blob: b9b313a71127cded6b09dee4f13c42fa0d363fb5 [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/abi"
"unsafe"
)
// Should be a built-in for unsafe.Pointer?
//go:nosplit
func add(p unsafe.Pointer, x uintptr) unsafe.Pointer {
return unsafe.Pointer(uintptr(p) + x)
}
// getg returns the pointer to the current g.
// The compiler rewrites calls to this function into instructions
// that fetch the g directly (from TLS or from the dedicated register).
func getg() *g
// mcall switches from the g to the g0 stack and invokes fn(g),
// where g is the goroutine that made the call.
// mcall saves g's current PC/SP in g->sched so that it can be restored later.
// It is up to fn to arrange for that later execution, typically by recording
// g in a data structure, causing something to call ready(g) later.
// mcall returns to the original goroutine g later, when g has been rescheduled.
// fn must not return at all; typically it ends by calling schedule, to let the m
// run other goroutines.
//
// mcall can only be called from g stacks (not g0, not gsignal).
//
// This must NOT be go:noescape: if fn is a stack-allocated closure,
// fn puts g on a run queue, and g executes before fn returns, the
// closure will be invalidated while it is still executing.
func mcall(fn func(*g))
// systemstack runs fn on a system stack.
// If systemstack is called from the per-OS-thread (g0) stack, or
// if systemstack is called from the signal handling (gsignal) stack,
// systemstack calls fn directly and returns.
// Otherwise, systemstack is being called from the limited stack
// of an ordinary goroutine. In this case, systemstack switches
// to the per-OS-thread stack, calls fn, and switches back.
// It is common to use a func literal as the argument, in order
// to share inputs and outputs with the code around the call
// to system stack:
//
// ... set up y ...
// systemstack(func() {
// x = bigcall(y)
// })
// ... use x ...
//
//go:noescape
func systemstack(fn func())
var badsystemstackMsg = "fatal: systemstack called from unexpected goroutine"
//go:nosplit
//go:nowritebarrierrec
func badsystemstack() {
sp := stringStructOf(&badsystemstackMsg)
write(2, sp.str, int32(sp.len))
}
// memclrNoHeapPointers clears n bytes starting at ptr.
//
// Usually you should use typedmemclr. memclrNoHeapPointers should be
// used only when the caller knows that *ptr contains no heap pointers
// because either:
//
// *ptr is initialized memory and its type is pointer-free, or
//
// *ptr is uninitialized memory (e.g., memory that's being reused
// for a new allocation) and hence contains only "junk".
//
// memclrNoHeapPointers ensures that if ptr is pointer-aligned, and n
// is a multiple of the pointer size, then any pointer-aligned,
// pointer-sized portion is cleared atomically. Despite the function
// name, this is necessary because this function is the underlying
// implementation of typedmemclr and memclrHasPointers. See the doc of
// memmove for more details.
//
// The (CPU-specific) implementations of this function are in memclr_*.s.
//
//go:noescape
func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr)
//go:linkname reflect_memclrNoHeapPointers reflect.memclrNoHeapPointers
func reflect_memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) {
memclrNoHeapPointers(ptr, n)
}
// memmove copies n bytes from "from" to "to".
//
// memmove ensures that any pointer in "from" is written to "to" with
// an indivisible write, so that racy reads cannot observe a
// half-written pointer. This is necessary to prevent the garbage
// collector from observing invalid pointers, and differs from memmove
// in unmanaged languages. However, memmove is only required to do
// this if "from" and "to" may contain pointers, which can only be the
// case if "from", "to", and "n" are all be word-aligned.
//
// Implementations are in memmove_*.s.
//
//go:noescape
func memmove(to, from unsafe.Pointer, n uintptr)
//go:linkname reflect_memmove reflect.memmove
func reflect_memmove(to, from unsafe.Pointer, n uintptr) {
memmove(to, from, n)
}
// exported value for testing
var hashLoad = float32(loadFactorNum) / float32(loadFactorDen)
//go:nosplit
func fastrand() uint32 {
mp := getg().m
// Implement xorshift64+: 2 32-bit xorshift sequences added together.
// Shift triplet [17,7,16] was calculated as indicated in Marsaglia's
// Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
// This generator passes the SmallCrush suite, part of TestU01 framework:
// http://simul.iro.umontreal.ca/testu01/tu01.html
s1, s0 := mp.fastrand[0], mp.fastrand[1]
s1 ^= s1 << 17
s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16
mp.fastrand[0], mp.fastrand[1] = s0, s1
return s0 + s1
}
//go:nosplit
func fastrandn(n uint32) uint32 {
// This is similar to fastrand() % n, but faster.
