| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package template |
| |
| import ( |
| "fmt" |
| "io" |
| "os" |
| "reflect" |
| "strings" |
| "unicode" |
| "utf8" |
| ) |
| |
| // state represents the state of an execution. It's not part of the |
| // template so that multiple executions of the same template |
| // can execute in parallel. |
| type state struct { |
| tmpl *Template |
| wr io.Writer |
| set *Set |
| line int // line number for errors |
| vars []variable // push-down stack of variable values. |
| } |
| |
| // variable holds the dynamic value of a variable such as $, $x etc. |
| type variable struct { |
| name string |
| value reflect.Value |
| } |
| |
| // push pushes a new variable on the stack. |
| func (s *state) push(name string, value reflect.Value) { |
| s.vars = append(s.vars, variable{name, value}) |
| } |
| |
| // mark returns the length of the variable stack. |
| func (s *state) mark() int { |
| return len(s.vars) |
| } |
| |
| // pop pops the variable stack up to the mark. |
| func (s *state) pop(mark int) { |
| s.vars = s.vars[0:mark] |
| } |
| |
| // setTop overwrites the top variable on the stack. Used by range iterations. |
| func (s *state) setTop(value reflect.Value) { |
| s.vars[len(s.vars)-1].value = value |
| } |
| |
| // varValue returns the value of the named variable. |
| func (s *state) varValue(name string) reflect.Value { |
| for i := s.mark() - 1; i >= 0; i-- { |
| if s.vars[i].name == name { |
| return s.vars[i].value |
| } |
| } |
| s.errorf("undefined variable: %s", name) |
| return zero |
| } |
| |
| var zero reflect.Value |
| |
| // errorf formats the error and terminates processing. |
| func (s *state) errorf(format string, args ...interface{}) { |
| format = fmt.Sprintf("template: %s:%d: %s", s.tmpl.name, s.line, format) |
| panic(fmt.Errorf(format, args...)) |
| } |
| |
| // error terminates processing. |
| func (s *state) error(err os.Error) { |
| s.errorf("%s", err) |
| } |
| |
| // Execute applies a parsed template to the specified data object, |
| // writing the output to wr. |
| func (t *Template) Execute(wr io.Writer, data interface{}) os.Error { |
| return t.ExecuteInSet(wr, data, nil) |
| } |
| |
| // ExecuteInSet applies a parsed template to the specified data object, |
| // writing the output to wr. Nested template invocations will be resolved |
| // from the specified set. |
| func (t *Template) ExecuteInSet(wr io.Writer, data interface{}, set *Set) (err os.Error) { |
| defer t.recover(&err) |
| value := reflect.ValueOf(data) |
| state := &state{ |
| tmpl: t, |
| wr: wr, |
| set: set, |
| line: 1, |
| vars: []variable{{"$", value}}, |
| } |
| if t.root == nil { |
| state.errorf("must be parsed before execution") |
| } |
| state.walk(value, t.root) |
| if state.mark() != 1 { |
| t.errorf("internal error: variable stack at %d", state.mark()) |
| } |
| return |
| } |
| |
| // Walk functions step through the major pieces of the template structure, |
| // generating output as they go. |
| func (s *state) walk(data reflect.Value, n node) { |
| switch n := n.(type) { |
| case *actionNode: |
| s.line = n.line |
| defer s.pop(s.mark()) |
| s.printValue(n, s.evalPipeline(data, n.pipe)) |
| case *ifNode: |
| s.line = n.line |
| s.walkIfOrWith(nodeIf, data, n.pipe, n.list, n.elseList) |
| case *listNode: |
| for _, node := range n.nodes { |
| s.walk(data, node) |
| } |
| case *rangeNode: |
| s.line = n.line |
| s.walkRange(data, n) |
| case *templateNode: |
| s.line = n.line |
| s.walkTemplate(data, n) |
| case *textNode: |
| if _, err := s.wr.Write(n.text); err != nil { |
| s.error(err) |
| } |
| case *withNode: |
| s.line = n.line |
| s.walkIfOrWith(nodeWith, data, n.pipe, n.list, n.elseList) |
| default: |
| s.errorf("unknown node: %s", n) |
| } |
| } |
| |
| // walkIfOrWith walks an 'if' or 'with' node. The two control structures |
