| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package pkginit |
| |
| import ( |
| "container/heap" |
| "fmt" |
| "strings" |
| |
| "cmd/compile/internal/base" |
| "cmd/compile/internal/ir" |
| ) |
| |
| // Package initialization |
| // |
| // Here we implement the algorithm for ordering package-level variable |
| // initialization. The spec is written in terms of variable |
| // initialization, but multiple variables initialized by a single |
| // assignment are handled together, so here we instead focus on |
| // ordering initialization assignments. Conveniently, this maps well |
| // to how we represent package-level initializations using the Node |
| // AST. |
| // |
| // Assignments are in one of three phases: NotStarted, Pending, or |
| // Done. For assignments in the Pending phase, we use Xoffset to |
| // record the number of unique variable dependencies whose |
| // initialization assignment is not yet Done. We also maintain a |
| // "blocking" map that maps assignments back to all of the assignments |
| // that depend on it. |
| // |
| // For example, for an initialization like: |
| // |
| // var x = f(a, b, b) |
| // var a, b = g() |
| // |
| // the "x = f(a, b, b)" assignment depends on two variables (a and b), |
| // so its Xoffset will be 2. Correspondingly, the "a, b = g()" |
| // assignment's "blocking" entry will have two entries back to x's |
| // assignment. |
| // |
| // Logically, initialization works by (1) taking all NotStarted |
| // assignments, calculating their dependencies, and marking them |
| // Pending; (2) adding all Pending assignments with Xoffset==0 to a |
| // "ready" priority queue (ordered by variable declaration position); |
| // and (3) iteratively processing the next Pending assignment from the |
| // queue, decreasing the Xoffset of assignments it's blocking, and |
| // adding them to the queue if decremented to 0. |
| // |
| // As an optimization, we actually apply each of these three steps for |
| // each assignment. This yields the same order, but keeps queue size |
| // down and thus also heap operation costs. |
| |
| // Static initialization phase. |
| // These values are stored in two bits in Node.flags. |
| const ( |
| InitNotStarted = iota |
| InitDone |
| InitPending |
| ) |
| |
| type InitOrder struct { |
| // blocking maps initialization assignments to the assignments |
| // that depend on it. |
| blocking map[ir.Node][]ir.Node |
| |
| // ready is the queue of Pending initialization assignments |
| // that are ready for initialization. |
| ready declOrder |
| |
| order map[ir.Node]int |
| } |
| |
| // initOrder computes initialization order for a list l of |
| // package-level declarations (in declaration order) and outputs the |
| // corresponding list of statements to include in the init() function |
| // body. |
| func initOrder(l []ir.Node) []ir.Node { |
| var res ir.Nodes |
| o := InitOrder{ |
| blocking: make(map[ir.Node][]ir.Node), |
| order: make(map[ir.Node]int), |
| } |
| |
| // Process all package-level assignment in declaration order. |
| for _, n := range l { |
| switch n.Op() { |
| case ir.OAS, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV: |
| o.processAssign(n) |
| o.flushReady(func(n ir.Node) { res.Append(n) }) |
| case ir.ODCLCONST, ir.ODCLFUNC, ir.ODCLTYPE: |
| // nop |
| default: |
| base.Fatalf("unexpected package-level statement: %v", n) |
| } |
| } |
| |
| // Check that all assignments are now Done; if not, there must |
| // have been a dependency cycle. |
| for _, n := range l { |
| switch n.Op() { |
| case ir.OAS, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV: |
| if o.order[n] != orderDone { |
| // If there have already been errors |
| // printed, those errors may have |
| // confused us and there might not be |
| // a loop. Let the user fix those |
| // first. |
| base.ExitIfErrors() |
| |
| o.findInitLoopAndExit(firstLHS(n), new([]*ir.Name), new(ir.NameSet)) |
| base.Fatalf("initialization unfinished, but failed to identify loop") |
