| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| //go:generate go run encgen.go -output enc_helpers.go |
| |
| package gob |
| |
| import ( |
| "encoding" |
| "encoding/binary" |
| "math" |
| "math/bits" |
| "reflect" |
| "sync" |
| ) |
| |
| const uint64Size = 8 |
| |
| type encHelper func(state *encoderState, v reflect.Value) bool |
| |
| // encoderState is the global execution state of an instance of the encoder. |
| // Field numbers are delta encoded and always increase. The field |
| // number is initialized to -1 so 0 comes out as delta(1). A delta of |
| // 0 terminates the structure. |
| type encoderState struct { |
| enc *Encoder |
| b *encBuffer |
| sendZero bool // encoding an array element or map key/value pair; send zero values |
| fieldnum int // the last field number written. |
| buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. |
| next *encoderState // for free list |
| } |
| |
| // encBuffer is an extremely simple, fast implementation of a write-only byte buffer. |
| // It never returns a non-nil error, but Write returns an error value so it matches io.Writer. |
| type encBuffer struct { |
| data []byte |
| scratch [64]byte |
| } |
| |
| var encBufferPool = sync.Pool{ |
| New: func() any { |
| e := new(encBuffer) |
| e.data = e.scratch[0:0] |
| return e |
| }, |
| } |
| |
| func (e *encBuffer) writeByte(c byte) { |
| e.data = append(e.data, c) |
| } |
| |
| func (e *encBuffer) Write(p []byte) (int, error) { |
| e.data = append(e.data, p...) |
| return len(p), nil |
| } |
| |
| func (e *encBuffer) WriteString(s string) { |
| e.data = append(e.data, s...) |
| } |
| |
| func (e *encBuffer) Len() int { |
| return len(e.data) |
| } |
| |
| func (e *encBuffer) Bytes() []byte { |
| return e.data |
| } |
| |
| func (e *encBuffer) Reset() { |
| if len(e.data) >= tooBig { |
| e.data = e.scratch[0:0] |
| } else { |
| e.data = e.data[0:0] |
| } |
| } |
| |
| func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState { |
| e := enc.freeList |
| if e == nil { |
| e = new(encoderState) |
| e.enc = enc |
| } else { |
| enc.freeList = e.next |
| } |
| e.sendZero = false |
| e.fieldnum = 0 |
| e.b = b |
| if len(b.data) == 0 { |
| b.data = b.scratch[0:0] |
| } |
| return e |
| } |
| |
| func (enc *Encoder) freeEncoderState(e *encoderState) { |
| e.next = enc.freeList |
| enc.freeList = e |
| } |
| |
| // Unsigned integers have a two-state encoding. If the number is less |
| // than 128 (0 through 0x7F), its value is written directly. |
| // Otherwise the value is written in big-endian byte order preceded |
| // by the byte length, negated. |
| |
| // encodeUint writes an encoded unsigned integer to state.b. |
| func (state *encoderState) encodeUint(x uint64) { |
| if x <= 0x7F { |
| state.b.writeByte(uint8(x)) |
| return |
| } |
| |
| binary.BigEndian.PutUint64(state.buf[1:], x) |
| bc := bits.LeadingZeros64(x) >> 3 // 8 - bytelen(x) |
| state.buf[bc] = uint8(bc - uint64Size) // and then we subtract 8 to get -bytelen(x) |
| |
| state.b.Write(state.buf[bc : uint64Size+1]) |
| } |
| |
| // encodeInt writes an encoded signed integer to state.w. |
| // The low bit of the encoding says whether to bit complement the (other bits of the) |
| // uint to recover the int. |
| func (state *encoderState) encodeInt(i int64) { |
| var x uint64 |
| if i < 0 { |
| x = uint64(^i<<1) | 1 |
| } else { |
| x = uint64(i << 1) |
| } |
| state.encodeUint(x) |
| } |
| |
| // encOp is the signature of an encoding operator for a given type. |
| type encOp func(i *encInstr, state *encoderState, v reflect.Value) |
| |
| // The 'instructions' of the encoding machine |
| type encInstr struct { |
| op encOp |
| field int // field number in input |
| index []int // struct index |
| indir int // how many pointer indirections to reach the value in the struct |
| } |
| |
| // update emits a field number and updates the state to record its value for delta encoding. |
| // If the instruction pointer is nil, it does nothing |
| func (state *encoderState) update(instr *encInstr) { |
| if instr != nil { |
| state.encodeUint(uint64(instr.field - state.fieldnum)) |
| state.fieldnum = instr.field |
| } |
| } |
| |
| // Each encoder for a composite is responsible for handling any |
| // indirections associated with the elements of the data structure. |