| // are identical in behavior except that 'with' sets dot. |
| func (s *state) walkIfOrWith(typ nodeType, data reflect.Value, pipe *pipeNode, list, elseList *listNode) { |
| defer s.pop(s.mark()) |
| val := s.evalPipeline(data, pipe) |
| truth, ok := isTrue(val) |
| if !ok { |
| s.errorf("if/with can't use value of type %T", val.Interface()) |
| } |
| if truth { |
| if typ == nodeWith { |
| s.walk(val, list) |
| } else { |
| s.walk(data, list) |
| } |
| } else if elseList != nil { |
| s.walk(data, elseList) |
| } |
| } |
| |
| // isTrue returns whether the value is 'true', in the sense of not the zero of its type, |
| // and whether the value has a meaningful truth value. |
| func isTrue(val reflect.Value) (truth, ok bool) { |
| switch val.Kind() { |
| case reflect.Array, reflect.Map, reflect.Slice, reflect.String: |
| truth = val.Len() > 0 |
| case reflect.Bool: |
| truth = val.Bool() |
| case reflect.Complex64, reflect.Complex128: |
| truth = val.Complex() != 0 |
| case reflect.Chan, reflect.Func, reflect.Ptr: |
| truth = !val.IsNil() |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| truth = val.Int() != 0 |
| case reflect.Float32, reflect.Float64: |
| truth = val.Float() != 0 |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| truth = val.Uint() != 0 |
| default: |
| return |
| } |
| return truth, true |
| } |
| |
| func (s *state) walkRange(data reflect.Value, r *rangeNode) { |
| defer s.pop(s.mark()) |
| val, _ := indirect(s.evalPipeline(data, r.pipe)) |
| switch val.Kind() { |
| case reflect.Array, reflect.Slice: |
| if val.Len() == 0 { |
| break |
| } |
| for i := 0; i < val.Len(); i++ { |
| elem := val.Index(i) |
| // Set $x to the element rather than the slice. |
| if r.pipe.decl != nil { |
| s.setTop(elem) |
| } |
| s.walk(elem, r.list) |
| } |
| return |
| case reflect.Map: |
| if val.Len() == 0 { |
| break |
| } |
| for _, key := range val.MapKeys() { |
| elem := val.MapIndex(key) |
| // Set $x to the key rather than the map. |
| if r.pipe.decl != nil { |
| s.setTop(elem) |
| } |
| s.walk(elem, r.list) |
| } |
| return |
| default: |
| s.errorf("range can't iterate over value of type %T", val.Interface()) |
| } |
| if r.elseList != nil { |
| s.walk(data, r.elseList) |
| } |
| } |
| |
| func (s *state) walkTemplate(data reflect.Value, t *templateNode) { |
| // Can't use evalArg because there are two types we expect. |
| arg := s.evalEmptyInterface(data, t.name) |
| if !arg.IsValid() { |
| s.errorf("invalid value in template invocation; expected string or *Template") |
| } |
| var tmpl *Template |
| if arg.Type() == reflect.TypeOf((*Template)(nil)) { |
| tmpl = arg.Interface().(*Template) |
| if tmpl == nil { |
| s.errorf("nil template") |
| } |
| } else { |
| s.validateType(arg, reflect.TypeOf("")) |
| name := arg.String() |
| if s.set == nil { |
| s.errorf("no set defined in which to invoke template named %q", name) |
| } |
| tmpl = s.set.tmpl[name] |
| if tmpl == nil { |
| s.errorf("template %q not in set", name) |
| } |
| } |
| defer s.pop(s.mark()) |
| data = s.evalPipeline(data, t.pipe) |
| newState := *s |
| newState.tmpl = tmpl |
| // No dynamic scoping: template invocations inherit no variables. |
| newState.vars = []variable{{"$", data}} |
| newState.walk(data, tmpl.root) |
| } |
| |
| // Eval functions evaluate pipelines, commands, and their elements and extract |
| // values from the data structure by examining fields, calling methods, and so on. |
| // The printing of those values happens only through walk functions. |
| |
| // evalPipeline returns the value acquired by evaluating a pipeline. If the |
| // pipeline has a variable declaration, the variable will be pushed on the |
| // stack. Callers should therefore pop the stack after they are finished |
| // executing commands depending on the pipeline value. |
| func (s *state) evalPipeline(data reflect.Value, pipe *pipeNode) (value reflect.Value) { |
