| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| /* |
| Package hmac implements the Keyed-Hash Message Authentication Code (HMAC) as |
| defined in U.S. Federal Information Processing Standards Publication 198. |
| An HMAC is a cryptographic hash that uses a key to sign a message. |
| The receiver verifies the hash by recomputing it using the same key. |
| |
| Receivers should be careful to use Equal to compare MACs in order to avoid |
| timing side-channels: |
| |
| // CheckMAC reports whether messageMAC is a valid HMAC tag for message. |
| func CheckMAC(message, messageMAC, key []byte) bool { |
| mac := hmac.New(sha256.New, key) |
| mac.Write(message) |
| expectedMAC := mac.Sum(nil) |
| return hmac.Equal(messageMAC, expectedMAC) |
| } |
| */ |
| package hmac |
| |
| import ( |
| "crypto/internal/boring" |
| "crypto/subtle" |
| "hash" |
| ) |
| |
| // FIPS 198-1: |
| // http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf |
| |
| // key is zero padded to the block size of the hash function |
| // ipad = 0x36 byte repeated for key length |
| // opad = 0x5c byte repeated for key length |
| // hmac = H([key ^ opad] H([key ^ ipad] text)) |
| |
| type hmac struct { |
| size int |
| blocksize int |
| opad, ipad []byte |
| outer, inner hash.Hash |
| } |
| |
| func (h *hmac) Sum(in []byte) []byte { |
| origLen := len(in) |
| in = h.inner.Sum(in) |
| h.outer.Reset() |
| h.outer.Write(h.opad) |
| h.outer.Write(in[origLen:]) |
| return h.outer.Sum(in[:origLen]) |
| } |
| |
| func (h *hmac) Write(p []byte) (n int, err error) { |
| return h.inner.Write(p) |
| } |
| |
| func (h *hmac) Size() int { return h.size } |
| |
| func (h *hmac) BlockSize() int { return h.blocksize } |
| |
| func (h *hmac) Reset() { |
| h.inner.Reset() |
| h.inner.Write(h.ipad) |
| } |
| |
| // New returns a new HMAC hash using the given hash.Hash type and key. |
| func New(h func() hash.Hash, key []byte) hash.Hash { |
| if boring.Enabled { |
| hm := boring.NewHMAC(h, key) |
| if hm != nil { |
| return hm |
| } |
| // BoringCrypto did not recognize h, so fall through to standard Go code. |
| } |
| hm := new(hmac) |
| hm.outer = h() |
| hm.inner = h() |
| hm.size = hm.inner.Size() |
| hm.blocksize = hm.inner.BlockSize() |
| hm.ipad = make([]byte, hm.blocksize) |
| hm.opad = make([]byte, hm.blocksize) |
| if len(key) > hm.blocksize { |
| // If key is too big, hash it. |
| hm.outer.Write(key) |
| key = hm.outer.Sum(nil) |
| } |
| copy(hm.ipad, key) |
| copy(hm.opad, key) |
| for i := range hm.ipad { |
| hm.ipad[i] ^= 0x36 |
| } |
| for i := range hm.opad { |
| hm.opad[i] ^= 0x5c |
| } |
| hm.inner.Write(hm.ipad) |
| return hm |
| } |
| |
| // Equal compares two MACs for equality without leaking timing information. |
| func Equal(mac1, mac2 []byte) bool { |
| // We don't have to be constant time if the lengths of the MACs are |
| // different as that suggests that a completely different hash function |
| // was used. |
| return subtle.ConstantTimeCompare(mac1, mac2) == 1 |
| } |