| // If any pointer so reached is nil, no bytes are written. If the |
| // data item is zero, no bytes are written. Single values - ints, |
| // strings etc. - are indirected before calling their encoders. |
| // Otherwise, the output (for a scalar) is the field number, as an |
| // encoded integer, followed by the field data in its appropriate |
| // format. |
| |
| // encIndirect dereferences pv indir times and returns the result. |
| func encIndirect(pv reflect.Value, indir int) reflect.Value { |
| for ; indir > 0; indir-- { |
| if pv.IsNil() { |
| break |
| } |
| pv = pv.Elem() |
| } |
| return pv |
| } |
| |
| // encBool encodes the bool referenced by v as an unsigned 0 or 1. |
| func encBool(i *encInstr, state *encoderState, v reflect.Value) { |
| b := v.Bool() |
| if b || state.sendZero { |
| state.update(i) |
| if b { |
| state.encodeUint(1) |
| } else { |
| state.encodeUint(0) |
| } |
| } |
| } |
| |
| // encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v. |
| func encInt(i *encInstr, state *encoderState, v reflect.Value) { |
| value := v.Int() |
| if value != 0 || state.sendZero { |
| state.update(i) |
| state.encodeInt(value) |
| } |
| } |
| |
| // encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v. |
| func encUint(i *encInstr, state *encoderState, v reflect.Value) { |
| value := v.Uint() |
| if value != 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(value) |
| } |
| } |
| |
| // floatBits returns a uint64 holding the bits of a floating-point number. |
| // Floating-point numbers are transmitted as uint64s holding the bits |
| // of the underlying representation. They are sent byte-reversed, with |
| // the exponent end coming out first, so integer floating point numbers |
| // (for example) transmit more compactly. This routine does the |
| // swizzling. |
| func floatBits(f float64) uint64 { |
| u := math.Float64bits(f) |
| return bits.ReverseBytes64(u) |
| } |
| |
| // encFloat encodes the floating point value (float32 float64) referenced by v. |
| func encFloat(i *encInstr, state *encoderState, v reflect.Value) { |
| f := v.Float() |
| if f != 0 || state.sendZero { |
| bits := floatBits(f) |
| state.update(i) |
| state.encodeUint(bits) |
| } |
| } |
| |
| // encComplex encodes the complex value (complex64 complex128) referenced by v. |
| // Complex numbers are just a pair of floating-point numbers, real part first. |
| func encComplex(i *encInstr, state *encoderState, v reflect.Value) { |
| c := v.Complex() |
| if c != 0+0i || state.sendZero { |
| rpart := floatBits(real(c)) |
| ipart := floatBits(imag(c)) |
| state.update(i) |
| state.encodeUint(rpart) |
| state.encodeUint(ipart) |
| } |
| } |
| |
| // encUint8Array encodes the byte array referenced by v. |
| // Byte arrays are encoded as an unsigned count followed by the raw bytes. |
| func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) { |
| b := v.Bytes() |
| if len(b) > 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(uint64(len(b))) |
| state.b.Write(b) |
| } |
| } |
| |
| // encString encodes the string referenced by v. |
| // Strings are encoded as an unsigned count followed by the raw bytes. |
| func encString(i *encInstr, state *encoderState, v reflect.Value) { |
| s := v.String() |
| if len(s) > 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(uint64(len(s))) |
| state.b.WriteString(s) |
| } |
| } |
| |
| // encStructTerminator encodes the end of an encoded struct |
| // as delta field number of 0. |
| func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) { |
| state.encodeUint(0) |
| } |
| |
| // Execution engine |
| |
| // encEngine an array of instructions indexed by field number of the encoding |
| // data, typically a struct. It is executed top to bottom, walking the struct. |
| type encEngine struct { |
| instr []encInstr |
| } |
| |
| const singletonField = 0 |
| |
| // valid reports whether the value is valid and a non-nil pointer. |
| // (Slices, maps, and chans take care of themselves.) |
| func valid(v reflect.Value) bool { |
| switch v.Kind() { |
| case reflect.Invalid: |
| return false |
| case reflect.Pointer: |
| return !v.IsNil() |
| } |
| return true |
| } |
| |
| // encodeSingle encodes a single top-level non-struct value. |