| if pipe == nil { |
| return |
| } |
| for _, cmd := range pipe.cmds { |
| value = s.evalCommand(data, cmd, value) // previous value is this one's final arg. |
| // If the object has type interface{}, dig down one level to the thing inside. |
| if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { |
| value = reflect.ValueOf(value.Interface()) // lovely! |
| } |
| } |
| if pipe.decl != nil { |
| s.push(pipe.decl.ident[0], value) |
| } |
| return value |
| } |
| |
| func (s *state) notAFunction(args []node, final reflect.Value) { |
| if len(args) > 1 || final.IsValid() { |
| s.errorf("can't give argument to non-function %s", args[0]) |
| } |
| } |
| |
| func (s *state) evalCommand(data reflect.Value, cmd *commandNode, final reflect.Value) reflect.Value { |
| firstWord := cmd.args[0] |
| switch n := firstWord.(type) { |
| case *fieldNode: |
| return s.evalFieldNode(data, n, cmd.args, final) |
| case *identifierNode: |
| // Must be a function. |
| return s.evalFunction(data, n.ident, cmd.args, final) |
| case *variableNode: |
| return s.evalVariableNode(n, cmd.args, final) |
| } |
| s.notAFunction(cmd.args, final) |
| switch word := firstWord.(type) { |
| case *boolNode: |
| return reflect.ValueOf(word.true) |
| case *dotNode: |
| return data |
| case *numberNode: |
| // These are ideal constants but we don't know the type |
| // and we have no context. (If it was a method argument, |
| // we'd know what we need.) The syntax guides us to some extent. |
| switch { |
| case word.isComplex: |
| return reflect.ValueOf(word.complex128) // incontrovertible. |
| case word.isFloat && strings.IndexAny(word.text, ".eE") >= 0: |
| return reflect.ValueOf(word.float64) |
| case word.isInt: |
| return reflect.ValueOf(word.int64) |
| case word.isUint: |
| return reflect.ValueOf(word.uint64) |
| } |
| case *stringNode: |
| return reflect.ValueOf(word.text) |
| } |
| s.errorf("can't handle command %q", firstWord) |
| panic("not reached") |
| } |
| |
| func (s *state) evalFieldNode(data reflect.Value, field *fieldNode, args []node, final reflect.Value) reflect.Value { |
| return s.evalFieldChain(data, field.ident, args, final) |
| } |
| |
| func (s *state) evalVariableNode(v *variableNode, args []node, final reflect.Value) reflect.Value { |
| // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. |
| data := s.varValue(v.ident[0]) |
| if len(v.ident) == 1 { |
| return data |
| } |
| return s.evalFieldChain(data, v.ident[1:], args, final) |
| } |
| |
| func (s *state) evalFieldChain(data reflect.Value, ident []string, args []node, final reflect.Value) reflect.Value { |
| // Up to the last entry, it must be a field. |
| n := len(ident) |
| for i := 0; i < n-1; i++ { |
| data = s.evalField(data, ident[i], nil, zero, false) |
| } |
| // Now it can be a field or method and if a method, gets arguments. |
| return s.evalField(data, ident[n-1], args, final, true) |
| } |
| |
| func (s *state) evalFunction(data reflect.Value, name string, args []node, final reflect.Value) reflect.Value { |
| function, ok := findFunction(name, s.tmpl, s.set) |
| if !ok { |
| s.errorf("%q is not a defined function", name) |
| } |
| return s.evalCall(data, function, name, false, args, final) |
| } |
| |
| // Is this an exported - upper case - name? |
| func isExported(name string) bool { |
| rune, _ := utf8.DecodeRuneInString(name) |
| return unicode.IsUpper(rune) |
| } |
| |
| // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). |
| // The 'final' argument represents the return value from the preceding |
| // value of the pipeline, if any. |
| // If we're in a chain, such as (.X.Y.Z), .X and .Y cannot be methods; |
| // canBeMethod will be true only for the last element of such chains (here .Z). |
| func (s *state) evalField(data reflect.Value, fieldName string, args []node, final reflect.Value, |
