blob: 6dec0dfd71938b6b57d00e599a1145022396c7ad [file] [log] [blame]
// run
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test maps, almost exhaustively.
package main
import (
"fmt"
"math"
"strconv"
"time"
)
const count = 100
func P(a []string) string {
s := "{"
for i := 0; i < len(a); i++ {
if i > 0 {
s += ","
}
s += `"` + a[i] + `"`
}
s += "}"
return s
}
func main() {
testbasic()
testfloat()
testnan()
}
func testbasic() {
// Test a map literal.
mlit := map[string]int{"0": 0, "1": 1, "2": 2, "3": 3, "4": 4}
for i := 0; i < len(mlit); i++ {
s := string([]byte{byte(i) + '0'})
if mlit[s] != i {
fmt.Printf("mlit[%s] = %d\n", s, mlit[s])
}
}
mib := make(map[int]bool)
mii := make(map[int]int)
mfi := make(map[float32]int)
mif := make(map[int]float32)
msi := make(map[string]int)
mis := make(map[int]string)
mss := make(map[string]string)
mspa := make(map[string][]string)
// BUG need an interface map both ways too
type T struct {
i int64 // can't use string here; struct values are only compared at the top level
f float32
}
mipT := make(map[int]*T)
mpTi := make(map[*T]int)
mit := make(map[int]T)
// mti := make(map[T] int)
type M map[int]int
mipM := make(map[int]M)
var apT [2 * count]*T
for i := 0; i < count; i++ {
s := strconv.Itoa(i)
s10 := strconv.Itoa(i * 10)
f := float32(i)
t := T{int64(i), f}
apT[i] = new(T)
apT[i].i = int64(i)
apT[i].f = f
apT[2*i] = new(T) // need twice as many entries as we use, for the nonexistence check
apT[2*i].i = int64(i)
apT[2*i].f = f
m := M{i: i + 1}
mib[i] = (i != 0)
mii[i] = 10 * i
mfi[float32(i)] = 10 * i
mif[i] = 10.0 * f
mis[i] = s
msi[s] = i
mss[s] = s10
mss[s] = s10
as := make([]string, 2)
as[0] = s10
as[1] = s10
mspa[s] = as
mipT[i] = apT[i]
mpTi[apT[i]] = i
mipM[i] = m
mit[i] = t
// mti[t] = i
}
// test len
if len(mib) != count {
fmt.Printf("len(mib) = %d\n", len(mib))
}
if len(mii) != count {
fmt.Printf("len(mii) = %d\n", len(mii))
}
if len(mfi) != count {
fmt.Printf("len(mfi) = %d\n", len(mfi))
}
if len(mif) != count {
fmt.Printf("len(mif) = %d\n", len(mif))
}
if len(msi) != count {
fmt.Printf("len(msi) = %d\n", len(msi))
}
if len(mis) != count {
fmt.Printf("len(mis) = %d\n", len(mis))
}
if len(mss) != count {
fmt.Printf("len(mss) = %d\n", len(mss))
}
if len(mspa) != count {
fmt.Printf("len(mspa) = %d\n", len(mspa))
}
if len(mipT) != count {
fmt.Printf("len(mipT) = %d\n", len(mipT))
}
if len(mpTi) != count {
fmt.Printf("len(mpTi) = %d\n", len(mpTi))
}
// if len(mti) != count {
// fmt.Printf("len(mti) = %d\n", len(mti))
// }
if len(mipM) != count {
fmt.Printf("len(mipM) = %d\n", len(mipM))
}
// if len(mti) != count {
// fmt.Printf("len(mti) = %d\n", len(mti))
// }
if len(mit) != count {
fmt.Printf("len(mit) = %d\n", len(mit))
}
// test construction directly
for i := 0; i < count; i++ {
s := strconv.Itoa(i)
s10 := strconv.Itoa(i * 10)
f := float32(i)
// BUG m := M(i, i+1)
if mib[i] != (i != 0) {
fmt.Printf("mib[%d] = %t\n", i, mib[i])
}
if mii[i] != 10*i {
fmt.Printf("mii[%d] = %d\n", i, mii[i])
}
if mfi[f] != 10*i {
fmt.Printf("mfi[%d] = %d\n", i, mfi[f])
}
if mif[i] != 10.0*f {
fmt.Printf("mif[%d] = %g\n", i, mif[i])
}
if mis[i] != s {
fmt.Printf("mis[%d] = %s\n", i, mis[i])
}
if msi[s] != i {
fmt.Printf("msi[%s] = %d\n", s, msi[s])
}
if mss[s] != s10 {
fmt.Printf("mss[%s] = %g\n", s, mss[s])
}
for j := 0; j < len(mspa[s]); j++ {
if mspa[s][j] != s10 {
fmt.Printf("mspa[%s][%d] = %s\n", s, j, mspa[s][j])
}
}
if mipT[i].i != int64(i) || mipT[i].f != f {
fmt.Printf("mipT[%d] = %v\n", i, mipT[i])
}
if mpTi[apT[i]] != i {
fmt.Printf("mpTi[apT[%d]] = %d\n", i, mpTi[apT[i]])
}
// if(mti[t] != i) {
// fmt.Printf("mti[%s] = %s\n", s, mti[t])
// }
if mipM[i][i] != i+1 {
fmt.Printf("mipM[%d][%d] = %d\n", i, i, mipM[i][i])
}
// if(mti[t] != i) {
// fmt.Printf("mti[%v] = %d\n", t, mti[t])
// }
if mit[i].i != int64(i) || mit[i].f != f {
fmt.Printf("mit[%d] = {%d %g}\n", i, mit[i].i, mit[i].f)
}
}
// test existence with tuple check
// failed lookups yield a false value for the boolean.
