || rA%37 == 0 || | 
|  | rB%29 == 0 || rB%31 == 0 || rB%41 == 0 || rB%43 == 0 || rB%47 == 0 || rB%53 == 0 { | 
|  | return false | 
|  | } | 
|  |  | 
|  | return x.abs.probablyPrimeMillerRabin(n+1, true) && x.abs.probablyPrimeLucas() | 
|  | } | 
|  |  | 
|  | // probablyPrimeMillerRabin reports whether n passes reps rounds of the | 
|  | // Miller-Rabin primality test, using pseudo-randomly chosen bases. | 
|  | // If force2 is true, one of the rounds is forced to use base 2. | 
|  | // See Handbook of Applied Cryptography, p. 139, Algorithm 4.24. | 
|  | // The number n is known to be non-zero. | 
|  | func (n nat) probablyPrimeMillerRabin(reps int, force2 bool) bool { | 
|  | nm1 := nat(nil).sub(n, natOne) | 
|  | // determine q, k such that nm1 = q << k | 
|  | k := nm1.trailingZeroBits() | 
|  | q := nat(nil).shr(nm1, k) | 
|  |  | 
|  | nm3 := nat(nil).sub(nm1, natTwo) | 
|  | rand := rand.New(rand.NewSource(int64(n[0]))) | 
|  |  | 
|  | var x, y, quotient nat | 
|  | nm3Len := nm3.bitLen() | 
|  |  | 
|  | NextRandom: | 
|  | for i := 0; i < reps; i++ { | 
|  | if i == reps-1 && force2 { | 
|  | x = x.set(natTwo) | 
|  | } else { | 
|  | x = x.random(rand, nm3, nm3Len) | 
|  | x = x.add(x, natTwo) | 
|  | } | 
|  | y = y.expNN(x, q, n) | 
|  | if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 { | 
|  | continue | 
|  | } | 
|  | for j := uint(1); j < k; j++ { | 
|  | y = y.sqr(y) | 
|  | quotient, y = quotient.div(y, y, n) | 
|  | if y.cmp(nm1) == 0 { | 
|  | continue NextRandom | 
|  | } | 
|  | if y.cmp(natOne) == 0 { | 
|  | return false | 
|  | } | 
|  | } | 
|  | return false | 
|  | } | 
|  |  | 
|  | return true | 
|  | } | 
|  |  | 
|  | // probablyPrimeLucas reports whether n passes the "almost extra strong" Lucas probable prime test, | 
|  | // using Baillie-OEIS parameter selection. This corresponds to "AESLPSP" on Jacobsen's tables (link below). | 
|  | // The combination of this test and a Miller-Rabin/Fermat test with base 2 gives a Baillie-PSW test. | 
|  | // | 
|  | // References: | 
|  | // | 
|  | // Baillie and Wagstaff, "Lucas Pseudoprimes", Mathematics of Computation 35(152), | 
|  | // October 1980, pp. 1391-1417, especially page 1401. | 
|  | // https://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf | 
|  | // | 
|  | // Grantham, "Frobenius Pseudoprimes", Mathematics of Computation 70(234), | 
|  | // March 2000, pp. 873-891. | 
|  | // https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/S0025-5718-00-01197-2.pdf | 
|  | // | 
|  | // Baillie, "Extra strong Lucas pseudoprimes", OEIS A217719, https://oeis.org/A217719. | 
|  | // | 
|  | // Jacobsen, "Pseudoprime Statistics, Tables, and Data", http://ntheory.org/pseudoprimes.html. | 
|  | // | 
|  | // Nicely, "The Baillie-PSW Primality Test", http://www.trnicely.net/misc/bpsw.html. | 
|  | // (Note that Nicely's definition of the "extra strong" test gives the wrong Jacobi condition, | 
|  | // as pointed out by Jacobsen.) | 
|  | // | 
|  | // Crandall and Pomerance, Prime Numbers: A Computational Perspective, 2nd ed. | 
|  | // Springer, 2005. | 
|  | func (n nat) probablyPrimeLucas() bool { | 
|  | // Discard 0, 1. | 
|  | if len(n) == 0 || n.cmp(natOne) == 0 { | 
