blob: f593b4a78b9106336342b7970156b2daa5690c0d [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "go_tls.h"
#include "tls_arm64.h"
#include "funcdata.h"
#include "textflag.h"
TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0
// SP = stack; R0 = argc; R1 = argv
SUB $32, RSP
MOVW R0, 8(RSP) // argc
MOVD R1, 16(RSP) // argv
#ifdef TLS_darwin
// Initialize TLS.
MOVD ZR, g // clear g, make sure it's not junk.
SUB $32, RSP
MRS_TPIDR_R0
AND $~7, R0
MOVD R0, 16(RSP) // arg2: TLS base
MOVD $runtime·tls_g(SB), R2
MOVD R2, 8(RSP) // arg1: &tlsg
BL ·tlsinit(SB)
ADD $32, RSP
#endif
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
MOVD RSP, R7
MOVD $(-64*1024)(R7), R0
MOVD R0, g_stackguard0(g)
MOVD R0, g_stackguard1(g)
MOVD R0, (g_stack+stack_lo)(g)
MOVD R7, (g_stack+stack_hi)(g)
// if there is a _cgo_init, call it using the gcc ABI.
MOVD _cgo_init(SB), R12
CBZ R12, nocgo
#ifdef GOOS_android
MRS_TPIDR_R0 // load TLS base pointer
MOVD R0, R3 // arg 3: TLS base pointer
MOVD $runtime·tls_g(SB), R2 // arg 2: &tls_g
#else
MOVD $0, R2 // arg 2: not used when using platform's TLS
#endif
MOVD $setg_gcc<>(SB), R1 // arg 1: setg
MOVD g, R0 // arg 0: G
SUB $16, RSP // reserve 16 bytes for sp-8 where fp may be saved.
BL (R12)
ADD $16, RSP
nocgo:
BL runtime·save_g(SB)
// update stackguard after _cgo_init
MOVD (g_stack+stack_lo)(g), R0
ADD $const__StackGuard, R0
MOVD R0, g_stackguard0(g)
MOVD R0, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R0
// save m->g0 = g0
MOVD g, m_g0(R0)
// save m0 to g0->m
MOVD R0, g_m(g)
BL runtime·check(SB)
#ifdef GOOS_windows
BL runtime·wintls(SB)
#endif
MOVW 8(RSP), R0 // copy argc
MOVW R0, -8(RSP)
MOVD 16(RSP), R0 // copy argv
MOVD R0, 0(RSP)
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·mainPC(SB), R0 // entry
SUB $16, RSP
MOVD R0, 8(RSP) // arg
MOVD $0, 0(RSP) // dummy LR
BL runtime·newproc(SB)
ADD $16, RSP
// start this M
BL runtime·mstart(SB)
// Prevent dead-code elimination of debugCallV2, which is
// intended to be called by debuggers.
MOVD $runtime·debugCallV2<ABIInternal>(SB), R0
MOVD $0, R0
MOVD R0, (R0) // boom
UNDEF
DATA runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
BRK
RET
TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
RET
TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0
BL runtime·mstart0(SB)
RET // not reached
/*
* go-routine
*/
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8
MOVD buf+0(FP), R5
MOVD gobuf_g(R5), R6
MOVD 0(R6), R4 // make sure g != nil
B gogo<>(SB)
TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0
MOVD R6, g
BL runtime·save_g(SB)
MOVD gobuf_sp(R5), R0
MOVD R0, RSP
MOVD gobuf_bp(R5), R29
MOVD gobuf_lr(R5), LR
MOVD gobuf_ret(R5), R0
MOVD gobuf_ctxt(R5), R26
MOVD $0, gobuf_sp(R5)
MOVD $0, gobuf_bp(R5)
MOVD $0, gobuf_ret(R5)
MOVD $0, gobuf_lr(R5)
MOVD $0, gobuf_ctxt(R5)
CMP ZR, ZR // set condition codes for == test, needed by stack split
MOVD gobuf_pc(R5), R6
B (R6)
// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT|NOFRAME, $0-8
MOVD R0, R26 // context
// Save caller state in g->sched
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
// Switch to m->g0 & its stack, call fn.
