| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // TLS low level connection and record layer |
| |
| package tls |
| |
| import ( |
| "bytes" |
| "crypto/cipher" |
| "crypto/subtle" |
| "crypto/x509" |
| "errors" |
| "fmt" |
| "hash" |
| "io" |
| "net" |
| "sync" |
| "sync/atomic" |
| "time" |
| ) |
| |
| // A Conn represents a secured connection. |
| // It implements the net.Conn interface. |
| type Conn struct { |
| // constant |
| conn net.Conn |
| isClient bool |
| handshakeFn func() error // (*Conn).clientHandshake or serverHandshake |
| |
| // handshakeStatus is 1 if the connection is currently transferring |
| // application data (i.e. is not currently processing a handshake). |
| // This field is only to be accessed with sync/atomic. |
| handshakeStatus uint32 |
| // constant after handshake; protected by handshakeMutex |
| handshakeMutex sync.Mutex |
| handshakeErr error // error resulting from handshake |
| vers uint16 // TLS version |
| haveVers bool // version has been negotiated |
| config *Config // configuration passed to constructor |
| // handshakes counts the number of handshakes performed on the |
| // connection so far. If renegotiation is disabled then this is either |
| // zero or one. |
| handshakes int |
| didResume bool // whether this connection was a session resumption |
| cipherSuite uint16 |
| ocspResponse []byte // stapled OCSP response |
| scts [][]byte // signed certificate timestamps from server |
| peerCertificates []*x509.Certificate |
| // verifiedChains contains the certificate chains that we built, as |
| // opposed to the ones presented by the server. |
| verifiedChains [][]*x509.Certificate |
| // serverName contains the server name indicated by the client, if any. |
| serverName string |
| // secureRenegotiation is true if the server echoed the secure |
| // renegotiation extension. (This is meaningless as a server because |
| // renegotiation is not supported in that case.) |
| secureRenegotiation bool |
| // ekm is a closure for exporting keying material. |
| ekm func(label string, context []byte, length int) ([]byte, error) |
| // resumptionSecret is the resumption_master_secret for handling |
| // NewSessionTicket messages. nil if config.SessionTicketsDisabled. |
| resumptionSecret []byte |
| |
| // ticketKeys is the set of active session ticket keys for this |
| // connection. The first one is used to encrypt new tickets and |
| // all are tried to decrypt tickets. |
| ticketKeys []ticketKey |
| |
| // clientFinishedIsFirst is true if the client sent the first Finished |
| // message during the most recent handshake. This is recorded because |
| // the first transmitted Finished message is the tls-unique |
| // channel-binding value. |
| clientFinishedIsFirst bool |
| |
| // closeNotifyErr is any error from sending the alertCloseNotify record. |
| closeNotifyErr error |
| // closeNotifySent is true if the Conn attempted to send an |
| // alertCloseNotify record. |
| closeNotifySent bool |
| |
| // clientFinished and serverFinished contain the Finished message sent |
| // by the client or server in the most recent handshake. This is |
| // retained to support the renegotiation extension and tls-unique |
| // channel-binding. |
| clientFinished [12]byte |
| serverFinished [12]byte |
| |
| // clientProtocol is the negotiated ALPN protocol. |
| clientProtocol string |
| |
| // input/output |
| in, out halfConn |
| rawInput bytes.Buffer // raw input, starting with a record header |
| input bytes.Reader // application data waiting to be read, from rawInput.Next |
| hand bytes.Buffer // handshake data waiting to be read |
| buffering bool // whether records are buffered in sendBuf |
| sendBuf []byte // a buffer of records waiting to be sent |
| |
| // bytesSent counts the bytes of application data sent. |
| // packetsSent counts packets. |
| bytesSent int64 |
| packetsSent int64 |
| |
| // retryCount counts the number of consecutive non-advancing records |
| // received by Conn.readRecord. That is, records that neither advance the |
| // handshake, nor deliver application data. Protected by in.Mutex. |
| retryCount int |
| |
| // activeCall is an atomic int32; the low bit is whether Close has |
| // been called. the rest of the bits are the number of goroutines |
| // in Conn.Write. |
| activeCall int32 |
| |
| tmp [16]byte |
| } |
| |
| // Access to net.Conn methods. |
| // Cannot just embed net.Conn because that would |
| // export the struct field too. |
| |
| // LocalAddr returns the local network address. |
| func (c *Conn) LocalAddr() net.Addr { |
| return c.conn.LocalAddr() |
| } |
| |
| // RemoteAddr returns the remote network address. |
| func (c *Conn) RemoteAddr() net.Addr { |
| return c.conn.RemoteAddr() |
| } |
| |
| // SetDeadline sets the read and write deadlines associated with the connection. |
| // A zero value for t means Read and Write will not time out. |
| // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. |
| func (c *Conn) SetDeadline(t time.Time) error { |
| return c.conn.SetDeadline(t) |
| } |
| |
| // SetReadDeadline sets the read deadline on the underlying connection. |
| // A zero value for t means Read will not time out. |
| func (c *Conn) SetReadDeadline(t time.Time) error { |
| return c.conn.SetReadDeadline(t) |
| } |
| |
| // SetWriteDeadline sets the write deadline on the underlying connection. |
| // A zero value for t means Write will not time out. |
| // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. |
| func (c *Conn) SetWriteDeadline(t time.Time) error { |
| return c.conn.SetWriteDeadline(t) |
| } |
| |
| // A halfConn represents one direction of the record layer |
| // connection, either sending or receiving. |
| type halfConn struct { |
| sync.Mutex |
| |
| err error // first permanent error |
| version uint16 // protocol version |
| cipher interface{} // cipher algorithm |
| mac hash.Hash |
| seq [8]byte // 64-bit sequence number |
| |