|  | return false | 
|  | } | 
|  | // Two is the only even prime. | 
|  | // Already checked by caller, but here to allow testing in isolation. | 
|  | if n[0]&1 == 0 { | 
|  | return n.cmp(natTwo) == 0 | 
|  | } | 
|  |  | 
|  | // Baillie-OEIS "method C" for choosing D, P, Q, | 
|  | // as in https://oeis.org/A217719/a217719.txt: | 
|  | // try increasing P ≥ 3 such that D = P² - 4 (so Q = 1) | 
|  | // until Jacobi(D, n) = -1. | 
|  | // The search is expected to succeed for non-square n after just a few trials. | 
|  | // After more than expected failures, check whether n is square | 
|  | // (which would cause Jacobi(D, n) = 1 for all D not dividing n). | 
|  | p := Word(3) | 
|  | d := nat{1} | 
|  | t1 := nat(nil) // temp | 
|  | intD := &Int{abs: d} | 
|  | intN := &Int{abs: n} | 
|  | for ; ; p++ { | 
|  | if p > 10000 { | 
|  | // This is widely believed to be impossible. | 
|  | // If we get a report, we'll want the exact number n. | 
|  | panic("math/big: internal error: cannot find (D/n) = -1 for " + intN.String()) | 
|  | } | 
|  | d[0] = p*p - 4 | 
|  | j := Jacobi(intD, intN) | 
|  | if j == -1 { | 
|  | break | 
|  | } | 
|  | if j == 0 { | 
|  | // d = p²-4 = (p-2)(p+2). | 
|  | // If (d/n) == 0 then d shares a prime factor with n. | 
|  | // Since the loop proceeds in increasing p and starts with p-2==1, | 
|  | // the shared prime factor must be p+2. | 
|  | // If p+2 == n, then n is prime; otherwise p+2 is a proper factor of n. | 
|  | return len(n) == 1 && n[0] == p+2 | 
|  | } | 
|  | if p == 40 { | 
|  | // We'll never find (d/n) = -1 if n is a square. | 
|  | // If n is a non-square we expect to find a d in just a few attempts on average. | 
|  | // After 40 attempts, take a moment to check if n is indeed a square. | 
|  | t1 = t1.sqrt(n) | 
|  | t1 = t1.sqr(t1) | 
|  | if t1.cmp(n) == 0 { | 
|  | return false | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Grantham definition of "extra strong Lucas pseudoprime", after Thm 2.3 on p. 876 | 
|  | // (D, P, Q above have become Δ, b, 1): | 
|  | // | 
|  | // Let U_n = U_n(b, 1), V_n = V_n(b, 1), and Δ = b²-4. | 
|  | // An extra strong Lucas pseudoprime to base b is a composite n = 2^r s + Jacobi(Δ, n), | 
|  | // where s is odd and gcd(n, 2*Δ) = 1, such that either (i) U_s ≡ 0 mod n and V_s ≡ ±2 mod n, | 
|  | // or (ii) V_{2^t s} ≡ 0 mod n for some 0 ≤ t < r-1. | 
|  | // | 
|  | // We know gcd(n, Δ) = 1 or else we'd have found Jacobi(d, n) == 0 above. | 
|  | // We know gcd(n, 2) = 1 because n is odd. | 
|  | // | 
|  | // Arrange s = (n - Jacobi(Δ, n)) / 2^r = (n+1) / 2^r. | 
|  | s := nat(nil).add(n, natOne) | 
|  | r := int(s.trailingZeroBits()) | 
|  | s = s.shr(s, uint(r)) | 
|  | nm2 := nat(nil).sub(n, natTwo) // n-2 | 
|  |  | 
|  | // We apply the "almost extra strong" test, which checks the above conditions | 
|  | // except for U_s ≡ 0 mod n, which allows us to avoid computing any U_k values. | 
|  | // Jacobsen points out that maybe we should just do the full extra strong test: | 
|  | // "It is also possible to recover U_n using Crandall and Pomerance equation 3.13: | 
|  | // U_n = D^-1 (2V_{n+1} - PV_n) allowing us to run the full extra-strong test | 