// See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
return uint32(uint64(fastrand()) * uint64(n) >> 32)
}
//go:linkname sync_fastrand sync.fastrand
func sync_fastrand() uint32 { return fastrand() }
//go:linkname net_fastrand net.fastrand
func net_fastrand() uint32 { return fastrand() }
//go:linkname os_fastrand os.fastrand
func os_fastrand() uint32 { return fastrand() }
// in internal/bytealg/equal_*.s
//go:noescape
func memequal(a, b unsafe.Pointer, size uintptr) bool
// noescape hides a pointer from escape analysis. noescape is
// the identity function but escape analysis doesn't think the
// output depends on the input. noescape is inlined and currently
// compiles down to zero instructions.
// USE CAREFULLY!
//go:nosplit
func noescape(p unsafe.Pointer) unsafe.Pointer {
x := uintptr(p)
return unsafe.Pointer(x ^ 0)
}
// Not all cgocallback frames are actually cgocallback,
// so not all have these arguments. Mark them uintptr so that the GC
// does not misinterpret memory when the arguments are not present.
// cgocallback is not called from Go, only from crosscall2.
// This in turn calls cgocallbackg, which is where we'll find
// pointer-declared arguments.
func cgocallback(fn, frame, ctxt uintptr)
func gogo(buf *gobuf)
//go:noescape
func jmpdefer(fv *funcval, argp uintptr)
func asminit()
func setg(gg *g)
func breakpoint()
// reflectcall calls fn with arguments described by stackArgs, stackArgsSize,
// frameSize, and regArgs.
//
// Arguments passed on the stack and space for return values passed on the stack
// must be laid out at the space pointed to by stackArgs (with total length
// stackArgsSize) according to the ABI.
//
// stackRetOffset must be some value <= stackArgsSize that indicates the
// offset within stackArgs where the return value space begins.
//
// frameSize is the total size of the argument frame at stackArgs and must
// therefore be >= stackArgsSize. It must include additional space for spilling
// register arguments for stack growth and preemption.
//
// TODO(mknyszek): Once we don't need the additional spill space, remove frameSize,
// since frameSize will be redundant with stackArgsSize.
//
// Arguments passed in registers must be laid out in regArgs according to the ABI.
// regArgs will hold any return values passed in registers after the call.
//
// reflectcall copies stack arguments from stackArgs to the goroutine stack, and
// then copies back stackArgsSize-stackRetOffset bytes back to the return space
// in stackArgs once fn has completed. It also "unspills" argument registers from
// regArgs before calling fn, and spills them back into regArgs immediately
// following the call to fn. If there are results being returned on the stack,
// the caller should pass the argument frame type as stackArgsType so that
// reflectcall can execute appropriate write barriers during the copy.
//
// reflectcall expects regArgs.ReturnIsPtr to be populated indicating which
// registers on the return path will contain Go pointers. It will then store
// these pointers in regArgs.Ptrs such that they are visible to the GC.
//
// Package reflect passes a frame type. In package runtime, there is only
// one call that copies results back, in callbackWrap in syscall_windows.go, and it
// does NOT pass a frame type, meaning there are no write barriers invoked. See that
// call site for justification.
//
// Package reflect accesses this symbol through a linkname.
//
// Arguments passed through to reflectcall do not escape. The type is used
// only in a very limited callee of reflectcall, the stackArgs are copied, and
// regArgs is only used in the reflectcall frame.
//go:noescape
func reflectcall(stackArgsType *_type, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
func procyield(cycles uint32)
type neverCallThisFunction struct{}
// goexit is the return stub at the top of every goroutine call stack.
// Each goroutine stack is constructed as if goexit called the
// goroutine's entry point function, so that when the entry point
// function returns, it will return to goexit, which will call goexit1
// to perform the actual exit.
//
// This function must never be called directly. Call goexit1 instead.
