blob: 822d0287e7490ada0681ce74a10de3ab0122c765 [file] [log] [blame]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package linalg
import "math"
// Numeric is type bound that matches any numeric type.
// It would likely be in a constraints package in the standard library.
type Numeric interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
float32 | ~float64 |
complex64 | ~complex128
}
func DotProduct[T Numeric](s1, s2 []T) T {
if len(s1) != len(s2) {
panic("DotProduct: slices of unequal length")
}
var r T
for i := range s1 {
r += s1[i] * s2[i]
}
return r
}
// NumericAbs matches numeric types with an Abs method.
type NumericAbs[T any] interface {
Numeric
Abs() T
}
// AbsDifference computes the absolute value of the difference of
// a and b, where the absolute value is determined by the Abs method.
func AbsDifference[T NumericAbs[T]](a, b T) T {
d := a - b
return d.Abs()
}
// OrderedNumeric is a type bound that matches numeric types that support the < operator.
type OrderedNumeric interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
float32 | ~float64
}
// Complex is a type bound that matches the two complex types, which do not have a < operator.
type Complex interface {
~complex64 | ~complex128
}
// OrderedAbs is a helper type that defines an Abs method for
// ordered numeric types.
type OrderedAbs[T OrderedNumeric] T
func (a OrderedAbs[T]) Abs() OrderedAbs[T] {
if a < 0 {
return -a
}
return a
}
// ComplexAbs is a helper type that defines an Abs method for
// complex types.
type ComplexAbs[T Complex] T
func (a ComplexAbs[T]) Abs() ComplexAbs[T] {
r := float64(real(a))
i := float64(imag(a))
d := math.Sqrt(r * r + i * i)
return ComplexAbs[T](complex(d, 0))
}
func OrderedAbsDifference[T OrderedNumeric](a, b T) T {
return T(AbsDifference(OrderedAbs[T](a), OrderedAbs[T](b)))
}
func ComplexAbsDifference[T Complex](a, b T) T {
return T(AbsDifference(ComplexAbs[T](a), ComplexAbs[T](b)))
}