| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package walk |
| |
| import ( |
| "unicode/utf8" |
| |
| "cmd/compile/internal/base" |
| "cmd/compile/internal/ir" |
| "cmd/compile/internal/reflectdata" |
| "cmd/compile/internal/ssagen" |
| "cmd/compile/internal/typecheck" |
| "cmd/compile/internal/types" |
| "cmd/internal/sys" |
| ) |
| |
| func cheapComputableIndex(width int64) bool { |
| switch ssagen.Arch.LinkArch.Family { |
| // MIPS does not have R+R addressing |
| // Arm64 may lack ability to generate this code in our assembler, |
| // but the architecture supports it. |
| case sys.PPC64, sys.S390X: |
| return width == 1 |
| case sys.AMD64, sys.I386, sys.ARM64, sys.ARM: |
| switch width { |
| case 1, 2, 4, 8: |
| return true |
| } |
| } |
| return false |
| } |
| |
| // walkRange transforms various forms of ORANGE into |
| // simpler forms. The result must be assigned back to n. |
| // Node n may also be modified in place, and may also be |
| // the returned node. |
| func walkRange(nrange *ir.RangeStmt) ir.Node { |
| if isMapClear(nrange) { |
| m := nrange.X |
| lno := ir.SetPos(m) |
| n := mapClear(m) |
| base.Pos = lno |
| return n |
| } |
| |
| nfor := ir.NewForStmt(nrange.Pos(), nil, nil, nil, nil) |
| nfor.SetInit(nrange.Init()) |
| nfor.Label = nrange.Label |
| |
| // variable name conventions: |
| // ohv1, hv1, hv2: hidden (old) val 1, 2 |
| // ha, hit: hidden aggregate, iterator |
| // hn, hp: hidden len, pointer |
| // hb: hidden bool |
| // a, v1, v2: not hidden aggregate, val 1, 2 |
| |
| a := nrange.X |
| t := typecheck.RangeExprType(a.Type()) |
| lno := ir.SetPos(a) |
| |
| v1, v2 := nrange.Key, nrange.Value |
| |
| if ir.IsBlank(v2) { |
| v2 = nil |
| } |
| |
| if ir.IsBlank(v1) && v2 == nil { |
| v1 = nil |
| } |
| |
| if v1 == nil && v2 != nil { |
| base.Fatalf("walkRange: v2 != nil while v1 == nil") |
| } |
| |
| var ifGuard *ir.IfStmt |
| |
| var body []ir.Node |
| var init []ir.Node |
| switch t.Kind() { |
| default: |
| base.Fatalf("walkRange") |
| |
| case types.TARRAY, types.TSLICE: |
| if nn := arrayClear(nrange, v1, v2, a); nn != nil { |
| base.Pos = lno |
| return nn |
| } |
| |
| // order.stmt arranged for a copy of the array/slice variable if needed. |
| ha := a |
| |
| hv1 := typecheck.Temp(types.Types[types.TINT]) |
| hn := typecheck.Temp(types.Types[types.TINT]) |
| |
| init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) |
| init = append(init, ir.NewAssignStmt(base.Pos, hn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha))) |
| |
| nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) |
| nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(1))) |
| |
| // for range ha { body } |
| if v1 == nil { |
| break |
| } |
| |
| // for v1 := range ha { body } |
| if v2 == nil { |
| body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, hv1)} |
| break |
| } |
| |
| // for v1, v2 := range ha { body } |
| if cheapComputableIndex(t.Elem().Size()) { |
| // v1, v2 = hv1, ha[hv1] |
| tmp := ir.NewIndexExpr(base.Pos, ha, hv1) |
| tmp.SetBounded(true) |
| // Use OAS2 to correctly handle assignments |
| // of the form "v1, a[v1] := range". |
| a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1, tmp}) |
| body = []ir.Node{a} |
| break |
| } |
| |
| // TODO(austin): OFORUNTIL is a strange beast, but is |
| // necessary for expressing the control flow we need |
| // while also making "break" and "continue" work. It |
| // would be nice to just lower ORANGE during SSA, but |