| scratchBuf [13]byte // to avoid allocs; interface method args escape |
| |
| nextCipher interface{} // next encryption state |
| nextMac hash.Hash // next MAC algorithm |
| |
| trafficSecret []byte // current TLS 1.3 traffic secret |
| } |
| |
| type permanentError struct { |
| err net.Error |
| } |
| |
| func (e *permanentError) Error() string { return e.err.Error() } |
| func (e *permanentError) Unwrap() error { return e.err } |
| func (e *permanentError) Timeout() bool { return e.err.Timeout() } |
| func (e *permanentError) Temporary() bool { return false } |
| |
| func (hc *halfConn) setErrorLocked(err error) error { |
| if e, ok := err.(net.Error); ok { |
| hc.err = &permanentError{err: e} |
| } else { |
| hc.err = err |
| } |
| return hc.err |
| } |
| |
| // prepareCipherSpec sets the encryption and MAC states |
| // that a subsequent changeCipherSpec will use. |
| func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac hash.Hash) { |
| hc.version = version |
| hc.nextCipher = cipher |
| hc.nextMac = mac |
| } |
| |
| // changeCipherSpec changes the encryption and MAC states |
| // to the ones previously passed to prepareCipherSpec. |
| func (hc *halfConn) changeCipherSpec() error { |
| if hc.nextCipher == nil || hc.version == VersionTLS13 { |
| return alertInternalError |
| } |
| hc.cipher = hc.nextCipher |
| hc.mac = hc.nextMac |
| hc.nextCipher = nil |
| hc.nextMac = nil |
| for i := range hc.seq { |
| hc.seq[i] = 0 |
| } |
| return nil |
| } |
| |
| func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) { |
| hc.trafficSecret = secret |
| key, iv := suite.trafficKey(secret) |
| hc.cipher = suite.aead(key, iv) |
| for i := range hc.seq { |
| hc.seq[i] = 0 |
| } |
| } |
| |
| // incSeq increments the sequence number. |
| func (hc *halfConn) incSeq() { |
| for i := 7; i >= 0; i-- { |
| hc.seq[i]++ |
| if hc.seq[i] != 0 { |
| return |
| } |
| } |
| |
| // Not allowed to let sequence number wrap. |
| // Instead, must renegotiate before it does. |
| // Not likely enough to bother. |
| panic("TLS: sequence number wraparound") |
| } |
| |
| // explicitNonceLen returns the number of bytes of explicit nonce or IV included |
| // in each record. Explicit nonces are present only in CBC modes after TLS 1.0 |
| // and in certain AEAD modes in TLS 1.2. |
| func (hc *halfConn) explicitNonceLen() int { |
| if hc.cipher == nil { |
| return 0 |
| } |
| |
| switch c := hc.cipher.(type) { |
| case cipher.Stream: |
| return 0 |
| case aead: |
| return c.explicitNonceLen() |
| case cbcMode: |
| // TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack. |
| if hc.version >= VersionTLS11 { |
| return c.BlockSize() |
| } |
| return 0 |
| default: |
| panic("unknown cipher type") |
| } |
| } |
| |
| // extractPadding returns, in constant time, the length of the padding to remove |
| // from the end of payload. It also returns a byte which is equal to 255 if the |
| // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2. |
| func extractPadding(payload []byte) (toRemove int, good byte) { |
| if len(payload) < 1 { |
| return 0, 0 |
| } |
| |
| paddingLen := payload[len(payload)-1] |
| t := uint(len(payload)-1) - uint(paddingLen) |
| // if len(payload) >= (paddingLen - 1) then the MSB of t is zero |
| good = byte(int32(^t) >> 31) |
| |
| // The maximum possible padding length plus the actual length field |
| toCheck := 256 |
| // The length of the padded data is public, so we can use an if here |
| if toCheck > len(payload) { |
| toCheck = len(payload) |
| } |
| |
| for i := 0; i < toCheck; i++ { |
| t := uint(paddingLen) - uint(i) |
| // if i <= paddingLen then the MSB of t is zero |
| mask := byte(int32(^t) >> 31) |
| b := payload[len(payload)-1-i] |
| good &^= mask&paddingLen ^ mask&b |
| } |
| |
| // We AND together the bits of good and replicate the result across |
| // all the bits. |
| good &= good << 4 |
| good &= good << 2 |
| good &= good << 1 |
| good = uint8(int8(good) >> 7) |
| |
| // Zero the padding length on error. This ensures any unchecked bytes |
| // are included in the MAC. Otherwise, an attacker that could |
| // distinguish MAC failures from padding failures could mount an attack |
| // similar to POODLE in SSL 3.0: given a good ciphertext that uses a |
| // full block's worth of padding, replace the final block with another |
| // block. If the MAC check passed but the padding check failed, the |
| // last byte of that block decrypted to the block size. |
| // |
| // See also macAndPaddingGood logic below. |
| paddingLen &= good |
| |
| toRemove = int(paddingLen) + 1 |
| return |
| } |
| |
| func roundUp(a, b int) int { |
| return a + (b-a%b)%b |
| } |
| |
| // cbcMode is an interface for block ciphers using cipher block chaining. |
| type cbcMode interface { |
| cipher.BlockMode |
| SetIV([]byte) |
| } |
| |
| // decrypt authenticates and decrypts the record if protection is active at |
| // this stage. The returned plaintext might overlap with the input. |
| func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) { |
| var plaintext []byte |
| typ := recordType(record[0]) |
| payload := record[recordHeaderLen:] |
| |
| // In TLS 1.3, change_cipher_spec messages are to be ignored without being |
| // decrypted. See RFC 8446, Appendix D.4. |
| if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec { |
| return payload, typ, nil |
| } |
| |
| paddingGood := byte(255) |
| paddingLen := 0 |
| |
| explicitNonceLen := hc.explicitNonceLen() |
| |
| if hc.cipher != nil { |
| switch c := hc.cipher.(type) { |
| case cipher.Stream: |
| c.XORKeyStream(payload, payload) |
| case aead: |
| if len(payload) < explicitNonceLen { |
| return nil, 0, alertBadRecordMAC |
| } |
| nonce := payload[:explicitNonceLen] |
| if len(nonce) == 0 { |
| nonce = hc.seq[:] |
| } |
| payload = payload[explicitNonceLen:] |
| |
| var additionalData []byte |
| if hc.version == VersionTLS13 { |
| additionalData = record[:recordHeaderLen] |
| } else { |