| } |
| } |
| } |
| |
| // Invariant consistency check. If this is non-zero, then we |
| // should have found a cycle above. |
| if len(o.blocking) != 0 { |
| base.Fatalf("expected empty map: %v", o.blocking) |
| } |
| |
| return res |
| } |
| |
| func (o *InitOrder) processAssign(n ir.Node) { |
| if _, ok := o.order[n]; ok { |
| base.Fatalf("unexpected state: %v, %v", n, o.order[n]) |
| } |
| o.order[n] = 0 |
| |
| // Compute number of variable dependencies and build the |
| // inverse dependency ("blocking") graph. |
| for dep := range collectDeps(n, true) { |
| defn := dep.Defn |
| // Skip dependencies on functions (PFUNC) and |
| // variables already initialized (InitDone). |
| if dep.Class != ir.PEXTERN || o.order[defn] == orderDone { |
| continue |
| } |
| o.order[n]++ |
| o.blocking[defn] = append(o.blocking[defn], n) |
| } |
| |
| if o.order[n] == 0 { |
| heap.Push(&o.ready, n) |
| } |
| } |
| |
| const orderDone = -1000 |
| |
| // flushReady repeatedly applies initialize to the earliest (in |
| // declaration order) assignment ready for initialization and updates |
| // the inverse dependency ("blocking") graph. |
| func (o *InitOrder) flushReady(initialize func(ir.Node)) { |
| for o.ready.Len() != 0 { |
| n := heap.Pop(&o.ready).(ir.Node) |
| if order, ok := o.order[n]; !ok || order != 0 { |
| base.Fatalf("unexpected state: %v, %v, %v", n, ok, order) |
| } |
| |
| initialize(n) |
| o.order[n] = orderDone |
| |
| blocked := o.blocking[n] |
| delete(o.blocking, n) |
| |
| for _, m := range blocked { |
| if o.order[m]--; o.order[m] == 0 { |
| heap.Push(&o.ready, m) |
| } |
| } |
| } |
| } |
| |
| // findInitLoopAndExit searches for an initialization loop involving variable |
| // or function n. If one is found, it reports the loop as an error and exits. |
| // |
| // path points to a slice used for tracking the sequence of |
| // variables/functions visited. Using a pointer to a slice allows the |
| // slice capacity to grow and limit reallocations. |
| func (o *InitOrder) findInitLoopAndExit(n *ir.Name, path *[]*ir.Name, ok *ir.NameSet) { |
| for i, x := range *path { |
| if x == n { |
| reportInitLoopAndExit((*path)[i:]) |
| return |
| } |
| } |
| |
| // There might be multiple loops involving n; by sorting |
| // references, we deterministically pick the one reported. |
| refers := collectDeps(n.Defn, false).Sorted(func(ni, nj *ir.Name) bool { |
| return ni.Pos().Before(nj.Pos()) |
| }) |
| |
| *path = append(*path, n) |
| for _, ref := range refers { |
| // Short-circuit variables that were initialized. |
| if ref.Class == ir.PEXTERN && o.order[ref.Defn] == orderDone || ok.Has(ref) { |
| continue |
| } |
| |
| o.findInitLoopAndExit(ref, path, ok) |
| } |
| |
| // n is not involved in a cycle. |
| // Record that fact to avoid checking it again when reached another way, |
| // or else this traversal will take exponential time traversing all paths |
| // through the part of the package's call graph implicated in the cycle. |
| ok.Add(n) |
| |
| *path = (*path)[:len(*path)-1] |
| } |
| |
| // reportInitLoopAndExit reports and initialization loop as an error |
| // and exits. However, if l is not actually an initialization loop, it |
| // simply returns instead. |
| func reportInitLoopAndExit(l []*ir.Name) { |
| // Rotate loop so that the earliest variable declaration is at |
| // the start. |
| i := -1 |
| for j, n := range l { |
| if n.Class == ir.PEXTERN && (i == -1 || n.Pos().Before(l[i].Pos())) { |
| i = j |
| } |
| } |
| if i == -1 { |
| // False positive: loop only involves recursive |
| // functions. Return so that findInitLoop can continue |
| // searching. |
| return |
| } |
| l = append(l[i:], l[:i]...) |
| |
| // TODO(mdempsky): Method values are printed as "T.m-fm" |
| // rather than "T.m". Figure out how to avoid that. |
| |
| var msg strings.Builder |
| fmt.Fprintf(&msg, "initialization loop:\n") |
| for _, n := range l { |
| fmt.Fprintf(&msg, "\t%v: %v refers to\n", ir.Line(n), n) |
| } |