|  | // at the cost of a single modular inversion. This computation is easy and fast in GMP, | 
|  | // so we can get the full extra-strong test at essentially the same performance as the | 
|  | // almost extra strong test." | 
|  |  | 
|  | // Compute Lucas sequence V_s(b, 1), where: | 
|  | // | 
|  | //	V(0) = 2 | 
|  | //	V(1) = P | 
|  | //	V(k) = P V(k-1) - Q V(k-2). | 
|  | // | 
|  | // (Remember that due to method C above, P = b, Q = 1.) | 
|  | // | 
|  | // In general V(k) = α^k + β^k, where α and β are roots of x² - Px + Q. | 
|  | // Crandall and Pomerance (p.147) observe that for 0 ≤ j ≤ k, | 
|  | // | 
|  | //	V(j+k) = V(j)V(k) - V(k-j). | 
|  | // | 
|  | // So in particular, to quickly double the subscript: | 
|  | // | 
|  | //	V(2k) = V(k)² - 2 | 
|  | //	V(2k+1) = V(k) V(k+1) - P | 
|  | // | 
|  | // We can therefore start with k=0 and build up to k=s in log₂(s) steps. | 
|  | natP := nat(nil).setWord(p) | 
|  | vk := nat(nil).setWord(2) | 
|  | vk1 := nat(nil).setWord(p) | 
|  | t2 := nat(nil) // temp | 
|  | for i := int(s.bitLen()); i >= 0; i-- { | 
|  | if s.bit(uint(i)) != 0 { | 
|  | // k' = 2k+1 | 
|  | // V(k') = V(2k+1) = V(k) V(k+1) - P. | 
|  | t1 = t1.mul(vk, vk1) | 
|  | t1 = t1.add(t1, n) | 
|  | t1 = t1.sub(t1, natP) | 
|  | t2, vk = t2.div(vk, t1, n) | 
|  | // V(k'+1) = V(2k+2) = V(k+1)² - 2. | 
|  | t1 = t1.sqr(vk1) | 
|  | t1 = t1.add(t1, nm2) | 
|  | t2, vk1 = t2.div(vk1, t1, n) | 
|  | } else { | 
|  | // k' = 2k | 
|  | // V(k'+1) = V(2k+1) = V(k) V(k+1) - P. | 
|  | t1 = t1.mul(vk, vk1) | 
|  | t1 = t1.add(t1, n) | 
|  | t1 = t1.sub(t1, natP) | 
|  | t2, vk1 = t2.div(vk1, t1, n) | 
|  | // V(k') = V(2k) = V(k)² - 2 | 
|  | t1 = t1.sqr(vk) | 
|  | t1 = t1.add(t1, nm2) | 
|  | t2, vk = t2.div(vk, t1, n) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now k=s, so vk = V(s). Check V(s) ≡ ±2 (mod n). | 
|  | if vk.cmp(natTwo) == 0 || vk.cmp(nm2) == 0 { | 
|  | // Check U(s) ≡ 0. | 
|  | // As suggested by Jacobsen, apply Crandall and Pomerance equation 3.13: | 
|  | // | 
|  | //	U(k) = D⁻¹ (2 V(k+1) - P V(k)) | 
|  | // | 
|  | // Since we are checking for U(k) == 0 it suffices to check 2 V(k+1) == P V(k) mod n, | 
|  | // or P V(k) - 2 V(k+1) == 0 mod n. | 
|  | t1 := t1.mul(vk, natP) | 
|  | t2 := t2.shl(vk1, 1) | 
|  | if t1.cmp(t2) < 0 { | 
|  | t1, t2 = t2, t1 | 
|  | } | 
|  | t1 = t1.sub(t1, t2) | 
|  | t3 := vk1 // steal vk1, no longer needed below | 
|  | vk1 = nil | 
|  | _ = vk1 | 
|  | t2, t3 = t2.div(t3, t1, n) | 
|  | if len(t3) == 0 { | 
|  | return true | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check V(2^t s) ≡ 0 mod n for some 0 ≤ t < r-1. | 
|  | for t := 0; t < r-1; t++ { | 
|  | if len(vk) == 0 { // vk == 0 | 
|  | return true | 
|  | } | 
|  | // Optimization: V(k) = 2 is a fixed point for V(k') = V(k)² - 2, | 
|  | // so if V(k) = 2, we can stop: we will never find a future V(k) == 0. | 
|  | if len(vk) == 1 && vk[0] == 2 { // vk == 2 | 
|  | return false | 
|  | } | 
|  | // k' = 2k | 
|  | // V(k') = V(2k) = V(k)² - 2 | 
|  | t1 = t1.sqr(vk) | 
|  | t1 = t1.sub(t1, natTwo) | 
|  | t2, vk = t2.div(vk, t1, n) | 
|  | } | 
|  | return false | 
|  | } |