MOVD g, R3
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
CMP g, R3
BNE 2(PC)
B runtime·badmcall(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP // sp = m->g0->sched.sp
MOVD (g_sched+gobuf_bp)(g), R29
MOVD R3, R0 // arg = g
MOVD $0, -16(RSP) // dummy LR
SUB $16, RSP
MOVD 0(R26), R4 // code pointer
BL (R4)
B runtime·badmcall2(SB)
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
UNDEF
BL (LR) // make sure this function is not leaf
RET
// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
MOVD fn+0(FP), R3 // R3 = fn
MOVD R3, R26 // context
MOVD g_m(g), R4 // R4 = m
MOVD m_gsignal(R4), R5 // R5 = gsignal
CMP g, R5
BEQ noswitch
MOVD m_g0(R4), R5 // R5 = g0
CMP g, R5
BEQ noswitch
MOVD m_curg(R4), R6
CMP g, R6
BEQ switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVD $runtime·badsystemstack(SB), R3
BL (R3)
B runtime·abort(SB)
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
BL gosave_systemstack_switch<>(SB)
// switch to g0
MOVD R5, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R3
MOVD R3, RSP
MOVD (g_sched+gobuf_bp)(g), R29
// call target function
MOVD 0(R26), R3 // code pointer
BL (R3)
// switch back to g
MOVD g_m(g), R3
MOVD m_curg(R3), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD (g_sched+gobuf_bp)(g), R29
MOVD $0, (g_sched+gobuf_sp)(g)
MOVD $0, (g_sched+gobuf_bp)(g)
RET
noswitch:
// already on m stack, just call directly
// Using a tail call here cleans up tracebacks since we won't stop
// at an intermediate systemstack.
MOVD 0(R26), R3 // code pointer
MOVD.P 16(RSP), R30 // restore LR
SUB $8, RSP, R29 // restore FP
B (R3)
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3 prolog's LR (R30)
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
// Cannot grow scheduler stack (m->g0).
MOVD g_m(g), R8
MOVD m_g0(R8), R4
CMP g, R4
BNE 3(PC)
BL runtime·badmorestackg0(SB)
B runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVD m_gsignal(R8), R4
CMP g, R4
BNE 3(PC)
BL runtime·badmorestackgsignal(SB)
B runtime·abort(SB)
// Called from f.
// Set g->sched to context in f
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD R3, (g_sched+gobuf_lr)(g)
MOVD R26, (g_sched+gobuf_ctxt)(g)
// Called from f.
// Set m->morebuf to f's callers.
MOVD R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC
MOVD RSP, R0
MOVD R0, (m_morebuf+gobuf_sp)(R8) // f's caller's RSP
MOVD g, (m_morebuf+gobuf_g)(R8)
// Call newstack on m->g0's stack.
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD (g_sched+gobuf_bp)(g), R29
MOVD.W $0, -16(RSP) // create a call frame on g0 (saved LR; keep 16-aligned)
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
UNDEF
TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
MOVW $0, R26
B runtime·morestack(SB)
// spillArgs stores return values from registers to a *internal/abi.RegArgs in R20.
TEXT ·spillArgs(SB),NOSPLIT,$0-0
STP (R0, R1), (0*8)(R20)
STP (R2, R3), (2*8)(R20)
STP (R4, R5), (4*8)(R20)
STP (R6, R7), (6*8)(R20)
STP (R8, R9), (8*8)(R20)
STP (R10, R11), (10*8)(R20)
STP (R12, R13), (12*8)(R20)
STP (R14, R15), (14*8)(R20)
FSTPD (F0, F1), (16*8)(R20)
FSTPD (F2, F3), (18*8)(R20)
FSTPD (F4, F5), (20*8)(R20)
FSTPD (F6, F7), (22*8)(R20)
FSTPD (F8, F9), (24*8)(R20)
FSTPD (F10, F11), (26*8)(R20)
FSTPD (F12, F13), (28*8)(R20)
FSTPD (F14, F15), (30*8)(R20)
RET
// unspillArgs loads args into registers from a *internal/abi.RegArgs in R20.