// gentraceback assumes that goexit terminates the stack. A direct
// call on the stack will cause gentraceback to stop walking the stack
// prematurely and if there is leftover state it may panic.
func goexit(neverCallThisFunction)
// publicationBarrier performs a store/store barrier (a "publication"
// or "export" barrier). Some form of synchronization is required
// between initializing an object and making that object accessible to
// another processor. Without synchronization, the initialization
// writes and the "publication" write may be reordered, allowing the
// other processor to follow the pointer and observe an uninitialized
// object. In general, higher-level synchronization should be used,
// such as locking or an atomic pointer write. publicationBarrier is
// for when those aren't an option, such as in the implementation of
// the memory manager.
//
// There's no corresponding barrier for the read side because the read
// side naturally has a data dependency order. All architectures that
// Go supports or seems likely to ever support automatically enforce
// data dependency ordering.
func publicationBarrier()
// getcallerpc returns the program counter (PC) of its caller's caller.
// getcallersp returns the stack pointer (SP) of its caller's caller.
// The implementation may be a compiler intrinsic; there is not
// necessarily code implementing this on every platform.
//
// For example:
//
// func f(arg1, arg2, arg3 int) {
// pc := getcallerpc()
// sp := getcallersp()
// }
//
// These two lines find the PC and SP immediately following
// the call to f (where f will return).
//
// The call to getcallerpc and getcallersp must be done in the
// frame being asked about.
//
// The result of getcallersp is correct at the time of the return,
// but it may be invalidated by any subsequent call to a function
// that might relocate the stack in order to grow or shrink it.
// A general rule is that the result of getcallersp should be used
// immediately and can only be passed to nosplit functions.
//go:noescape
func getcallerpc() uintptr
//go:noescape
func getcallersp() uintptr // implemented as an intrinsic on all platforms
// getclosureptr returns the pointer to the current closure.
// getclosureptr can only be used in an assignment statement
// at the entry of a function. Moreover, go:nosplit directive
// must be specified at the declaration of caller function,
// so that the function prolog does not clobber the closure register.
// for example:
//
// //go:nosplit
// func f(arg1, arg2, arg3 int) {
// dx := getclosureptr()
// }
//
// The compiler rewrites calls to this function into instructions that fetch the
// pointer from a well-known register (DX on x86 architecture, etc.) directly.
func getclosureptr() uintptr
//go:noescape
func asmcgocall(fn, arg unsafe.Pointer) int32
func morestack()
func morestack_noctxt()
func rt0_go()
// return0 is a stub used to return 0 from deferproc.
// It is called at the very end of deferproc to signal
// the calling Go function that it should not jump
// to deferreturn.
// in asm_*.s
func return0()
// in asm_*.s
// not called directly; definitions here supply type information for traceback.
func call16(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call32(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call64(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call128(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call256(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call512(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call1024(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call2048(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call4096(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call8192(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call16384(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call32768(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call65536(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call131072(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call262144(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call524288(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call1048576(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call2097152(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call4194304(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call8388608(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call16777216(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call33554432(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call67108864(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call134217728(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call268435456(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call536870912(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func call1073741824(typ, fn, arg unsafe.Pointer, n, retoffset uint32)
func systemstack_switch()
// alignUp rounds n up to a multiple of a. a must be a power of 2.
func alignUp(n, a uintptr) uintptr {
return (n + a - 1) &^ (a - 1)
}
// alignDown rounds n down to a multiple of a. a must be a power of 2.
func alignDown(n, a uintptr) uintptr {
return n &^ (a - 1)
}
// divRoundUp returns ceil(n / a).
func divRoundUp(n, a uintptr) uintptr {
// a is generally a power of two. This will get inlined and
// the compiler will optimize the division.
return (n + a - 1) / a
}
// checkASM reports whether assembly runtime checks have passed.
func checkASM() bool
func memequal_varlen(a, b unsafe.Pointer) bool
// bool2int returns 0 if x is false or 1 if x is true.
func bool2int(x bool) int {
// Avoid branches. In the SSA compiler, this compiles to
// exactly what you would want it to.
return int(uint8(*(*uint8)(unsafe.Pointer(&x))))
}
// abort crashes the runtime in situations where even throw might not
// work. In general it should do something a debugger will recognize
// (e.g., an INT3 on x86). A crash in abort is recognized by the
// signal handler, which will attempt to tear down the runtime
// immediately.
func abort()
// Called from compiled code; declared for vet; do NOT call from Go.
func gcWriteBarrier()
func duffzero()
func duffcopy()
// Called from linker-generated .initarray; declared for go vet; do NOT call from Go.
func addmoduledata()
// Injected by the signal handler for panicking signals. On many platforms it just
// jumps to sigpanic.
func sigpanic0()