| fmt.Fprintf(&msg, "\t%v: %v", ir.Line(l[0]), l[0]) |
| |
| base.ErrorfAt(l[0].Pos(), msg.String()) |
| base.ErrorExit() |
| } |
| |
| // collectDeps returns all of the package-level functions and |
| // variables that declaration n depends on. If transitive is true, |
| // then it also includes the transitive dependencies of any depended |
| // upon functions (but not variables). |
| func collectDeps(n ir.Node, transitive bool) ir.NameSet { |
| d := initDeps{transitive: transitive} |
| switch n.Op() { |
| case ir.OAS: |
| n := n.(*ir.AssignStmt) |
| d.inspect(n.Y) |
| case ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV: |
| n := n.(*ir.AssignListStmt) |
| d.inspect(n.Rhs[0]) |
| case ir.ODCLFUNC: |
| n := n.(*ir.Func) |
| d.inspectList(n.Body) |
| default: |
| base.Fatalf("unexpected Op: %v", n.Op()) |
| } |
| return d.seen |
| } |
| |
| type initDeps struct { |
| transitive bool |
| seen ir.NameSet |
| cvisit func(ir.Node) |
| } |
| |
| func (d *initDeps) cachedVisit() func(ir.Node) { |
| if d.cvisit == nil { |
| d.cvisit = d.visit // cache closure |
| } |
| return d.cvisit |
| } |
| |
| func (d *initDeps) inspect(n ir.Node) { ir.Visit(n, d.cachedVisit()) } |
| func (d *initDeps) inspectList(l ir.Nodes) { ir.VisitList(l, d.cachedVisit()) } |
| |
| // visit calls foundDep on any package-level functions or variables |
| // referenced by n, if any. |
| func (d *initDeps) visit(n ir.Node) { |
| switch n.Op() { |
| case ir.ONAME: |
| n := n.(*ir.Name) |
| switch n.Class { |
| case ir.PEXTERN, ir.PFUNC: |
| d.foundDep(n) |
| } |
| |
| case ir.OCLOSURE: |
| n := n.(*ir.ClosureExpr) |
| d.inspectList(n.Func.Body) |
| |
| case ir.ODOTMETH, ir.OMETHVALUE, ir.OMETHEXPR: |
| d.foundDep(ir.MethodExprName(n)) |
| } |
| } |
| |
| // foundDep records that we've found a dependency on n by adding it to |
| // seen. |
| func (d *initDeps) foundDep(n *ir.Name) { |
| // Can happen with method expressions involving interface |
| // types; e.g., fixedbugs/issue4495.go. |
| if n == nil { |
| return |
| } |
| |
| // Names without definitions aren't interesting as far as |
| // initialization ordering goes. |
| if n.Defn == nil { |
| return |
| } |
| |
| // Treat coverage counter variables effectively as invisible with |
| // respect to init order. If we don't do this, then the |
| // instrumentation vars can perturb the order of initialization |
| // away from the order of the original uninstrumented program. |
| // See issue #56293 for more details. |
| if n.CoverageCounter() || n.CoverageAuxVar() { |
| return |
| } |
| |
| if d.seen.Has(n) { |
| return |
| } |
| d.seen.Add(n) |
| if d.transitive && n.Class == ir.PFUNC { |
| d.inspectList(n.Defn.(*ir.Func).Body) |
| } |
| } |
| |
| // declOrder implements heap.Interface, ordering assignment statements |
| // by the position of their first LHS expression. |
| // |
| // N.B., the Pos of the first LHS expression is used because because |
| // an OAS node's Pos may not be unique. For example, given the |
| // declaration "var a, b = f(), g()", "a" must be ordered before "b", |
| // but both OAS nodes use the "=" token's position as their Pos. |
| type declOrder []ir.Node |
| |
| func (s declOrder) Len() int { return len(s) } |
| func (s declOrder) Less(i, j int) bool { |
| return firstLHS(s[i]).Pos().Before(firstLHS(s[j]).Pos()) |
| } |
| func (s declOrder) Swap(i, j int) { s[i], s[j] = s[j], s[i] } |
| |
| func (s *declOrder) Push(x interface{}) { *s = append(*s, x.(ir.Node)) } |
| func (s *declOrder) Pop() interface{} { |
| n := (*s)[len(*s)-1] |
| *s = (*s)[:len(*s)-1] |
| return n |
| } |
| |
| // firstLHS returns the first expression on the left-hand side of |
| // assignment n. |
| func firstLHS(n ir.Node) *ir.Name { |
| switch n.Op() { |
| case ir.OAS: |
| n := n.(*ir.AssignStmt) |
| return n.X.Name() |
| case ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2RECV, ir.OAS2MAPR: |
| n := n.(*ir.AssignListStmt) |
| return n.Lhs[0].Name() |
| } |
| |
| base.Fatalf("unexpected Op: %v", n.Op()) |
| return nil |
| } |