TEXT ·unspillArgs(SB),NOSPLIT,$0-0
LDP (0*8)(R20), (R0, R1)
LDP (2*8)(R20), (R2, R3)
LDP (4*8)(R20), (R4, R5)
LDP (6*8)(R20), (R6, R7)
LDP (8*8)(R20), (R8, R9)
LDP (10*8)(R20), (R10, R11)
LDP (12*8)(R20), (R12, R13)
LDP (14*8)(R20), (R14, R15)
FLDPD (16*8)(R20), (F0, F1)
FLDPD (18*8)(R20), (F2, F3)
FLDPD (20*8)(R20), (F4, F5)
FLDPD (22*8)(R20), (F6, F7)
FLDPD (24*8)(R20), (F8, F9)
FLDPD (26*8)(R20), (F10, F11)
FLDPD (28*8)(R20), (F12, F13)
FLDPD (30*8)(R20), (F14, F15)
RET
// reflectcall: call a function with the given argument list
// func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
MOVD $MAXSIZE, R27; \
CMP R27, R16; \
BGT 3(PC); \
MOVD $NAME(SB), R27; \
B (R27)
// Note: can't just "B NAME(SB)" - bad inlining results.
TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48
MOVWU frameSize+32(FP), R16
DISPATCH(runtime·call16, 16)
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVD $runtime·badreflectcall(SB), R0
B (R0)
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \
NO_LOCAL_POINTERS; \
/* copy arguments to stack */ \
MOVD stackArgs+16(FP), R3; \
MOVWU stackArgsSize+24(FP), R4; \
ADD $8, RSP, R5; \
BIC $0xf, R4, R6; \
CBZ R6, 6(PC); \
/* if R6=(argsize&~15) != 0 */ \
ADD R6, R5, R6; \
/* copy 16 bytes a time */ \
LDP.P 16(R3), (R7, R8); \
STP.P (R7, R8), 16(R5); \
CMP R5, R6; \
BNE -3(PC); \
AND $0xf, R4, R6; \
CBZ R6, 6(PC); \
/* if R6=(argsize&15) != 0 */ \
ADD R6, R5, R6; \
/* copy 1 byte a time for the rest */ \
MOVBU.P 1(R3), R7; \
MOVBU.P R7, 1(R5); \
CMP R5, R6; \
BNE -3(PC); \
/* set up argument registers */ \
MOVD regArgs+40(FP), R20; \
CALL ·unspillArgs(SB); \
/* call function */ \
MOVD f+8(FP), R26; \
MOVD (R26), R20; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (R20); \
/* copy return values back */ \
MOVD regArgs+40(FP), R20; \
CALL ·spillArgs(SB); \
MOVD stackArgsType+0(FP), R7; \
MOVD stackArgs+16(FP), R3; \
MOVWU stackArgsSize+24(FP), R4; \
MOVWU stackRetOffset+28(FP), R6; \
ADD $8, RSP, R5; \
ADD R6, R5; \
ADD R6, R3; \
SUB R6, R4; \
BL callRet<>(SB); \
RET
// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $48-0
NO_LOCAL_POINTERS
STP (R7, R3), 8(RSP)
STP (R5, R4), 24(RSP)
MOVD R20, 40(RSP)
BL runtime·reflectcallmove(SB)
RET
CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)
// func memhash32(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
MOVB runtime·useAeshash(SB), R10
CBZ R10, noaes
MOVD $runtime·aeskeysched+0(SB), R3
VEOR V0.B16, V0.B16, V0.B16
VLD1 (R3), [V2.B16]
VLD1 (R0), V0.S[1]
VMOV R1, V0.S[0]
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
VMOV V0.D[0], R0
RET
noaes:
B runtime·memhash32Fallback<ABIInternal>(SB)
// func memhash64(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
MOVB runtime·useAeshash(SB), R10
CBZ R10, noaes
MOVD $runtime·aeskeysched+0(SB), R3
VEOR V0.B16, V0.B16, V0.B16
VLD1 (R3), [V2.B16]
VLD1 (R0), V0.D[1]
VMOV R1, V0.D[0]
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V2.B16, V0.B16
VMOV V0.D[0], R0
RET
noaes:
B runtime·memhash64Fallback<ABIInternal>(SB)
// func memhash(p unsafe.Pointer, h, size uintptr) uintptr
TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-32
MOVB runtime·useAeshash(SB), R10
CBZ R10, noaes
B aeshashbody<>(SB)
noaes:
B runtime·memhashFallback<ABIInternal>(SB)
// func strhash(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
MOVB runtime·useAeshash(SB), R10