| func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) { |
| state := enc.newEncoderState(b) |
| defer enc.freeEncoderState(state) |
| state.fieldnum = singletonField |
| // There is no surrounding struct to frame the transmission, so we must |
| // generate data even if the item is zero. To do this, set sendZero. |
| state.sendZero = true |
| instr := &engine.instr[singletonField] |
| if instr.indir > 0 { |
| value = encIndirect(value, instr.indir) |
| } |
| if valid(value) { |
| instr.op(instr, state, value) |
| } |
| } |
| |
| // encodeStruct encodes a single struct value. |
| func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) { |
| if !valid(value) { |
| return |
| } |
| state := enc.newEncoderState(b) |
| defer enc.freeEncoderState(state) |
| state.fieldnum = -1 |
| for i := 0; i < len(engine.instr); i++ { |
| instr := &engine.instr[i] |
| if i >= value.NumField() { |
| // encStructTerminator |
| instr.op(instr, state, reflect.Value{}) |
| break |
| } |
| field := value.FieldByIndex(instr.index) |
| if instr.indir > 0 { |
| field = encIndirect(field, instr.indir) |
| // TODO: Is field guaranteed valid? If so we could avoid this check. |
| if !valid(field) { |
| continue |
| } |
| } |
| instr.op(instr, state, field) |
| } |
| } |
| |
| // encodeArray encodes an array. |
| func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) { |
| state := enc.newEncoderState(b) |
| defer enc.freeEncoderState(state) |
| state.fieldnum = -1 |
| state.sendZero = true |
| state.encodeUint(uint64(length)) |
| if helper != nil && helper(state, value) { |
| return |
| } |
| for i := 0; i < length; i++ { |
| elem := value.Index(i) |
| if elemIndir > 0 { |
| elem = encIndirect(elem, elemIndir) |
| // TODO: Is elem guaranteed valid? If so we could avoid this check. |
| if !valid(elem) { |
| errorf("encodeArray: nil element") |
| } |
| } |
| op(nil, state, elem) |
| } |
| } |
| |
| // encodeReflectValue is a helper for maps. It encodes the value v. |
| func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { |
| for i := 0; i < indir && v.IsValid(); i++ { |
| v = reflect.Indirect(v) |
| } |
| if !v.IsValid() { |
| errorf("encodeReflectValue: nil element") |
| } |
| op(nil, state, v) |
| } |
| |
| // encodeMap encodes a map as unsigned count followed by key:value pairs. |
| func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { |
| state := enc.newEncoderState(b) |
| state.fieldnum = -1 |
| state.sendZero = true |
| state.encodeUint(uint64(mv.Len())) |
| mi := mv.MapRange() |
| for mi.Next() { |
| encodeReflectValue(state, mi.Key(), keyOp, keyIndir) |
| encodeReflectValue(state, mi.Value(), elemOp, elemIndir) |
| } |
| enc.freeEncoderState(state) |
| } |
| |
| // encodeInterface encodes the interface value iv. |
| // To send an interface, we send a string identifying the concrete type, followed |
| // by the type identifier (which might require defining that type right now), followed |
| // by the concrete value. A nil value gets sent as the empty string for the name, |
| // followed by no value. |
| func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) { |
| // Gobs can encode nil interface values but not typed interface |
| // values holding nil pointers, since nil pointers point to no value. |
| elem := iv.Elem() |
| if elem.Kind() == reflect.Pointer && elem.IsNil() { |
| errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type()) |
| } |
| state := enc.newEncoderState(b) |
| state.fieldnum = -1 |
| state.sendZero = true |
| if iv.IsNil() { |
| state.encodeUint(0) |
| return |
| } |
| |
| ut := userType(iv.Elem().Type()) |
| namei, ok := concreteTypeToName.Load(ut.base) |
| if !ok { |
| errorf("type not registered for interface: %s", ut.base) |
| } |
| name := namei.(string) |
| |
| // Send the name. |
| state.encodeUint(uint64(len(name))) |
| state.b.WriteString(name) |
| // Define the type id if necessary. |
| enc.sendTypeDescriptor(enc.writer(), state, ut) |
| // Send the type id. |
| enc.sendTypeId(state, ut) |
| // Encode the value into a new buffer. Any nested type definitions |
| // should be written to b, before the encoded value. |
| enc.pushWriter(b) |
| data := encBufferPool.Get().(*encBuffer) |
| data.Write(spaceForLength) |
| enc.encode(data, elem, ut) |
| if enc.err != nil { |
