| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package linalg |
| |
| import "math" |
| |
| // Numeric is type bound that matches any numeric type. |
| // It would likely be in a constraints package in the standard library. |
| type Numeric interface { |
| ~int | ~int8 | ~int16 | ~int32 | ~int64 | |
| uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | |
| float32 | ~float64 | |
| complex64 | ~complex128 |
| } |
| |
| func DotProduct[T Numeric](s1, s2 []T) T { |
| if len(s1) != len(s2) { |
| panic("DotProduct: slices of unequal length") |
| } |
| var r T |
| for i := range s1 { |
| r += s1[i] * s2[i] |
| } |
| return r |
| } |
| |
| // NumericAbs matches numeric types with an Abs method. |
| type NumericAbs[T any] interface { |
| Numeric |
| |
| Abs() T |
| } |
| |
| // AbsDifference computes the absolute value of the difference of |
| // a and b, where the absolute value is determined by the Abs method. |
| func AbsDifference[T NumericAbs[T]](a, b T) T { |
| d := a - b |
| return d.Abs() |
| } |
| |
| // OrderedNumeric is a type bound that matches numeric types that support the < operator. |
| type OrderedNumeric interface { |
| ~int | ~int8 | ~int16 | ~int32 | ~int64 | |
| uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | |
| float32 | ~float64 |
| } |
| |
| // Complex is a type bound that matches the two complex types, which do not have a < operator. |
| type Complex interface { |
| ~complex64 | ~complex128 |
| } |
| |
| // OrderedAbs is a helper type that defines an Abs method for |
| // ordered numeric types. |
| type OrderedAbs[T OrderedNumeric] T |
| |
| func (a OrderedAbs[T]) Abs() OrderedAbs[T] { |
| if a < 0 { |
| return -a |
| } |
| return a |
| } |
| |
| // ComplexAbs is a helper type that defines an Abs method for |
| // complex types. |
| type ComplexAbs[T Complex] T |
| |
| func (a ComplexAbs[T]) Abs() ComplexAbs[T] { |
| r := float64(real(a)) |
| i := float64(imag(a)) |
| d := math.Sqrt(r * r + i * i) |
| return ComplexAbs[T](complex(d, 0)) |
| } |
| |
| func OrderedAbsDifference[T OrderedNumeric](a, b T) T { |
| return T(AbsDifference(OrderedAbs[T](a), OrderedAbs[T](b))) |
| } |
| |
| func ComplexAbsDifference[T Complex](a, b T) T { |
| return T(AbsDifference(ComplexAbs[T](a), ComplexAbs[T](b))) |
| } |