CBZ R10, noaes
LDP (R0), (R0, R2) // string data / length
B aeshashbody<>(SB)
noaes:
B runtime·strhashFallback<ABIInternal>(SB)
// R0: data
// R1: seed data
// R2: length
// At return, R0 = return value
TEXT aeshashbody<>(SB),NOSPLIT|NOFRAME,$0
VEOR V30.B16, V30.B16, V30.B16
VMOV R1, V30.D[0]
VMOV R2, V30.D[1] // load length into seed
MOVD $runtime·aeskeysched+0(SB), R4
VLD1.P 16(R4), [V0.B16]
AESE V30.B16, V0.B16
AESMC V0.B16, V0.B16
CMP $16, R2
BLO aes0to15
BEQ aes16
CMP $32, R2
BLS aes17to32
CMP $64, R2
BLS aes33to64
CMP $128, R2
BLS aes65to128
B aes129plus
aes0to15:
CBZ R2, aes0
VEOR V2.B16, V2.B16, V2.B16
TBZ $3, R2, less_than_8
VLD1.P 8(R0), V2.D[0]
less_than_8:
TBZ $2, R2, less_than_4
VLD1.P 4(R0), V2.S[2]
less_than_4:
TBZ $1, R2, less_than_2
VLD1.P 2(R0), V2.H[6]
less_than_2:
TBZ $0, R2, done
VLD1 (R0), V2.B[14]
done:
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V0.B16, V2.B16
VMOV V2.D[0], R0
RET
aes0:
VMOV V0.D[0], R0
RET
aes16:
VLD1 (R0), [V2.B16]
B done
aes17to32:
// make second seed
VLD1 (R4), [V1.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
SUB $16, R2, R10
VLD1.P (R0)(R10), [V2.B16]
VLD1 (R0), [V3.B16]
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V1.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V0.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V1.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V0.B16, V2.B16
AESE V1.B16, V3.B16
VEOR V3.B16, V2.B16, V2.B16
VMOV V2.D[0], R0
RET
aes33to64:
VLD1 (R4), [V1.B16, V2.B16, V3.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V30.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V30.B16, V3.B16
AESMC V3.B16, V3.B16
SUB $32, R2, R10
VLD1.P (R0)(R10), [V4.B16, V5.B16]
VLD1 (R0), [V6.B16, V7.B16]
AESE V0.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V1.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V2.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V3.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V0.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V1.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V2.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V3.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V0.B16, V4.B16
AESE V1.B16, V5.B16
AESE V2.B16, V6.B16
AESE V3.B16, V7.B16
VEOR V6.B16, V4.B16, V4.B16
VEOR V7.B16, V5.B16, V5.B16
VEOR V5.B16, V4.B16, V4.B16
VMOV V4.D[0], R0
RET
aes65to128:
VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
VLD1 (R4), [V5.B16, V6.B16, V7.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V30.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V30.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V30.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V30.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V30.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V30.B16, V7.B16
AESMC V7.B16, V7.B16
SUB $64, R2, R10
VLD1.P (R0)(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
VLD1 (R0), [V12.B16, V13.B16, V14.B16, V15.B16]
AESE V0.B16, V8.B16
AESMC V8.B16, V8.B16
AESE V1.B16, V9.B16
AESMC V9.B16, V9.B16
AESE V2.B16, V10.B16
AESMC V10.B16, V10.B16
AESE V3.B16, V11.B16
AESMC V11.B16, V11.B16
AESE V4.B16, V12.B16
AESMC V12.B16, V12.B16
AESE V5.B16, V13.B16
AESMC V13.B16, V13.B16
AESE V6.B16, V14.B16
AESMC V14.B16, V14.B16
AESE V7.B16, V15.B16
AESMC V15.B16, V15.B16
AESE V0.B16, V8.B16