| error_(enc.err) |
| } |
| enc.popWriter() |
| enc.writeMessage(b, data) |
| data.Reset() |
| encBufferPool.Put(data) |
| if enc.err != nil { |
| error_(enc.err) |
| } |
| enc.freeEncoderState(state) |
| } |
| |
| // isZero reports whether the value is the zero of its type. |
| func isZero(val reflect.Value) bool { |
| switch val.Kind() { |
| case reflect.Array: |
| for i := 0; i < val.Len(); i++ { |
| if !isZero(val.Index(i)) { |
| return false |
| } |
| } |
| return true |
| case reflect.Map, reflect.Slice, reflect.String: |
| return val.Len() == 0 |
| case reflect.Bool: |
| return !val.Bool() |
| case reflect.Complex64, reflect.Complex128: |
| return val.Complex() == 0 |
| case reflect.Chan, reflect.Func, reflect.Interface, reflect.Pointer: |
| return val.IsNil() |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| return val.Int() == 0 |
| case reflect.Float32, reflect.Float64: |
| return val.Float() == 0 |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| return val.Uint() == 0 |
| case reflect.Struct: |
| for i := 0; i < val.NumField(); i++ { |
| if !isZero(val.Field(i)) { |
| return false |
| } |
| } |
| return true |
| } |
| panic("unknown type in isZero " + val.Type().String()) |
| } |
| |
| // encGobEncoder encodes a value that implements the GobEncoder interface. |
| // The data is sent as a byte array. |
| func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) { |
| // TODO: should we catch panics from the called method? |
| |
| var data []byte |
| var err error |
| // We know it's one of these. |
| switch ut.externalEnc { |
| case xGob: |
| data, err = v.Interface().(GobEncoder).GobEncode() |
| case xBinary: |
| data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary() |
| case xText: |
| data, err = v.Interface().(encoding.TextMarshaler).MarshalText() |
| } |
| if err != nil { |
| error_(err) |
| } |
| state := enc.newEncoderState(b) |
| state.fieldnum = -1 |
| state.encodeUint(uint64(len(data))) |
| state.b.Write(data) |
| enc.freeEncoderState(state) |
| } |
| |
| var encOpTable = [...]encOp{ |
| reflect.Bool: encBool, |
| reflect.Int: encInt, |
| reflect.Int8: encInt, |
| reflect.Int16: encInt, |
| reflect.Int32: encInt, |
| reflect.Int64: encInt, |
| reflect.Uint: encUint, |
| reflect.Uint8: encUint, |
| reflect.Uint16: encUint, |
| reflect.Uint32: encUint, |
| reflect.Uint64: encUint, |
| reflect.Uintptr: encUint, |
| reflect.Float32: encFloat, |
| reflect.Float64: encFloat, |
| reflect.Complex64: encComplex, |
| reflect.Complex128: encComplex, |
| reflect.String: encString, |
| } |
| |
| // encOpFor returns (a pointer to) the encoding op for the base type under rt and |
| // the indirection count to reach it. |
| func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) { |
| ut := userType(rt) |
| // If the type implements GobEncoder, we handle it without further processing. |
| if ut.externalEnc != 0 { |
| return gobEncodeOpFor(ut) |
| } |
| // If this type is already in progress, it's a recursive type (e.g. map[string]*T). |
| // Return the pointer to the op we're already building. |
| if opPtr := inProgress[rt]; opPtr != nil { |
| return opPtr, ut.indir |
| } |
| typ := ut.base |
| indir := ut.indir |
| k := typ.Kind() |
| var op encOp |
| if int(k) < len(encOpTable) { |
| op = encOpTable[k] |
| } |
| if op == nil { |
| inProgress[rt] = &op |
| // Special cases |
| switch t := typ; t.Kind() { |
| case reflect.Slice: |
| if t.Elem().Kind() == reflect.Uint8 { |
| op = encUint8Array |
| break |
| } |
| // Slices have a header; we decode it to find the underlying array. |
| elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) |
| helper := encSliceHelper[t.Elem().Kind()] |
| op = func(i *encInstr, state *encoderState, slice reflect.Value) { |
| if !state.sendZero && slice.Len() == 0 { |
| return |
| } |
| state.update(i) |
| state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper) |
| } |
| case reflect.Array: |
| // True arrays have size in the type. |
| elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) |
| helper := encArrayHelper[t.Elem().Kind()] |
| op = func(i *encInstr, state *encoderState, array reflect.Value) { |
| state.update(i) |
| state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper) |
| } |
| case reflect.Map: |