for i := 0; i < count; i++ {
s := strconv.Itoa(i)
f := float32(i)
{
_, b := mib[i]
if !b {
fmt.Printf("tuple existence decl: mib[%d]\n", i)
}
_, b = mib[i]
if !b {
fmt.Printf("tuple existence assign: mib[%d]\n", i)
}
}
{
_, b := mii[i]
if !b {
fmt.Printf("tuple existence decl: mii[%d]\n", i)
}
_, b = mii[i]
if !b {
fmt.Printf("tuple existence assign: mii[%d]\n", i)
}
}
{
_, b := mfi[f]
if !b {
fmt.Printf("tuple existence decl: mfi[%d]\n", i)
}
_, b = mfi[f]
if !b {
fmt.Printf("tuple existence assign: mfi[%d]\n", i)
}
}
{
_, b := mif[i]
if !b {
fmt.Printf("tuple existence decl: mif[%d]\n", i)
}
_, b = mif[i]
if !b {
fmt.Printf("tuple existence assign: mif[%d]\n", i)
}
}
{
_, b := mis[i]
if !b {
fmt.Printf("tuple existence decl: mis[%d]\n", i)
}
_, b = mis[i]
if !b {
fmt.Printf("tuple existence assign: mis[%d]\n", i)
}
}
{
_, b := msi[s]
if !b {
fmt.Printf("tuple existence decl: msi[%d]\n", i)
}
_, b = msi[s]
if !b {
fmt.Printf("tuple existence assign: msi[%d]\n", i)
}
}
{
_, b := mss[s]
if !b {
fmt.Printf("tuple existence decl: mss[%d]\n", i)
}
_, b = mss[s]
if !b {
fmt.Printf("tuple existence assign: mss[%d]\n", i)
}
}
{
_, b := mspa[s]
if !b {
fmt.Printf("tuple existence decl: mspa[%d]\n", i)
}
_, b = mspa[s]
if !b {
fmt.Printf("tuple existence assign: mspa[%d]\n", i)
}
}
{
_, b := mipT[i]
if !b {
fmt.Printf("tuple existence decl: mipT[%d]\n", i)
}
_, b = mipT[i]
if !b {
fmt.Printf("tuple existence assign: mipT[%d]\n", i)
}
}
{
_, b := mpTi[apT[i]]
if !b {
fmt.Printf("tuple existence decl: mpTi[apT[%d]]\n", i)
}
_, b = mpTi[apT[i]]
if !b {
fmt.Printf("tuple existence assign: mpTi[apT[%d]]\n", i)
}
}
{
_, b := mipM[i]
if !b {
fmt.Printf("tuple existence decl: mipM[%d]\n", i)
}
_, b = mipM[i]
if !b {
fmt.Printf("tuple existence assign: mipM[%d]\n", i)
}
}
{
_, b := mit[i]
if !b {
fmt.Printf("tuple existence decl: mit[%d]\n", i)
}
_, b = mit[i]
if !b {
fmt.Printf("tuple existence assign: mit[%d]\n", i)
}
}
// {
// _, b := mti[t]
// if !b {
// fmt.Printf("tuple existence decl: mti[%d]\n", i)
// }
// _, b = mti[t]
// if !b {
// fmt.Printf("tuple existence assign: mti[%d]\n", i)
// }
// }
}
// test nonexistence with tuple check
// failed lookups yield a false value for the boolean.