AESMC V8.B16, V8.B16
AESE V1.B16, V9.B16
AESMC V9.B16, V9.B16
AESE V2.B16, V10.B16
AESMC V10.B16, V10.B16
AESE V3.B16, V11.B16
AESMC V11.B16, V11.B16
AESE V4.B16, V12.B16
AESMC V12.B16, V12.B16
AESE V5.B16, V13.B16
AESMC V13.B16, V13.B16
AESE V6.B16, V14.B16
AESMC V14.B16, V14.B16
AESE V7.B16, V15.B16
AESMC V15.B16, V15.B16
AESE V0.B16, V8.B16
AESE V1.B16, V9.B16
AESE V2.B16, V10.B16
AESE V3.B16, V11.B16
AESE V4.B16, V12.B16
AESE V5.B16, V13.B16
AESE V6.B16, V14.B16
AESE V7.B16, V15.B16
VEOR V12.B16, V8.B16, V8.B16
VEOR V13.B16, V9.B16, V9.B16
VEOR V14.B16, V10.B16, V10.B16
VEOR V15.B16, V11.B16, V11.B16
VEOR V10.B16, V8.B16, V8.B16
VEOR V11.B16, V9.B16, V9.B16
VEOR V9.B16, V8.B16, V8.B16
VMOV V8.D[0], R0
RET
aes129plus:
PRFM (R0), PLDL1KEEP
VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
VLD1 (R4), [V5.B16, V6.B16, V7.B16]
AESE V30.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V30.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V30.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V30.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V30.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V30.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V30.B16, V7.B16
AESMC V7.B16, V7.B16
ADD R0, R2, R10
SUB $128, R10, R10
VLD1.P 64(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
VLD1 (R10), [V12.B16, V13.B16, V14.B16, V15.B16]
SUB $1, R2, R2
LSR $7, R2, R2
aesloop:
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
VLD1.P 64(R0), [V8.B16, V9.B16, V10.B16, V11.B16]
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
VLD1.P 64(R0), [V12.B16, V13.B16, V14.B16, V15.B16]
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
SUB $1, R2, R2
CBNZ R2, aesloop
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V8.B16, V0.B16
AESMC V0.B16, V0.B16
AESE V9.B16, V1.B16
AESMC V1.B16, V1.B16
AESE V10.B16, V2.B16
AESMC V2.B16, V2.B16
AESE V11.B16, V3.B16
AESMC V3.B16, V3.B16
AESE V12.B16, V4.B16
AESMC V4.B16, V4.B16
AESE V13.B16, V5.B16
AESMC V5.B16, V5.B16
AESE V14.B16, V6.B16
AESMC V6.B16, V6.B16
AESE V15.B16, V7.B16
AESMC V7.B16, V7.B16
AESE V8.B16, V0.B16
AESE V9.B16, V1.B16
AESE V10.B16, V2.B16
AESE V11.B16, V3.B16
AESE V12.B16, V4.B16
AESE V13.B16, V5.B16
AESE V14.B16, V6.B16
AESE V15.B16, V7.B16
VEOR V0.B16, V1.B16, V0.B16
VEOR V2.B16, V3.B16, V2.B16
VEOR V4.B16, V5.B16, V4.B16
VEOR V6.B16, V7.B16, V6.B16
VEOR V0.B16, V2.B16, V0.B16
VEOR V4.B16, V6.B16, V4.B16
VEOR V4.B16, V0.B16, V0.B16
VMOV V0.D[0], R0
RET
TEXT runtime·procyield(SB),NOSPLIT,$0-0
MOVWU cycles+0(FP), R0
again:
YIELD
SUBW $1, R0
CBNZ R0, again
RET
// Save state of caller into g->sched,
// but using fake PC from systemstack_switch.
// Must only be called from functions with no locals ($0)
// or else unwinding from systemstack_switch is incorrect.
// Smashes R0.
TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
MOVD $runtime·systemstack_switch(SB), R0
ADD $8, R0 // get past prologue
MOVD R0, (g_sched+gobuf_pc)(g)
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(g)
MOVD R29, (g_sched+gobuf_bp)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
MOVD $0, (g_sched+gobuf_ret)(g)
// Assert ctxt is zero. See func save.
MOVD (g_sched+gobuf_ctxt)(g), R0
CBZ R0, 2(PC)
CALL runtime·abort(SB)
RET
// func asmcgocall_no_g(fn, arg unsafe.Pointer)
// Call fn(arg) aligned appropriately for the gcc ABI.