| canBeMethod bool) reflect.Value { |
| typ := data.Type() |
| var isNil bool |
| data, isNil = indirect(data) |
| if canBeMethod { |
| // Need to get to a value of type *T to guarantee we see all |
| // methods of T and *T. |
| ptr := data |
| if ptr.CanAddr() { |
| ptr = ptr.Addr() |
| } |
| if method, ok := methodByName(ptr.Type(), fieldName); ok { |
| return s.evalCall(ptr, method.Func, fieldName, true, args, final) |
| } |
| } |
| // It's not a method; is it a field of a struct? |
| if data.Kind() == reflect.Struct { |
| field := data.FieldByName(fieldName) |
| if field.IsValid() { |
| if len(args) > 1 || final.IsValid() { |
| s.errorf("%s is not a method but has arguments", fieldName) |
| } |
| if isExported(fieldName) { // valid and exported |
| return field |
| } |
| } |
| } |
| if isNil { |
| s.errorf("nil pointer evaluating %s.%s", typ, fieldName) |
| } |
| s.errorf("can't handle evaluation of field %s in type %s", fieldName, typ) |
| panic("not reached") |
| } |
| |
| // TODO: delete when reflect's own MethodByName is released. |
| func methodByName(typ reflect.Type, name string) (reflect.Method, bool) { |
| for i := 0; i < typ.NumMethod(); i++ { |
| if typ.Method(i).Name == name { |
| return typ.Method(i), true |
| } |
| } |
| return reflect.Method{}, false |
| } |
| |
| var ( |
| osErrorType = reflect.TypeOf(new(os.Error)).Elem() |
| ) |
| |
| func (s *state) evalCall(v, fun reflect.Value, name string, isMethod bool, args []node, final reflect.Value) reflect.Value { |
| typ := fun.Type() |
| if !isMethod && len(args) > 0 { // Args will be nil if it's a niladic call in an argument list |
| args = args[1:] // first arg is name of function; not used in call. |
| } |
| numIn := len(args) |
| if final.IsValid() { |
| numIn++ |
| } |
| numFixed := len(args) |
| if typ.IsVariadic() { |
| numFixed = typ.NumIn() - 1 // last arg is the variadic one. |
| if numIn < numFixed { |
| s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) |
| } |
| } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { |
| s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) |
| } |
| if !goodFunc(typ) { |
| s.errorf("can't handle multiple results from method/function %q", name) |
| } |
| // Build the arg list. |
| argv := make([]reflect.Value, numIn) |
| // First arg is the receiver. |
| i := 0 |
| if isMethod { |
| argv[0] = v |
| i++ |
| } |
| // Others must be evaluated. Fixed args first. |
| for ; i < numFixed; i++ { |
| argv[i] = s.evalArg(v, typ.In(i), args[i]) |
| } |
| // And now the ... args. |
| if typ.IsVariadic() { |
| argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. |
| for ; i < len(args); i++ { |
| argv[i] = s.evalArg(v, argType, args[i]) |
| } |
| } |
| // Add final value if necessary. |
| if final.IsValid() { |
| argv[len(args)] = final |
| } |
| result := fun.Call(argv) |
| // If we have an os.Error that is not nil, stop execution and return that error to the caller. |
| if len(result) == 2 && !result[1].IsNil() { |
| s.error(result[1].Interface().(os.Error)) |
| } |
| return result[0] |
| } |
| |
| // validateType guarantees that the value is valid and assignable to the type. |
| func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { |
| if !value.IsValid() { |
| s.errorf("invalid value; expected %s", typ) |
| } |
| if !value.Type().AssignableTo(typ) { |
| s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) |
| } |
| return value |
| } |
| |
| func (s *state) evalArg(data reflect.Value, typ reflect.Type, n node) reflect.Value { |
| switch arg := n.(type) { |
| case *dotNode: |
| return s.validateType(data, typ) |
| case *fieldNode: |
| return s.validateType(s.evalFieldNode(data, arg, []node{n}, zero), typ) |
| case *variableNode: |
| return s.validateType(s.evalVariableNode(arg, nil, zero), typ) |
| } |
| switch typ.Kind() { |
| case reflect.Bool: |
| return s.evalBool(typ, n) |