| additionalData = append(hc.scratchBuf[:0], hc.seq[:]...) |
| additionalData = append(additionalData, record[:3]...) |
| n := len(payload) - c.Overhead() |
| additionalData = append(additionalData, byte(n>>8), byte(n)) |
| } |
| |
| var err error |
| plaintext, err = c.Open(payload[:0], nonce, payload, additionalData) |
| if err != nil { |
| return nil, 0, alertBadRecordMAC |
| } |
| case cbcMode: |
| blockSize := c.BlockSize() |
| minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize) |
| if len(payload)%blockSize != 0 || len(payload) < minPayload { |
| return nil, 0, alertBadRecordMAC |
| } |
| |
| if explicitNonceLen > 0 { |
| c.SetIV(payload[:explicitNonceLen]) |
| payload = payload[explicitNonceLen:] |
| } |
| c.CryptBlocks(payload, payload) |
| |
| // In a limited attempt to protect against CBC padding oracles like |
| // Lucky13, the data past paddingLen (which is secret) is passed to |
| // the MAC function as extra data, to be fed into the HMAC after |
| // computing the digest. This makes the MAC roughly constant time as |
| // long as the digest computation is constant time and does not |
| // affect the subsequent write, modulo cache effects. |
| paddingLen, paddingGood = extractPadding(payload) |
| default: |
| panic("unknown cipher type") |
| } |
| |
| if hc.version == VersionTLS13 { |
| if typ != recordTypeApplicationData { |
| return nil, 0, alertUnexpectedMessage |
| } |
| if len(plaintext) > maxPlaintext+1 { |
| return nil, 0, alertRecordOverflow |
| } |
| // Remove padding and find the ContentType scanning from the end. |
| for i := len(plaintext) - 1; i >= 0; i-- { |
| if plaintext[i] != 0 { |
| typ = recordType(plaintext[i]) |
| plaintext = plaintext[:i] |
| break |
| } |
| if i == 0 { |
| return nil, 0, alertUnexpectedMessage |
| } |
| } |
| } |
| } else { |
| plaintext = payload |
| } |
| |
| if hc.mac != nil { |
| macSize := hc.mac.Size() |
| if len(payload) < macSize { |
| return nil, 0, alertBadRecordMAC |
| } |
| |
| n := len(payload) - macSize - paddingLen |
| n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } |
| record[3] = byte(n >> 8) |
| record[4] = byte(n) |
| remoteMAC := payload[n : n+macSize] |
| localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:]) |
| |
| // This is equivalent to checking the MACs and paddingGood |
| // separately, but in constant-time to prevent distinguishing |
| // padding failures from MAC failures. Depending on what value |
| // of paddingLen was returned on bad padding, distinguishing |
| // bad MAC from bad padding can lead to an attack. |
| // |
| // See also the logic at the end of extractPadding. |
| macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood) |
| if macAndPaddingGood != 1 { |
| return nil, 0, alertBadRecordMAC |
| } |
| |
| plaintext = payload[:n] |
| } |
| |
| hc.incSeq() |
| return plaintext, typ, nil |
| } |
| |
| // sliceForAppend extends the input slice by n bytes. head is the full extended |
| // slice, while tail is the appended part. If the original slice has sufficient |
| // capacity no allocation is performed. |
| func sliceForAppend(in []byte, n int) (head, tail []byte) { |
| if total := len(in) + n; cap(in) >= total { |
| head = in[:total] |
| } else { |
| head = make([]byte, total) |
| copy(head, in) |
| } |
| tail = head[len(in):] |
| return |
| } |
| |
| // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and |
| // appends it to record, which must already contain the record header. |
| func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) { |
| if hc.cipher == nil { |
| return append(record, payload...), nil |
| } |
| |
| var explicitNonce []byte |
| if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 { |
| record, explicitNonce = sliceForAppend(record, explicitNonceLen) |
| if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 { |
| // The AES-GCM construction in TLS has an explicit nonce so that the |
| // nonce can be random. However, the nonce is only 8 bytes which is |
| // too small for a secure, random nonce. Therefore we use the |
| // sequence number as the nonce. The 3DES-CBC construction also has |
| // an 8 bytes nonce but its nonces must be unpredictable (see RFC |
| // 5246, Appendix F.3), forcing us to use randomness. That's not |
| // 3DES' biggest problem anyway because the birthday bound on block |
| // collision is reached first due to its similarly small block size |
| // (see the Sweet32 attack). |
| copy(explicitNonce, hc.seq[:]) |
| } else { |
| if _, err := io.ReadFull(rand, explicitNonce); err != nil { |
| return nil, err |
| } |
| } |
| } |
| |
| var dst []byte |
| switch c := hc.cipher.(type) { |
| case cipher.Stream: |
| mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) |
| record, dst = sliceForAppend(record, len(payload)+len(mac)) |
| c.XORKeyStream(dst[:len(payload)], payload) |
| c.XORKeyStream(dst[len(payload):], mac) |
| case aead: |
| nonce := explicitNonce |
| if len(nonce) == 0 { |
| nonce = hc.seq[:] |
| } |
| |
| if hc.version == VersionTLS13 { |
| record = append(record, payload...) |
| |
| // Encrypt the actual ContentType and replace the plaintext one. |
| record = append(record, record[0]) |
| record[0] = byte(recordTypeApplicationData) |
| |
| n := len(payload) + 1 + c.Overhead() |
| record[3] = byte(n >> 8) |
| record[4] = byte(n) |
| |
| record = c.Seal(record[:recordHeaderLen], |
| nonce, record[recordHeaderLen:], record[:recordHeaderLen]) |
| } else { |
| additionalData := append(hc.scratchBuf[:0], hc.seq[:]...) |
| additionalData = append(additionalData, record[:recordHeaderLen]...) |
| record = c.Seal(record, nonce, payload, additionalData) |
| } |
| case cbcMode: |
| mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) |
| blockSize := c.BlockSize() |
| plaintextLen := len(payload) + len(mac) |
| paddingLen := blockSize - plaintextLen%blockSize |
| record, dst = sliceForAppend(record, plaintextLen+paddingLen) |
| copy(dst, payload) |
| copy(dst[len(payload):], mac) |