// Called on a system stack, and there may be no g yet (during needm).
TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16
MOVD fn+0(FP), R1
MOVD arg+8(FP), R0
SUB $16, RSP // skip over saved frame pointer below RSP
BL (R1)
ADD $16, RSP // skip over saved frame pointer below RSP
RET
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
MOVD fn+0(FP), R1
MOVD arg+8(FP), R0
MOVD RSP, R2 // save original stack pointer
CBZ g, nosave
MOVD g, R4
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already. Or we might already
// be on the m->gsignal stack.
MOVD g_m(g), R8
MOVD m_gsignal(R8), R3
CMP R3, g
BEQ nosave
MOVD m_g0(R8), R3
CMP R3, g
BEQ nosave
// Switch to system stack.
MOVD R0, R9 // gosave_systemstack_switch<> and save_g might clobber R0
BL gosave_systemstack_switch<>(SB)
MOVD R3, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD (g_sched+gobuf_bp)(g), R29
MOVD R9, R0
// Now on a scheduling stack (a pthread-created stack).
// Save room for two of our pointers /*, plus 32 bytes of callee
// save area that lives on the caller stack. */
MOVD RSP, R13
SUB $16, R13
MOVD R13, RSP
MOVD R4, 0(RSP) // save old g on stack
MOVD (g_stack+stack_hi)(R4), R4
SUB R2, R4
MOVD R4, 8(RSP) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
BL (R1)
MOVD R0, R9
// Restore g, stack pointer. R0 is errno, so don't touch it
MOVD 0(RSP), g
BL runtime·save_g(SB)
MOVD (g_stack+stack_hi)(g), R5
MOVD 8(RSP), R6
SUB R6, R5
MOVD R9, R0
MOVD R5, RSP
MOVW R0, ret+16(FP)
RET
nosave:
// Running on a system stack, perhaps even without a g.
// Having no g can happen during thread creation or thread teardown
// (see needm/dropm on Solaris, for example).
// This code is like the above sequence but without saving/restoring g
// and without worrying about the stack moving out from under us
// (because we're on a system stack, not a goroutine stack).
// The above code could be used directly if already on a system stack,
// but then the only path through this code would be a rare case on Solaris.
// Using this code for all "already on system stack" calls exercises it more,
// which should help keep it correct.
MOVD RSP, R13
SUB $16, R13
MOVD R13, RSP
MOVD $0, R4
MOVD R4, 0(RSP) // Where above code stores g, in case someone looks during debugging.
MOVD R2, 8(RSP) // Save original stack pointer.
BL (R1)
// Restore stack pointer.
MOVD 8(RSP), R2
MOVD R2, RSP
MOVD R0, ret+16(FP)
RET
// cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
// See cgocall.go for more details.
TEXT ·cgocallback(SB),NOSPLIT,$24-24
NO_LOCAL_POINTERS
// Load g from thread-local storage.
BL runtime·load_g(SB)
// If g is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
CBZ g, needm
MOVD g_m(g), R8
MOVD R8, savedm-8(SP)
B havem
needm:
MOVD g, savedm-8(SP) // g is zero, so is m.
MOVD $runtime·needm(SB), R0
BL (R0)
// Set m->g0->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVD g_m(g), R8
MOVD m_g0(R8), R3
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(R3)
MOVD R29, (g_sched+gobuf_bp)(R3)
havem:
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP).
// Beware that the frame size is actually 32+16.
MOVD m_g0(R8), R3
MOVD (g_sched+gobuf_sp)(R3), R4
MOVD R4, savedsp-16(SP)
MOVD RSP, R0
MOVD R0, (g_sched+gobuf_sp)(R3)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the curg stack and
// open a frame the same size as cgocallback's g0 frame.
// Once we switch to the curg stack, the pushed PC will appear
// to be the return PC of cgocallback, so that the traceback
// will seamlessly trace back into the earlier calls.
MOVD m_curg(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
MOVD (g_sched+gobuf_pc)(g), R5
MOVD R5, -48(R4)
MOVD (g_sched+gobuf_bp)(g), R5
MOVD R5, -56(R4)
// Gather our arguments into registers.