| // racewalk needs to see many of the operations |
| // involved in ORANGE's implementation. If racewalk |
| // moves into SSA, consider moving ORANGE into SSA and |
| // eliminating OFORUNTIL. |
| |
| // TODO(austin): OFORUNTIL inhibits bounds-check |
| // elimination on the index variable (see #20711). |
| // Enhance the prove pass to understand this. |
| ifGuard = ir.NewIfStmt(base.Pos, nil, nil, nil) |
| ifGuard.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) |
| nfor.SetOp(ir.OFORUNTIL) |
| |
| hp := typecheck.Temp(types.NewPtr(t.Elem())) |
| tmp := ir.NewIndexExpr(base.Pos, ha, ir.NewInt(0)) |
| tmp.SetBounded(true) |
| init = append(init, ir.NewAssignStmt(base.Pos, hp, typecheck.NodAddr(tmp))) |
| |
| // Use OAS2 to correctly handle assignments |
| // of the form "v1, a[v1] := range". |
| a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1, ir.NewStarExpr(base.Pos, hp)}) |
| body = append(body, a) |
| |
| // Advance pointer as part of the late increment. |
| // |
| // This runs *after* the condition check, so we know |
| // advancing the pointer is safe and won't go past the |
| // end of the allocation. |
| as := ir.NewAssignStmt(base.Pos, hp, addptr(hp, t.Elem().Size())) |
| nfor.Late = []ir.Node{typecheck.Stmt(as)} |
| |
| case types.TMAP: |
| // order.stmt allocated the iterator for us. |
| // we only use a once, so no copy needed. |
| ha := a |
| |
| hit := nrange.Prealloc |
| th := hit.Type() |
| // depends on layout of iterator struct. |
| // See cmd/compile/internal/reflectdata/reflect.go:MapIterType |
| keysym := th.Field(0).Sym |
| elemsym := th.Field(1).Sym // ditto |
| |
| fn := typecheck.LookupRuntime("mapiterinit") |
| |
| fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem(), th) |
| init = append(init, mkcallstmt1(fn, reflectdata.TypePtr(t), ha, typecheck.NodAddr(hit))) |
| nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil()) |
| |
| fn = typecheck.LookupRuntime("mapiternext") |
| fn = typecheck.SubstArgTypes(fn, th) |
| nfor.Post = mkcallstmt1(fn, typecheck.NodAddr(hit)) |
| |
| key := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym)) |
| if v1 == nil { |
| body = nil |
| } else if v2 == nil { |
| body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, key)} |
| } else { |
| elem := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, elemsym)) |
| a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{key, elem}) |
| body = []ir.Node{a} |
| } |
| |
| case types.TCHAN: |
| // order.stmt arranged for a copy of the channel variable. |
| ha := a |
| |
| hv1 := typecheck.Temp(t.Elem()) |
| hv1.SetTypecheck(1) |
| if t.Elem().HasPointers() { |
| init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) |
| } |
| hb := typecheck.Temp(types.Types[types.TBOOL]) |
| |
| nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, hb, ir.NewBool(false)) |
| lhs := []ir.Node{hv1, hb} |
| rhs := []ir.Node{ir.NewUnaryExpr(base.Pos, ir.ORECV, ha)} |
| a := ir.NewAssignListStmt(base.Pos, ir.OAS2RECV, lhs, rhs) |
| a.SetTypecheck(1) |
| nfor.Cond = ir.InitExpr([]ir.Node{a}, nfor.Cond) |
| if v1 == nil { |
| body = nil |
| } else { |
| body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, hv1)} |
| } |
| // Zero hv1. This prevents hv1 from being the sole, inaccessible |
| // reference to an otherwise GC-able value during the next channel receive. |
| // See issue 15281. |
| body = append(body, ir.NewAssignStmt(base.Pos, hv1, nil)) |