| for i := plaintextLen; i < len(dst); i++ { |
| dst[i] = byte(paddingLen - 1) |
| } |
| if len(explicitNonce) > 0 { |
| c.SetIV(explicitNonce) |
| } |
| c.CryptBlocks(dst, dst) |
| default: |
| panic("unknown cipher type") |
| } |
| |
| // Update length to include nonce, MAC and any block padding needed. |
| n := len(record) - recordHeaderLen |
| record[3] = byte(n >> 8) |
| record[4] = byte(n) |
| hc.incSeq() |
| |
| return record, nil |
| } |
| |
| // RecordHeaderError is returned when a TLS record header is invalid. |
| type RecordHeaderError struct { |
| // Msg contains a human readable string that describes the error. |
| Msg string |
| // RecordHeader contains the five bytes of TLS record header that |
| // triggered the error. |
| RecordHeader [5]byte |
| // Conn provides the underlying net.Conn in the case that a client |
| // sent an initial handshake that didn't look like TLS. |
| // It is nil if there's already been a handshake or a TLS alert has |
| // been written to the connection. |
| Conn net.Conn |
| } |
| |
| func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } |
| |
| func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) { |
| err.Msg = msg |
| err.Conn = conn |
| copy(err.RecordHeader[:], c.rawInput.Bytes()) |
| return err |
| } |
| |
| func (c *Conn) readRecord() error { |
| return c.readRecordOrCCS(false) |
| } |
| |
| func (c *Conn) readChangeCipherSpec() error { |
| return c.readRecordOrCCS(true) |
| } |
| |
| // readRecordOrCCS reads one or more TLS records from the connection and |
| // updates the record layer state. Some invariants: |
| // * c.in must be locked |
| // * c.input must be empty |
| // During the handshake one and only one of the following will happen: |
| // - c.hand grows |
| // - c.in.changeCipherSpec is called |
| // - an error is returned |
| // After the handshake one and only one of the following will happen: |
| // - c.hand grows |
| // - c.input is set |
| // - an error is returned |
| func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error { |
| if c.in.err != nil { |
| return c.in.err |
| } |
| handshakeComplete := c.handshakeComplete() |
| |
| // This function modifies c.rawInput, which owns the c.input memory. |
| if c.input.Len() != 0 { |
| return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data")) |
| } |
| c.input.Reset(nil) |
| |
| // Read header, payload. |
| if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil { |
| // RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify |
| // is an error, but popular web sites seem to do this, so we accept it |
| // if and only if at the record boundary. |
| if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 { |
| err = io.EOF |
| } |
| if e, ok := err.(net.Error); !ok || !e.Temporary() { |
| c.in.setErrorLocked(err) |
| } |
| return err |
| } |
| hdr := c.rawInput.Bytes()[:recordHeaderLen] |
| typ := recordType(hdr[0]) |
| |
| // No valid TLS record has a type of 0x80, however SSLv2 handshakes |
| // start with a uint16 length where the MSB is set and the first record |
| // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests |
| // an SSLv2 client. |
| if !handshakeComplete && typ == 0x80 { |
| c.sendAlert(alertProtocolVersion) |
| return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received")) |
| } |
| |
| vers := uint16(hdr[1])<<8 | uint16(hdr[2]) |
| n := int(hdr[3])<<8 | int(hdr[4]) |
| if c.haveVers && c.vers != VersionTLS13 && vers != c.vers { |
| c.sendAlert(alertProtocolVersion) |
| msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers) |
| return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) |
| } |
| if !c.haveVers { |
| // First message, be extra suspicious: this might not be a TLS |
| // client. Bail out before reading a full 'body', if possible. |
| // The current max version is 3.3 so if the version is >= 16.0, |
| // it's probably not real. |
| if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 { |
| return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake")) |
| } |
| } |
| if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext { |
| c.sendAlert(alertRecordOverflow) |
| msg := fmt.Sprintf("oversized record received with length %d", n) |
| return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) |
| } |
| if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil { |
| if e, ok := err.(net.Error); !ok || !e.Temporary() { |
| c.in.setErrorLocked(err) |
| } |
| return err |
| } |
| |
| // Process message. |
| record := c.rawInput.Next(recordHeaderLen + n) |
| data, typ, err := c.in.decrypt(record) |
| if err != nil { |
| return c.in.setErrorLocked(c.sendAlert(err.(alert))) |
| } |
| if len(data) > maxPlaintext { |
| return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow)) |
| } |
| |
| // Application Data messages are always protected. |
| if c.in.cipher == nil && typ == recordTypeApplicationData { |
| return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| |
| if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 { |
| // This is a state-advancing message: reset the retry count. |
| c.retryCount = 0 |
| } |
| |
| // Handshake messages MUST NOT be interleaved with other record types in TLS 1.3. |
| if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 { |
| return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| |
| switch typ { |
| default: |
| return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| |
| case recordTypeAlert: |
| if len(data) != 2 { |
| return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| if alert(data[1]) == alertCloseNotify { |
| return c.in.setErrorLocked(io.EOF) |
| } |
| if c.vers == VersionTLS13 { |
| return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) |
| } |
| switch data[0] { |
| case alertLevelWarning: |
| // Drop the record on the floor and retry. |
| return c.retryReadRecord(expectChangeCipherSpec) |
| case alertLevelError: |
| return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) |