for i := count; i < 2*count; i++ {
s := strconv.Itoa(i)
f := float32(i)
{
_, b := mib[i]
if b {
fmt.Printf("tuple nonexistence decl: mib[%d]", i)
}
_, b = mib[i]
if b {
fmt.Printf("tuple nonexistence assign: mib[%d]", i)
}
}
{
_, b := mii[i]
if b {
fmt.Printf("tuple nonexistence decl: mii[%d]", i)
}
_, b = mii[i]
if b {
fmt.Printf("tuple nonexistence assign: mii[%d]", i)
}
}
{
_, b := mfi[f]
if b {
fmt.Printf("tuple nonexistence decl: mfi[%d]", i)
}
_, b = mfi[f]
if b {
fmt.Printf("tuple nonexistence assign: mfi[%d]", i)
}
}
{
_, b := mif[i]
if b {
fmt.Printf("tuple nonexistence decl: mif[%d]", i)
}
_, b = mif[i]
if b {
fmt.Printf("tuple nonexistence assign: mif[%d]", i)
}
}
{
_, b := mis[i]
if b {
fmt.Printf("tuple nonexistence decl: mis[%d]", i)
}
_, b = mis[i]
if b {
fmt.Printf("tuple nonexistence assign: mis[%d]", i)
}
}
{
_, b := msi[s]
if b {
fmt.Printf("tuple nonexistence decl: msi[%d]", i)
}
_, b = msi[s]
if b {
fmt.Printf("tuple nonexistence assign: msi[%d]", i)
}
}
{
_, b := mss[s]
if b {
fmt.Printf("tuple nonexistence decl: mss[%d]", i)
}
_, b = mss[s]
if b {
fmt.Printf("tuple nonexistence assign: mss[%d]", i)
}
}
{
_, b := mspa[s]
if b {
fmt.Printf("tuple nonexistence decl: mspa[%d]", i)
}
_, b = mspa[s]
if b {
fmt.Printf("tuple nonexistence assign: mspa[%d]", i)
}
}
{
_, b := mipT[i]
if b {
fmt.Printf("tuple nonexistence decl: mipT[%d]", i)
}
_, b = mipT[i]
if b {
fmt.Printf("tuple nonexistence assign: mipT[%d]", i)
}
}
{
_, b := mpTi[apT[i]]
if b {
fmt.Printf("tuple nonexistence decl: mpTi[apt[%d]]", i)
}
_, b = mpTi[apT[i]]
if b {
fmt.Printf("tuple nonexistence assign: mpTi[apT[%d]]", i)
}
}
{
_, b := mipM[i]
if b {
fmt.Printf("tuple nonexistence decl: mipM[%d]", i)
}
_, b = mipM[i]
if b {
fmt.Printf("tuple nonexistence assign: mipM[%d]", i)
}
}
// {
// _, b := mti[t]
// if b {
// fmt.Printf("tuple nonexistence decl: mti[%d]", i)
// }
// _, b = mti[t]
// if b {
// fmt.Printf("tuple nonexistence assign: mti[%d]", i)
// }
// }
{
_, b := mit[i]
if b {
fmt.Printf("tuple nonexistence decl: mit[%d]", i)
}
_, b = mit[i]
if b {
fmt.Printf("tuple nonexistence assign: mit[%d]", i)
}
}
}
// tests for structured map element updates
for i := 0; i < count; i++ {
s := strconv.Itoa(i)
mspa[s][i%2] = "deleted"
if mspa[s][i%2] != "deleted" {
fmt.Printf("update mspa[%s][%d] = %s\n", s, i%2, mspa[s][i%2])
}
mipT[i].i += 1
if mipT[i].i != int64(i)+1 {
fmt.Printf("update mipT[%d].i = %d\n", i, mipT[i].i)
}
mipT[i].f = float32(i + 1)
if mipT[i].f != float32(i+1) {
fmt.Printf("update mipT[%d].f = %g\n", i, mipT[i].f)
}
mipM[i][i]++
if mipM[i][i] != (i+1)+1 {
fmt.Printf("update mipM[%d][%d] = %d\n", i, i, mipM[i][i])
}
}
// test range on nil map
var mnil map[string]int
for _, _ = range mnil {
panic("range mnil")
}
}
func testfloat() {
// Test floating point numbers in maps.
// Two map keys refer to the same entry if the keys are ==.
// The special cases, then, are that +0 == -0 and that NaN != NaN.