| keyOp, keyIndir := encOpFor(t.Key(), inProgress, building) |
| elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) |
| op = func(i *encInstr, state *encoderState, mv reflect.Value) { |
| // We send zero-length (but non-nil) maps because the |
| // receiver might want to use the map. (Maps don't use append.) |
| if !state.sendZero && mv.IsNil() { |
| return |
| } |
| state.update(i) |
| state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir) |
| } |
| case reflect.Struct: |
| // Generate a closure that calls out to the engine for the nested type. |
| getEncEngine(userType(typ), building) |
| info := mustGetTypeInfo(typ) |
| op = func(i *encInstr, state *encoderState, sv reflect.Value) { |
| state.update(i) |
| // indirect through info to delay evaluation for recursive structs |
| enc := info.encoder.Load() |
| state.enc.encodeStruct(state.b, enc, sv) |
| } |
| case reflect.Interface: |
| op = func(i *encInstr, state *encoderState, iv reflect.Value) { |
| if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { |
| return |
| } |
| state.update(i) |
| state.enc.encodeInterface(state.b, iv) |
| } |
| } |
| } |
| if op == nil { |
| errorf("can't happen: encode type %s", rt) |
| } |
| return &op, indir |
| } |
| |
| // gobEncodeOpFor returns the op for a type that is known to implement GobEncoder. |
| func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { |
| rt := ut.user |
| if ut.encIndir == -1 { |
| rt = reflect.PointerTo(rt) |
| } else if ut.encIndir > 0 { |
| for i := int8(0); i < ut.encIndir; i++ { |
| rt = rt.Elem() |
| } |
| } |
| var op encOp |
| op = func(i *encInstr, state *encoderState, v reflect.Value) { |
| if ut.encIndir == -1 { |
| // Need to climb up one level to turn value into pointer. |
| if !v.CanAddr() { |
| errorf("unaddressable value of type %s", rt) |
| } |
| v = v.Addr() |
| } |
| if !state.sendZero && isZero(v) { |
| return |
| } |
| state.update(i) |
| state.enc.encodeGobEncoder(state.b, ut, v) |
| } |
| return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver. |
| } |
| |
| // compileEnc returns the engine to compile the type. |
| func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { |
| srt := ut.base |
| engine := new(encEngine) |
| seen := make(map[reflect.Type]*encOp) |
| rt := ut.base |
| if ut.externalEnc != 0 { |
| rt = ut.user |
| } |
| if ut.externalEnc == 0 && srt.Kind() == reflect.Struct { |
| for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ { |
| f := srt.Field(fieldNum) |
| if !isSent(&f) { |
| continue |
| } |
| op, indir := encOpFor(f.Type, seen, building) |
| engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir}) |
| wireFieldNum++ |
| } |
| if srt.NumField() > 0 && len(engine.instr) == 0 { |
| errorf("type %s has no exported fields", rt) |
| } |
| engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0}) |
| } else { |
| engine.instr = make([]encInstr, 1) |
| op, indir := encOpFor(rt, seen, building) |
| engine.instr[0] = encInstr{*op, singletonField, nil, indir} |
| } |
| return engine |
| } |
| |
| // getEncEngine returns the engine to compile the type. |
| func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { |
| info, err := getTypeInfo(ut) |
| if err != nil { |
| error_(err) |
| } |
| enc := info.encoder.Load() |
| if enc == nil { |
| enc = buildEncEngine(info, ut, building) |
| } |
| return enc |
| } |
| |
| func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { |
| // Check for recursive types. |
| if building != nil && building[info] { |
| return nil |
| } |
| info.encInit.Lock() |
| defer info.encInit.Unlock() |
| enc := info.encoder.Load() |
| if enc == nil { |
| if building == nil { |
| building = make(map[*typeInfo]bool) |
| } |
| building[info] = true |
| enc = compileEnc(ut, building) |
| info.encoder.Store(enc) |
| } |
| return enc |
| } |
| |
| func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) { |
| defer catchError(&enc.err) |
| engine := getEncEngine(ut, nil) |
| indir := ut.indir |
| if ut.externalEnc != 0 { |
| indir = int(ut.encIndir) |
| } |
| for i := 0; i < indir; i++ { |
| value = reflect.Indirect(value) |
| } |
| if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct { |
| enc.encodeStruct(b, engine, value) |
| } else { |
| enc.encodeSingle(b, engine, value) |
| } |
| } |