| default: |
| return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| |
| case recordTypeChangeCipherSpec: |
| if len(data) != 1 || data[0] != 1 { |
| return c.in.setErrorLocked(c.sendAlert(alertDecodeError)) |
| } |
| // Handshake messages are not allowed to fragment across the CCS. |
| if c.hand.Len() > 0 { |
| return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| // In TLS 1.3, change_cipher_spec records are ignored until the |
| // Finished. See RFC 8446, Appendix D.4. Note that according to Section |
| // 5, a server can send a ChangeCipherSpec before its ServerHello, when |
| // c.vers is still unset. That's not useful though and suspicious if the |
| // server then selects a lower protocol version, so don't allow that. |
| if c.vers == VersionTLS13 { |
| return c.retryReadRecord(expectChangeCipherSpec) |
| } |
| if !expectChangeCipherSpec { |
| return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| if err := c.in.changeCipherSpec(); err != nil { |
| return c.in.setErrorLocked(c.sendAlert(err.(alert))) |
| } |
| |
| case recordTypeApplicationData: |
| if !handshakeComplete || expectChangeCipherSpec { |
| return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| // Some OpenSSL servers send empty records in order to randomize the |
| // CBC IV. Ignore a limited number of empty records. |
| if len(data) == 0 { |
| return c.retryReadRecord(expectChangeCipherSpec) |
| } |
| // Note that data is owned by c.rawInput, following the Next call above, |
| // to avoid copying the plaintext. This is safe because c.rawInput is |
| // not read from or written to until c.input is drained. |
| c.input.Reset(data) |
| |
| case recordTypeHandshake: |
| if len(data) == 0 || expectChangeCipherSpec { |
| return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| c.hand.Write(data) |
| } |
| |
| return nil |
| } |
| |
| // retryReadRecord recurses into readRecordOrCCS to drop a non-advancing record, like |
| // a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3. |
| func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error { |
| c.retryCount++ |
| if c.retryCount > maxUselessRecords { |
| c.sendAlert(alertUnexpectedMessage) |
| return c.in.setErrorLocked(errors.New("tls: too many ignored records")) |
| } |
| return c.readRecordOrCCS(expectChangeCipherSpec) |
| } |
| |
| // atLeastReader reads from R, stopping with EOF once at least N bytes have been |
| // read. It is different from an io.LimitedReader in that it doesn't cut short |
| // the last Read call, and in that it considers an early EOF an error. |
| type atLeastReader struct { |
| R io.Reader |
| N int64 |
| } |
| |
| func (r *atLeastReader) Read(p []byte) (int, error) { |
| if r.N <= 0 { |
| return 0, io.EOF |
| } |
| n, err := r.R.Read(p) |
| r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809 |
| if r.N > 0 && err == io.EOF { |
| return n, io.ErrUnexpectedEOF |
| } |
| if r.N <= 0 && err == nil { |
| return n, io.EOF |
| } |
| return n, err |
| } |
| |
| // readFromUntil reads from r into c.rawInput until c.rawInput contains |
| // at least n bytes or else returns an error. |
| func (c *Conn) readFromUntil(r io.Reader, n int) error { |
| if c.rawInput.Len() >= n { |
| return nil |
| } |
| needs := n - c.rawInput.Len() |
| // There might be extra input waiting on the wire. Make a best effort |
| // attempt to fetch it so that it can be used in (*Conn).Read to |
| // "predict" closeNotify alerts. |
| c.rawInput.Grow(needs + bytes.MinRead) |
| _, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)}) |
| return err |
| } |
| |
| // sendAlert sends a TLS alert message. |
| func (c *Conn) sendAlertLocked(err alert) error { |
| switch err { |
| case alertNoRenegotiation, alertCloseNotify: |
| c.tmp[0] = alertLevelWarning |
| default: |
| c.tmp[0] = alertLevelError |
| } |
| c.tmp[1] = byte(err) |
| |
| _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) |
| if err == alertCloseNotify { |
| // closeNotify is a special case in that it isn't an error. |
| return writeErr |
| } |
| |
| return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) |
| } |
| |
| // sendAlert sends a TLS alert message. |
| func (c *Conn) sendAlert(err alert) error { |
| c.out.Lock() |
| defer c.out.Unlock() |
| return c.sendAlertLocked(err) |
| } |
| |
| const ( |
| // tcpMSSEstimate is a conservative estimate of the TCP maximum segment |
| // size (MSS). A constant is used, rather than querying the kernel for |
| // the actual MSS, to avoid complexity. The value here is the IPv6 |
| // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 |
| // bytes) and a TCP header with timestamps (32 bytes). |
| tcpMSSEstimate = 1208 |
| |
| // recordSizeBoostThreshold is the number of bytes of application data |
| // sent after which the TLS record size will be increased to the |
| // maximum. |
| recordSizeBoostThreshold = 128 * 1024 |
| ) |
| |
| // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the |
| // next application data record. There is the following trade-off: |
| // |
| // - For latency-sensitive applications, such as web browsing, each TLS |
| // record should fit in one TCP segment. |
| // - For throughput-sensitive applications, such as large file transfers, |
| // larger TLS records better amortize framing and encryption overheads. |
| // |
| // A simple heuristic that works well in practice is to use small records for |
| // the first 1MB of data, then use larger records for subsequent data, and |
| // reset back to smaller records after the connection becomes idle. See "High |
| // Performance Web Networking", Chapter 4, or: |
| // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ |
| // |
| // In the interests of simplicity and determinism, this code does not attempt |
| // to reset the record size once the connection is idle, however. |
| func (c *Conn) maxPayloadSizeForWrite(typ recordType) int { |
| if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { |
| return maxPlaintext |
| } |
| |
| if c.bytesSent >= recordSizeBoostThreshold { |
| return maxPlaintext |
| } |
| |
| // Subtract TLS overheads to get the maximum payload size. |
| payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen() |
| if c.out.cipher != nil { |
| switch ciph := c.out.cipher.(type) { |
| case cipher.Stream: |
| payloadBytes -= c.out.mac.Size() |
| case cipher.AEAD: |
| payloadBytes -= ciph.Overhead() |
| case cbcMode: |
| blockSize := ciph.BlockSize() |
| // The payload must fit in a multiple of blockSize, with |
| // room for at least one padding byte. |
| payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 |
| // The MAC is appended before padding so affects the |
| // payload size directly. |
| payloadBytes -= c.out.mac.Size() |
| default: |
| panic("unknown cipher type") |
| } |
| } |
| if c.vers == VersionTLS13 { |
| payloadBytes-- // encrypted ContentType |
| } |
| |
| // Allow packet growth in arithmetic progression up to max. |
| pkt := c.packetsSent |
| c.packetsSent++ |
| if pkt > 1000 { |
| return maxPlaintext // avoid overflow in multiply below |
| } |
| |
| n := payloadBytes * int(pkt+1) |
| if n > maxPlaintext { |
| n = maxPlaintext |
| } |
| return n |
| } |
| |
| func (c *Conn) write(data []byte) (int, error) { |
| if c.buffering { |
| c.sendBuf = append(c.sendBuf, data...) |
| return len(data), nil |
| } |
| |
| n, err := c.conn.Write(data) |
| c.bytesSent += int64(n) |
| return n, err |
| } |
| |
| func (c *Conn) flush() (int, error) { |
| if len(c.sendBuf) == 0 { |
| return 0, nil |
| } |
| |
| n, err := c.conn.Write(c.sendBuf) |
| c.bytesSent += int64(n) |
| c.sendBuf = nil |
| c.buffering = false |
| return n, err |
| } |
| |
| // outBufPool pools the record-sized scratch buffers used by writeRecordLocked. |
| var outBufPool = sync.Pool{ |
| New: func() interface{} { |
| return new([]byte) |
| }, |
| } |
| |
| // writeRecordLocked writes a TLS record with the given type and payload to the |
| // connection and updates the record layer state. |
| func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { |
| outBufPtr := outBufPool.Get().(*[]byte) |
| outBuf := *outBufPtr |
| defer func() { |
| // You might be tempted to simplify this by just passing &outBuf to Put, |
| // but that would make the local copy of the outBuf slice header escape |
| // to the heap, causing an allocation. Instead, we keep around the |
| // pointer to the slice header returned by Get, which is already on the |
| // heap, and overwrite and return that. |
| *outBufPtr = outBuf |
| outBufPool.Put(outBufPtr) |
| }() |
| |
| var n int |
| for len(data) > 0 { |
| m := len(data) |
| if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload { |
| m = maxPayload |
| } |
| |
| _, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen) |
| outBuf[0] = byte(typ) |
| vers := c.vers |
| if vers == 0 { |
| // Some TLS servers fail if the record version is |
| // greater than TLS 1.0 for the initial ClientHello. |
| vers = VersionTLS10 |
| } else if vers == VersionTLS13 { |
| // TLS 1.3 froze the record layer version to 1.2. |
| // See RFC 8446, Section 5.1. |
| vers = VersionTLS12 |
| } |
| outBuf[1] = byte(vers >> 8) |
| outBuf[2] = byte(vers) |
| outBuf[3] = byte(m >> 8) |
| outBuf[4] = byte(m) |
| |
| var err error |
| outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand()) |
| if err != nil { |
| return n, err |
| } |
| if _, err := c.write(outBuf); err != nil { |
| return n, err |
| } |
| n += m |
| data = data[m:] |
| } |
| |
| if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 { |
| if err := c.out.changeCipherSpec(); err != nil { |
| return n, c.sendAlertLocked(err.(alert)) |
| } |
| } |
| |
| return n, nil |
| } |
| |
| // writeRecord writes a TLS record with the given type and payload to the |
| // connection and updates the record layer state. |
| func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) { |
| c.out.Lock() |
| defer c.out.Unlock() |
| |
| return c.writeRecordLocked(typ, data) |
| } |
| |
| // readHandshake reads the next handshake message from |
| // the record layer. |
| func (c *Conn) readHandshake() (interface{}, error) { |
| for c.hand.Len() < 4 { |
| if err := c.readRecord(); err != nil { |
| return nil, err |
| } |
| } |
| |
| data := c.hand.Bytes() |
| n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) |
| if n > maxHandshake { |
| c.sendAlertLocked(alertInternalError) |
| return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)) |
| } |
| for c.hand.Len() < 4+n { |
| if err := c.readRecord(); err != nil { |
| return nil, err |
| } |
| } |
| data = c.hand.Next(4 + n) |
| var m handshakeMessage |
| switch data[0] { |
| case typeHelloRequest: |
| m = new(helloRequestMsg) |
| case typeClientHello: |
| m = new(clientHelloMsg) |
| case typeServerHello: |
| m = new(serverHelloMsg) |
| case typeNewSessionTicket: |
| if c.vers == VersionTLS13 { |
| m = new(newSessionTicketMsgTLS13) |
| } else { |
| m = new(newSessionTicketMsg) |
| } |
| case typeCertificate: |
| if c.vers == VersionTLS13 { |
| m = new(certificateMsgTLS13) |
| } else { |
| m = new(certificateMsg) |
| } |
| case typeCertificateRequest: |
| if c.vers == VersionTLS13 { |
| m = new(certificateRequestMsgTLS13) |
| } else { |
| m = &certificateRequestMsg{ |
| hasSignatureAlgorithm: c.vers >= VersionTLS12, |
| } |
| } |
| case typeCertificateStatus: |
| m = new(certificateStatusMsg) |
| case typeServerKeyExchange: |
| m = new(serverKeyExchangeMsg) |
| case typeServerHelloDone: |
| m = new(serverHelloDoneMsg) |
| case typeClientKeyExchange: |
| m = new(clientKeyExchangeMsg) |
| case typeCertificateVerify: |
| m = &certificateVerifyMsg{ |
| hasSignatureAlgorithm: c.vers >= VersionTLS12, |
| } |
| case typeFinished: |
| m = new(finishedMsg) |
| case typeEncryptedExtensions: |
| m = new(encryptedExtensionsMsg) |
| case typeEndOfEarlyData: |
| m = new(endOfEarlyDataMsg) |
| case typeKeyUpdate: |
| m = new(keyUpdateMsg) |
| default: |