| case reflect.Complex64, reflect.Complex128: |
| return s.evalComplex(typ, n) |
| case reflect.Float32, reflect.Float64: |
| return s.evalFloat(typ, n) |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| return s.evalInteger(typ, n) |
| case reflect.Interface: |
| if typ.NumMethod() == 0 { |
| return s.evalEmptyInterface(data, n) |
| } |
| case reflect.String: |
| return s.evalString(typ, n) |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| return s.evalUnsignedInteger(typ, n) |
| } |
| s.errorf("can't handle %s for arg of type %s", n, typ) |
| panic("not reached") |
| } |
| |
| func (s *state) evalBool(typ reflect.Type, n node) reflect.Value { |
| if n, ok := n.(*boolNode); ok { |
| value := reflect.New(typ).Elem() |
| value.SetBool(n.true) |
| return value |
| } |
| s.errorf("expected bool; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalString(typ reflect.Type, n node) reflect.Value { |
| if n, ok := n.(*stringNode); ok { |
| value := reflect.New(typ).Elem() |
| value.SetString(n.text) |
| return value |
| } |
| s.errorf("expected string; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalInteger(typ reflect.Type, n node) reflect.Value { |
| if n, ok := n.(*numberNode); ok && n.isInt { |
| value := reflect.New(typ).Elem() |
| value.SetInt(n.int64) |
| return value |
| } |
| s.errorf("expected integer; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalUnsignedInteger(typ reflect.Type, n node) reflect.Value { |
| if n, ok := n.(*numberNode); ok && n.isUint { |
| value := reflect.New(typ).Elem() |
| value.SetUint(n.uint64) |
| return value |
| } |
| s.errorf("expected unsigned integer; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalFloat(typ reflect.Type, n node) reflect.Value { |
| if n, ok := n.(*numberNode); ok && n.isFloat { |
| value := reflect.New(typ).Elem() |
| value.SetFloat(n.float64) |
| return value |
| } |
| s.errorf("expected float; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalComplex(typ reflect.Type, n node) reflect.Value { |
| if n, ok := n.(*numberNode); ok && n.isComplex { |
| value := reflect.New(typ).Elem() |
| value.SetComplex(n.complex128) |
| return value |
| } |
| s.errorf("expected complex; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalEmptyInterface(data reflect.Value, n node) reflect.Value { |
| switch n := n.(type) { |
| case *boolNode: |
| return reflect.ValueOf(n.true) |
| case *dotNode: |
| return data |
| case *fieldNode: |
| return s.evalFieldNode(data, n, nil, zero) |
| case *identifierNode: |
| return s.evalFunction(data, n.ident, nil, zero) |
| case *numberNode: |
| if n.isComplex { |
| return reflect.ValueOf(n.complex128) |
| } |
| if n.isInt { |
| return reflect.ValueOf(n.int64) |
| } |
| if n.isUint { |
| return reflect.ValueOf(n.uint64) |
| } |
| if n.isFloat { |
| return reflect.ValueOf(n.float64) |
| } |
| case *stringNode: |
| return reflect.ValueOf(n.text) |
| case *variableNode: |
| return s.evalVariableNode(n, nil, zero) |
| } |
| s.errorf("can't handle assignment of %s to empty interface argument", n) |
| panic("not reached") |
| } |
| |
| // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. |
| func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { |
| for v.Kind() == reflect.Ptr { |
| if v.IsNil() { |
| return v, true |
| } |
| v = v.Elem() |
| } |
| return v, false |
| } |
| |
| // printValue writes the textual representation of the value to the output of |
| // the template. |
| func (s *state) printValue(n node, v reflect.Value) { |
| if !v.IsValid() { |
| fmt.Fprint(s.wr, "<no value>") |
| return |
| } |
| switch v.Kind() { |
| case reflect.Ptr: |
| var isNil bool |
| if v, isNil = indirect(v); isNil { |
| fmt.Fprint(s.wr, "<nil>") |
| return |
| } |
| case reflect.Chan, reflect.Func, reflect.Interface: |
| s.errorf("can't print %s of type %s", n, v.Type()) |
| } |
| fmt.Fprint(s.wr, v.Interface()) |
| } |