MOVD fn+0(FP), R1
MOVD frame+8(FP), R2
MOVD ctxt+16(FP), R3
MOVD $-48(R4), R0 // maintain 16-byte SP alignment
MOVD R0, RSP // switch stack
MOVD R1, 8(RSP)
MOVD R2, 16(RSP)
MOVD R3, 24(RSP)
MOVD $runtime·cgocallbackg(SB), R0
CALL (R0) // indirect call to bypass nosplit check. We're on a different stack now.
// Restore g->sched (== m->curg->sched) from saved values.
MOVD 0(RSP), R5
MOVD R5, (g_sched+gobuf_pc)(g)
MOVD RSP, R4
ADD $48, R4, R4
MOVD R4, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R0
MOVD R0, RSP
MOVD savedsp-16(SP), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
MOVD savedm-8(SP), R6
CBNZ R6, droppedm
MOVD $runtime·dropm(SB), R0
BL (R0)
droppedm:
// Done!
RET
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$24
// g (R28) and REGTMP (R27) might be clobbered by load_g. They
// are callee-save in the gcc calling convention, so save them.
MOVD R27, savedR27-8(SP)
MOVD g, saveG-16(SP)
BL runtime·load_g(SB)
MOVD g_m(g), R0
MOVD m_curg(R0), R0
MOVD (g_stack+stack_hi)(R0), R0
MOVD saveG-16(SP), g
MOVD savedR28-8(SP), R27
RET
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
MOVD gg+0(FP), g
// This only happens if iscgo, so jump straight to save_g
BL runtime·save_g(SB)
RET
// void setg_gcc(G*); set g called from gcc
TEXT setg_gcc<>(SB),NOSPLIT,$8
MOVD R0, g
MOVD R27, savedR27-8(SP)
BL runtime·save_g(SB)
MOVD savedR27-8(SP), R27
RET
TEXT runtime·emptyfunc(SB),0,$0-0
RET
TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
MOVD ZR, R0
MOVD (R0), R0
UNDEF
TEXT runtime·return0(SB), NOSPLIT, $0
MOVW $0, R0
RET
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
MOVD R0, R0 // NOP
BL runtime·goexit1(SB) // does not return
// This is called from .init_array and follows the platform, not Go, ABI.
TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
SUB $0x10, RSP
MOVD R27, 8(RSP) // The access to global variables below implicitly uses R27, which is callee-save
MOVD runtime·lastmoduledatap(SB), R1
MOVD R0, moduledata_next(R1)
MOVD R0, runtime·lastmoduledatap(SB)
MOVD 8(RSP), R27
ADD $0x10, RSP
RET
TEXT ·checkASM(SB),NOSPLIT,$0-1
MOVW $1, R3
MOVB R3, ret+0(FP)
RET
// gcWriteBarrier performs a heap pointer write and informs the GC.
//
// gcWriteBarrier does NOT follow the Go ABI. It takes two arguments:
// - R2 is the destination of the write
// - R3 is the value being written at R2
// It clobbers condition codes.
// It does not clobber any general-purpose registers,
// but may clobber others (e.g., floating point registers)
// The act of CALLing gcWriteBarrier will clobber R30 (LR).
//
// Defined as ABIInternal since the compiler generates ABIInternal
// calls to it directly and it does not use the stack-based Go ABI.
TEXT runtime·gcWriteBarrier<ABIInternal>(SB),NOSPLIT,$200
// Save the registers clobbered by the fast path.
STP (R0, R1), 184(RSP)
MOVD g_m(g), R0
MOVD m_p(R0), R0
MOVD (p_wbBuf+wbBuf_next)(R0), R1
// Increment wbBuf.next position.
ADD $16, R1
MOVD R1, (p_wbBuf+wbBuf_next)(R0)
MOVD (p_wbBuf+wbBuf_end)(R0), R0
CMP R1, R0
// Record the write.
MOVD R3, -16(R1) // Record value
MOVD (R2), R0 // TODO: This turns bad writes into bad reads.
MOVD R0, -8(R1) // Record *slot
// Is the buffer full? (flags set in CMP above)
BEQ flush
ret:
LDP 184(RSP), (R0, R1)
// Do the write.