| return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| |
| // The handshake message unmarshalers |
| // expect to be able to keep references to data, |
| // so pass in a fresh copy that won't be overwritten. |
| data = append([]byte(nil), data...) |
| |
| if !m.unmarshal(data) { |
| return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) |
| } |
| return m, nil |
| } |
| |
| var ( |
| errShutdown = errors.New("tls: protocol is shutdown") |
| ) |
| |
| // Write writes data to the connection. |
| // |
| // As Write calls Handshake, in order to prevent indefinite blocking a deadline |
| // must be set for both Read and Write before Write is called when the handshake |
| // has not yet completed. See SetDeadline, SetReadDeadline, and |
| // SetWriteDeadline. |
| func (c *Conn) Write(b []byte) (int, error) { |
| // interlock with Close below |
| for { |
| x := atomic.LoadInt32(&c.activeCall) |
| if x&1 != 0 { |
| return 0, net.ErrClosed |
| } |
| if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) { |
| break |
| } |
| } |
| defer atomic.AddInt32(&c.activeCall, -2) |
| |
| if err := c.Handshake(); err != nil { |
| return 0, err |
| } |
| |
| c.out.Lock() |
| defer c.out.Unlock() |
| |
| if err := c.out.err; err != nil { |
| return 0, err |
| } |
| |
| if !c.handshakeComplete() { |
| return 0, alertInternalError |
| } |
| |
| if c.closeNotifySent { |
| return 0, errShutdown |
| } |
| |
| // TLS 1.0 is susceptible to a chosen-plaintext |
| // attack when using block mode ciphers due to predictable IVs. |
| // This can be prevented by splitting each Application Data |
| // record into two records, effectively randomizing the IV. |
| // |
| // https://www.openssl.org/~bodo/tls-cbc.txt |
| // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 |
| // https://www.imperialviolet.org/2012/01/15/beastfollowup.html |
| |
| var m int |
| if len(b) > 1 && c.vers == VersionTLS10 { |
| if _, ok := c.out.cipher.(cipher.BlockMode); ok { |
| n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) |
| if err != nil { |
| return n, c.out.setErrorLocked(err) |
| } |
| m, b = 1, b[1:] |
| } |
| } |
| |
| n, err := c.writeRecordLocked(recordTypeApplicationData, b) |
| return n + m, c.out.setErrorLocked(err) |
| } |
| |
| // handleRenegotiation processes a HelloRequest handshake message. |
| func (c *Conn) handleRenegotiation() error { |
| if c.vers == VersionTLS13 { |
| return errors.New("tls: internal error: unexpected renegotiation") |
| } |
| |
| msg, err := c.readHandshake() |
| if err != nil { |
| return err |
| } |
| |
| helloReq, ok := msg.(*helloRequestMsg) |
| if !ok { |
| c.sendAlert(alertUnexpectedMessage) |
| return unexpectedMessageError(helloReq, msg) |
| } |
| |
| if !c.isClient { |
| return c.sendAlert(alertNoRenegotiation) |
| } |
| |
| switch c.config.Renegotiation { |
| case RenegotiateNever: |
| return c.sendAlert(alertNoRenegotiation) |
| case RenegotiateOnceAsClient: |
| if c.handshakes > 1 { |
| return c.sendAlert(alertNoRenegotiation) |
| } |
| case RenegotiateFreelyAsClient: |
| // Ok. |
| default: |
| c.sendAlert(alertInternalError) |
| return errors.New("tls: unknown Renegotiation value") |
| } |
| |
| c.handshakeMutex.Lock() |
| defer c.handshakeMutex.Unlock() |
| |
| atomic.StoreUint32(&c.handshakeStatus, 0) |
| if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil { |
| c.handshakes++ |
| } |
| return c.handshakeErr |
| } |
| |
| // handlePostHandshakeMessage processes a handshake message arrived after the |
| // handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation. |
| func (c *Conn) handlePostHandshakeMessage() error { |
| if c.vers != VersionTLS13 { |
| return c.handleRenegotiation() |
| } |
| |
| msg, err := c.readHandshake() |
| if err != nil { |
| return err |
| } |
| |
| c.retryCount++ |
| if c.retryCount > maxUselessRecords { |
| c.sendAlert(alertUnexpectedMessage) |
| return c.in.setErrorLocked(errors.New("tls: too many non-advancing records")) |
| } |
| |
| switch msg := msg.(type) { |
| case *newSessionTicketMsgTLS13: |
| return c.handleNewSessionTicket(msg) |
| case *keyUpdateMsg: |
| return c.handleKeyUpdate(msg) |
| default: |
| c.sendAlert(alertUnexpectedMessage) |
| return fmt.Errorf("tls: received unexpected handshake message of type %T", msg) |
| } |
| } |
| |
| func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error { |
| cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite) |
| if cipherSuite == nil { |
| return c.in.setErrorLocked(c.sendAlert(alertInternalError)) |
| } |
| |
| newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret) |
| c.in.setTrafficSecret(cipherSuite, newSecret) |
| |
| if keyUpdate.updateRequested { |
| c.out.Lock() |
| defer c.out.Unlock() |
| |
| msg := &keyUpdateMsg{} |
| _, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal()) |
| if err != nil { |
| // Surface the error at the next write. |
| c.out.setErrorLocked(err) |
| return nil |
| } |
| |
| newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret) |
| c.out.setTrafficSecret(cipherSuite, newSecret) |
| } |
| |
| return nil |
| } |
| |
| // Read reads data from the connection. |
| // |
| // As Read calls Handshake, in order to prevent indefinite blocking a deadline |
| // must be set for both Read and Write before Read is called when the handshake |
| // has not yet completed. See SetDeadline, SetReadDeadline, and |
| // SetWriteDeadline. |
| func (c *Conn) Read(b []byte) (int, error) { |
| if err := c.Handshake(); err != nil { |
| return 0, err |
| } |
| if len(b) == 0 { |
| // Put this after Handshake, in case people were calling |
| // Read(nil) for the side effect of the Handshake. |
| return 0, nil |
| } |
| |
| c.in.Lock() |
| defer c.in.Unlock() |
| |
| for c.input.Len() == 0 { |
| if err := c.readRecord(); err != nil { |
| return 0, err |
| } |
| for c.hand.Len() > 0 { |
| if err := c.handlePostHandshakeMessage(); err != nil { |
| return 0, err |
| } |
| } |
| } |
| |
| n, _ := c.input.Read(b) |