{
var (
pz = float32(0)
nz = math.Float32frombits(1 << 31)
nana = float32(math.NaN())
nanb = math.Float32frombits(math.Float32bits(nana) ^ 2)
)
m := map[float32]string{
pz: "+0",
nana: "NaN",
nanb: "NaN",
}
if m[pz] != "+0" {
fmt.Println("float32 map cannot read back m[+0]:", m[pz])
}
if m[nz] != "+0" {
fmt.Println("float32 map does not treat", pz, "and", nz, "as equal for read")
fmt.Println("float32 map does not treat -0 and +0 as equal for read")
}
m[nz] = "-0"
if m[pz] != "-0" {
fmt.Println("float32 map does not treat -0 and +0 as equal for write")
}
if _, ok := m[nana]; ok {
fmt.Println("float32 map allows NaN lookup (a)")
}
if _, ok := m[nanb]; ok {
fmt.Println("float32 map allows NaN lookup (b)")
}
if len(m) != 3 {
fmt.Println("float32 map should have 3 entries:", m)
}
m[nana] = "NaN"
m[nanb] = "NaN"
if len(m) != 5 {
fmt.Println("float32 map should have 5 entries:", m)
}
}
{
var (
pz = float64(0)
nz = math.Float64frombits(1 << 63)
nana = float64(math.NaN())
nanb = math.Float64frombits(math.Float64bits(nana) ^ 2)
)
m := map[float64]string{
pz: "+0",
nana: "NaN",
nanb: "NaN",
}
if m[nz] != "+0" {
fmt.Println("float64 map does not treat -0 and +0 as equal for read")
}
m[nz] = "-0"
if m[pz] != "-0" {
fmt.Println("float64 map does not treat -0 and +0 as equal for write")
}
if _, ok := m[nana]; ok {
fmt.Println("float64 map allows NaN lookup (a)")
}
if _, ok := m[nanb]; ok {
fmt.Println("float64 map allows NaN lookup (b)")
}
if len(m) != 3 {
fmt.Println("float64 map should have 3 entries:", m)
}
m[nana] = "NaN"
m[nanb] = "NaN"
if len(m) != 5 {
fmt.Println("float64 map should have 5 entries:", m)
}
}
{
var (
pz = complex64(0)
nz = complex(0, math.Float32frombits(1<<31))
nana = complex(5, float32(math.NaN()))
nanb = complex(5, math.Float32frombits(math.Float32bits(float32(math.NaN()))^2))
)
m := map[complex64]string{
pz: "+0",
nana: "NaN",
nanb: "NaN",
}
if m[nz] != "+0" {
fmt.Println("complex64 map does not treat -0 and +0 as equal for read")
}
m[nz] = "-0"
if m[pz] != "-0" {
fmt.Println("complex64 map does not treat -0 and +0 as equal for write")
}
if _, ok := m[nana]; ok {
fmt.Println("complex64 map allows NaN lookup (a)")
}
if _, ok := m[nanb]; ok {
fmt.Println("complex64 map allows NaN lookup (b)")
}
if len(m) != 3 {
fmt.Println("complex64 map should have 3 entries:", m)
}
m[nana] = "NaN"
m[nanb] = "NaN"
if len(m) != 5 {
fmt.Println("complex64 map should have 5 entries:", m)
}
}
{
var (
pz = complex128(0)
nz = complex(0, math.Float64frombits(1<<63))
nana = complex(5, float64(math.NaN()))
nanb = complex(5, math.Float64frombits(math.Float64bits(float64(math.NaN()))^2))
)
m := map[complex128]string{
pz: "+0",
nana: "NaN",
nanb: "NaN",
}
if m[nz] != "+0" {
fmt.Println("complex128 map does not treat -0 and +0 as equal for read")
}
m[nz] = "-0"
if m[pz] != "-0" {
fmt.Println("complex128 map does not treat -0 and +0 as equal for write")
}
if _, ok := m[nana]; ok {
fmt.Println("complex128 map allows NaN lookup (a)")
}
if _, ok := m[nanb]; ok {
fmt.Println("complex128 map allows NaN lookup (b)")
}
if len(m) != 3 {
fmt.Println("complex128 map should have 3 entries:", m)
}
m[nana] = "NaN"
m[nanb] = "NaN"
if len(m) != 5 {
fmt.Println("complex128 map should have 5 entries:", m)
}
}
}
func testnan() {
// Test that NaNs in maps don't go quadratic.
t := func(n int) time.Duration {
t0 := time.Now()
m := map[float64]int{}
nan := math.NaN()
for i := 0; i < n; i++ {
m[nan] = 1
}
if len(m) != n {
panic("wrong size map after nan insertion")
}
return time.Since(t0)
}
// Depending on the machine and OS, this test might be too fast
// to measure with accurate enough granularity. On failure,
// make it run longer, hoping that the timing granularity
// is eventually sufficient.
n := 30000 // 0.02 seconds on a MacBook Air
fails := 0
for {
t1 := t(n)
t2 := t(2 * n)
// should be 2x (linear); allow up to 3x
if t2 < 3*t1 {
return
}
fails++
if fails == 4 {
fmt.Printf("too slow: %d inserts: %v; %d inserts: %v\n", n, t1, 2*n, t2)
return
}
n *= 2
}
}