| |
| case types.TSTRING: |
| // Transform string range statements like "for v1, v2 = range a" into |
| // |
| // ha := a |
| // for hv1 := 0; hv1 < len(ha); { |
| // hv1t := hv1 |
| // hv2 := rune(ha[hv1]) |
| // if hv2 < utf8.RuneSelf { |
| // hv1++ |
| // } else { |
| // hv2, hv1 = decoderune(ha, hv1) |
| // } |
| // v1, v2 = hv1t, hv2 |
| // // original body |
| // } |
| |
| // order.stmt arranged for a copy of the string variable. |
| ha := a |
| |
| hv1 := typecheck.Temp(types.Types[types.TINT]) |
| hv1t := typecheck.Temp(types.Types[types.TINT]) |
| hv2 := typecheck.Temp(types.RuneType) |
| |
| // hv1 := 0 |
| init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) |
| |
| // hv1 < len(ha) |
| nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha)) |
| |
| if v1 != nil { |
| // hv1t = hv1 |
| body = append(body, ir.NewAssignStmt(base.Pos, hv1t, hv1)) |
| } |
| |
| // hv2 := rune(ha[hv1]) |
| nind := ir.NewIndexExpr(base.Pos, ha, hv1) |
| nind.SetBounded(true) |
| body = append(body, ir.NewAssignStmt(base.Pos, hv2, typecheck.Conv(nind, types.RuneType))) |
| |
| // if hv2 < utf8.RuneSelf |
| nif := ir.NewIfStmt(base.Pos, nil, nil, nil) |
| nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv2, ir.NewInt(utf8.RuneSelf)) |
| |
| // hv1++ |
| nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(1)))} |
| |
| // } else { |
| // hv2, hv1 = decoderune(ha, hv1) |
| fn := typecheck.LookupRuntime("decoderune") |
| call := mkcall1(fn, fn.Type().Results(), &nif.Else, ha, hv1) |
| a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{hv2, hv1}, []ir.Node{call}) |
| nif.Else.Append(a) |
| |
| body = append(body, nif) |
| |
| if v1 != nil { |
| if v2 != nil { |
| // v1, v2 = hv1t, hv2 |
| a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1t, hv2}) |
| body = append(body, a) |
| } else { |
| // v1 = hv1t |
| body = append(body, ir.NewAssignStmt(base.Pos, v1, hv1t)) |
| } |
| } |
| } |
| |
| typecheck.Stmts(init) |
| |
| if ifGuard != nil { |
| ifGuard.PtrInit().Append(init...) |
| ifGuard = typecheck.Stmt(ifGuard).(*ir.IfStmt) |
| } else { |
| nfor.PtrInit().Append(init...) |
| } |
| |
| typecheck.Stmts(nfor.Cond.Init()) |
| |
| nfor.Cond = typecheck.Expr(nfor.Cond) |
| nfor.Cond = typecheck.DefaultLit(nfor.Cond, nil) |
| nfor.Post = typecheck.Stmt(nfor.Post) |
| typecheck.Stmts(body) |
| nfor.Body.Append(body...) |
| nfor.Body.Append(nrange.Body...) |
| |
| var n ir.Node = nfor |
| if ifGuard != nil { |
| ifGuard.Body = []ir.Node{n} |
| n = ifGuard |
| } |
| |
| n = walkStmt(n) |
| |
| base.Pos = lno |
| return n |
| } |
| |
| // isMapClear checks if n is of the form: |
| // |
| // for k := range m { |
| // delete(m, k) |
| // } |
| // |
| // where == for keys of map m is reflexive. |
| func isMapClear(n *ir.RangeStmt) bool { |
| if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { |
| return false |
| } |
| |
| t := n.X.Type() |
| if n.Op() != ir.ORANGE || t.Kind() != types.TMAP || n.Key == nil || n.Value != nil { |
| return false |
| } |
| |
| k := n.Key |
| // Require k to be a new variable name. |
| if !ir.DeclaredBy(k, n) { |
| return false |
| } |
| |
| if len(n.Body) != 1 { |
| return false |
| } |
| |
| stmt := n.Body[0] // only stmt in body |
| if stmt == nil || stmt.Op() != ir.ODELETE { |
| return false |
| } |
| |
| m := n.X |
| if delete := stmt.(*ir.CallExpr); !ir.SameSafeExpr(delete.Args[0], m) || !ir.SameSafeExpr(delete.Args[1], k) { |
| return false |
| } |
| |