| |
| // If a close-notify alert is waiting, read it so that we can return (n, |
| // EOF) instead of (n, nil), to signal to the HTTP response reading |
| // goroutine that the connection is now closed. This eliminates a race |
| // where the HTTP response reading goroutine would otherwise not observe |
| // the EOF until its next read, by which time a client goroutine might |
| // have already tried to reuse the HTTP connection for a new request. |
| // See https://golang.org/cl/76400046 and https://golang.org/issue/3514 |
| if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 && |
| recordType(c.rawInput.Bytes()[0]) == recordTypeAlert { |
| if err := c.readRecord(); err != nil { |
| return n, err // will be io.EOF on closeNotify |
| } |
| } |
| |
| return n, nil |
| } |
| |
| // Close closes the connection. |
| func (c *Conn) Close() error { |
| // Interlock with Conn.Write above. |
| var x int32 |
| for { |
| x = atomic.LoadInt32(&c.activeCall) |
| if x&1 != 0 { |
| return net.ErrClosed |
| } |
| if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) { |
| break |
| } |
| } |
| if x != 0 { |
| // io.Writer and io.Closer should not be used concurrently. |
| // If Close is called while a Write is currently in-flight, |
| // interpret that as a sign that this Close is really just |
| // being used to break the Write and/or clean up resources and |
| // avoid sending the alertCloseNotify, which may block |
| // waiting on handshakeMutex or the c.out mutex. |
| return c.conn.Close() |
| } |
| |
| var alertErr error |
| if c.handshakeComplete() { |
| if err := c.closeNotify(); err != nil { |
| alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err) |
| } |
| } |
| |
| if err := c.conn.Close(); err != nil { |
| return err |
| } |
| return alertErr |
| } |
| |
| var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") |
| |
| // CloseWrite shuts down the writing side of the connection. It should only be |
| // called once the handshake has completed and does not call CloseWrite on the |
| // underlying connection. Most callers should just use Close. |
| func (c *Conn) CloseWrite() error { |
| if !c.handshakeComplete() { |
| return errEarlyCloseWrite |
| } |
| |
| return c.closeNotify() |
| } |
| |
| func (c *Conn) closeNotify() error { |
| c.out.Lock() |
| defer c.out.Unlock() |
| |
| if !c.closeNotifySent { |
| // Set a Write Deadline to prevent possibly blocking forever. |
| c.SetWriteDeadline(time.Now().Add(time.Second * 5)) |
| c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) |
| c.closeNotifySent = true |
| // Any subsequent writes will fail. |
| c.SetWriteDeadline(time.Now()) |
| } |
| return c.closeNotifyErr |
| } |
| |
| // Handshake runs the client or server handshake |
| // protocol if it has not yet been run. |
| // |
| // Most uses of this package need not call Handshake explicitly: the |
| // first Read or Write will call it automatically. |
| // |
| // For control over canceling or setting a timeout on a handshake, use |
| // the Dialer's DialContext method. |
| func (c *Conn) Handshake() error { |
| c.handshakeMutex.Lock() |
| defer c.handshakeMutex.Unlock() |
| |
| if err := c.handshakeErr; err != nil { |
| return err |
| } |
| if c.handshakeComplete() { |
| return nil |
| } |
| |
| c.in.Lock() |
| defer c.in.Unlock() |
| |
| c.handshakeErr = c.handshakeFn() |
| if c.handshakeErr == nil { |
| c.handshakes++ |
| } else { |
| // If an error occurred during the handshake try to flush the |
| // alert that might be left in the buffer. |
| c.flush() |
| } |
| |
| if c.handshakeErr == nil && !c.handshakeComplete() { |
| c.handshakeErr = errors.New("tls: internal error: handshake should have had a result") |
| } |
| |
| return c.handshakeErr |
| } |
| |
| // ConnectionState returns basic TLS details about the connection. |
| func (c *Conn) ConnectionState() ConnectionState { |
| c.handshakeMutex.Lock() |
| defer c.handshakeMutex.Unlock() |
| return c.connectionStateLocked() |
| } |
| |
| func (c *Conn) connectionStateLocked() ConnectionState { |
| var state ConnectionState |
| state.HandshakeComplete = c.handshakeComplete() |
| state.Version = c.vers |
| state.NegotiatedProtocol = c.clientProtocol |
| state.DidResume = c.didResume |
| state.NegotiatedProtocolIsMutual = true |
| state.ServerName = c.serverName |
| state.CipherSuite = c.cipherSuite |
| state.PeerCertificates = c.peerCertificates |
| state.VerifiedChains = c.verifiedChains |
| state.SignedCertificateTimestamps = c.scts |
| state.OCSPResponse = c.ocspResponse |
| if !c.didResume && c.vers != VersionTLS13 { |
| if c.clientFinishedIsFirst { |
| state.TLSUnique = c.clientFinished[:] |
| } else { |
| state.TLSUnique = c.serverFinished[:] |
| } |
| } |
| if c.config.Renegotiation != RenegotiateNever { |
| state.ekm = noExportedKeyingMaterial |
| } else { |
| state.ekm = c.ekm |
| } |
| return state |
| } |
| |
| // OCSPResponse returns the stapled OCSP response from the TLS server, if |
| // any. (Only valid for client connections.) |
| func (c *Conn) OCSPResponse() []byte { |
| c.handshakeMutex.Lock() |
| defer c.handshakeMutex.Unlock() |
| |
| return c.ocspResponse |
| } |
| |
| // VerifyHostname checks that the peer certificate chain is valid for |
| // connecting to host. If so, it returns nil; if not, it returns an error |
| // describing the problem. |
| func (c *Conn) VerifyHostname(host string) error { |
| c.handshakeMutex.Lock() |
| defer c.handshakeMutex.Unlock() |
| if !c.isClient { |
| return errors.New("tls: VerifyHostname called on TLS server connection") |
| } |
| if !c.handshakeComplete() { |
| return errors.New("tls: handshake has not yet been performed") |
| } |
| if len(c.verifiedChains) == 0 { |
| return errors.New("tls: handshake did not verify certificate chain") |
| } |
| return c.peerCertificates[0].VerifyHostname(host) |
| } |
| |
| func (c *Conn) handshakeComplete() bool { |
| return atomic.LoadUint32(&c.handshakeStatus) == 1 |
| } |