| // Keys where equality is not reflexive can not be deleted from maps. |
| if !types.IsReflexive(t.Key()) { |
| return false |
| } |
| |
| return true |
| } |
| |
| // mapClear constructs a call to runtime.mapclear for the map m. |
| func mapClear(m ir.Node) ir.Node { |
| t := m.Type() |
| |
| // instantiate mapclear(typ *type, hmap map[any]any) |
| fn := typecheck.LookupRuntime("mapclear") |
| fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem()) |
| n := mkcallstmt1(fn, reflectdata.TypePtr(t), m) |
| return walkStmt(typecheck.Stmt(n)) |
| } |
| |
| // Lower n into runtime·memclr if possible, for |
| // fast zeroing of slices and arrays (issue 5373). |
| // Look for instances of |
| // |
| // for i := range a { |
| // a[i] = zero |
| // } |
| // |
| // in which the evaluation of a is side-effect-free. |
| // |
| // Parameters are as in walkRange: "for v1, v2 = range a". |
| func arrayClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node { |
| if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { |
| return nil |
| } |
| |
| if v1 == nil || v2 != nil { |
| return nil |
| } |
| |
| if len(loop.Body) != 1 || loop.Body[0] == nil { |
| return nil |
| } |
| |
| stmt1 := loop.Body[0] // only stmt in body |
| if stmt1.Op() != ir.OAS { |
| return nil |
| } |
| stmt := stmt1.(*ir.AssignStmt) |
| if stmt.X.Op() != ir.OINDEX { |
| return nil |
| } |
| lhs := stmt.X.(*ir.IndexExpr) |
| |
| if !ir.SameSafeExpr(lhs.X, a) || !ir.SameSafeExpr(lhs.Index, v1) { |
| return nil |
| } |
| |
| elemsize := typecheck.RangeExprType(loop.X.Type()).Elem().Size() |
| if elemsize <= 0 || !ir.IsZero(stmt.Y) { |
| return nil |
| } |
| |
| // Convert to |
| // if len(a) != 0 { |
| // hp = &a[0] |
| // hn = len(a)*sizeof(elem(a)) |
| // memclr{NoHeap,Has}Pointers(hp, hn) |
| // i = len(a) - 1 |
| // } |
| n := ir.NewIfStmt(base.Pos, nil, nil, nil) |
| n.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(0)) |
| |
| // hp = &a[0] |
| hp := typecheck.Temp(types.Types[types.TUNSAFEPTR]) |
| |
| ix := ir.NewIndexExpr(base.Pos, a, ir.NewInt(0)) |
| ix.SetBounded(true) |
| addr := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR]) |
| n.Body.Append(ir.NewAssignStmt(base.Pos, hp, addr)) |
| |
| // hn = len(a) * sizeof(elem(a)) |
| hn := typecheck.Temp(types.Types[types.TUINTPTR]) |
| mul := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(elemsize)), types.Types[types.TUINTPTR]) |
| n.Body.Append(ir.NewAssignStmt(base.Pos, hn, mul)) |
| |
| var fn ir.Node |
| if a.Type().Elem().HasPointers() { |
| // memclrHasPointers(hp, hn) |
| ir.CurFunc.SetWBPos(stmt.Pos()) |
| fn = mkcallstmt("memclrHasPointers", hp, hn) |
| } else { |
| // memclrNoHeapPointers(hp, hn) |
| fn = mkcallstmt("memclrNoHeapPointers", hp, hn) |
| } |
| |
| n.Body.Append(fn) |
| |
| // i = len(a) - 1 |
| v1 = ir.NewAssignStmt(base.Pos, v1, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(1))) |
| |
| n.Body.Append(v1) |
| |
| n.Cond = typecheck.Expr(n.Cond) |
| n.Cond = typecheck.DefaultLit(n.Cond, nil) |
| typecheck.Stmts(n.Body) |
| return walkStmt(n) |
| } |
| |
| // addptr returns (*T)(uintptr(p) + n). |
| func addptr(p ir.Node, n int64) ir.Node { |
| t := p.Type() |
| |
| p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) |
| p.SetType(types.Types[types.TUINTPTR]) |
| |
| p = ir.NewBinaryExpr(base.Pos, ir.OADD, p, ir.NewInt(n)) |
| |
| p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) |
| p.SetType(t) |
| |
| return p |
| } |