MOVD R3, (R2)
RET
flush:
// Save all general purpose registers since these could be
// clobbered by wbBufFlush and were not saved by the caller.
// R0 and R1 already saved
STP (R2, R3), 1*8(RSP) // Also first and second arguments to wbBufFlush
STP (R4, R5), 3*8(RSP)
STP (R6, R7), 5*8(RSP)
STP (R8, R9), 7*8(RSP)
STP (R10, R11), 9*8(RSP)
STP (R12, R13), 11*8(RSP)
STP (R14, R15), 13*8(RSP)
// R16, R17 may be clobbered by linker trampoline
// R18 is unused.
STP (R19, R20), 15*8(RSP)
STP (R21, R22), 17*8(RSP)
STP (R23, R24), 19*8(RSP)
STP (R25, R26), 21*8(RSP)
// R27 is temp register.
// R28 is g.
// R29 is frame pointer (unused).
// R30 is LR, which was saved by the prologue.
// R31 is SP.
// This takes arguments R2 and R3.
CALL runtime·wbBufFlush(SB)
LDP 1*8(RSP), (R2, R3)
LDP 3*8(RSP), (R4, R5)
LDP 5*8(RSP), (R6, R7)
LDP 7*8(RSP), (R8, R9)
LDP 9*8(RSP), (R10, R11)
LDP 11*8(RSP), (R12, R13)
LDP 13*8(RSP), (R14, R15)
LDP 15*8(RSP), (R19, R20)
LDP 17*8(RSP), (R21, R22)
LDP 19*8(RSP), (R23, R24)
LDP 21*8(RSP), (R25, R26)
JMP ret
DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below
// debugCallV2 is the entry point for debugger-injected function
// calls on running goroutines. It informs the runtime that a
// debug call has been injected and creates a call frame for the
// debugger to fill in.
//
// To inject a function call, a debugger should:
// 1. Check that the goroutine is in state _Grunning and that
// there are at least 288 bytes free on the stack.
// 2. Set SP as SP-16.
// 3. Store the current LR in (SP) (using the SP after step 2).
// 4. Store the current PC in the LR register.
// 5. Write the desired argument frame size at SP-16
// 6. Save all machine registers (including flags and fpsimd registers)
// so they can be restored later by the debugger.
// 7. Set the PC to debugCallV2 and resume execution.
//
// If the goroutine is in state _Grunnable, then it's not generally
// safe to inject a call because it may return out via other runtime
// operations. Instead, the debugger should unwind the stack to find
// the return to non-runtime code, add a temporary breakpoint there,
// and inject the call once that breakpoint is hit.
//
// If the goroutine is in any other state, it's not safe to inject a call.
//
// This function communicates back to the debugger by setting R20 and
// invoking BRK to raise a breakpoint signal. Note that the signal PC of
// the signal triggered by the BRK instruction is the PC where the signal
// is trapped, not the next PC, so to resume execution, the debugger needs
// to set the signal PC to PC+4. See the comments in the implementation for
// the protocol the debugger is expected to follow. InjectDebugCall in the
// runtime tests demonstrates this protocol.
//
// The debugger must ensure that any pointers passed to the function
// obey escape analysis requirements. Specifically, it must not pass
// a stack pointer to an escaping argument. debugCallV2 cannot check
// this invariant.
//
// This is ABIInternal because Go code injects its PC directly into new
// goroutine stacks.
TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-0
STP (R29, R30), -280(RSP)
SUB $272, RSP, RSP
SUB $8, RSP, R29
// Save all registers that may contain pointers so they can be
// conservatively scanned.
//
// We can't do anything that might clobber any of these
// registers before this.
STP (R27, g), (30*8)(RSP)
STP (R25, R26), (28*8)(RSP)
STP (R23, R24), (26*8)(RSP)
STP (R21, R22), (24*8)(RSP)
STP (R19, R20), (22*8)(RSP)
STP (R16, R17), (20*8)(RSP)
STP (R14, R15), (18*8)(RSP)
STP (R12, R13), (16*8)(RSP)
STP (R10, R11), (14*8)(RSP)
STP (R8, R9), (12*8)(RSP)
STP (R6, R7), (10*8)(RSP)
STP (R4, R5), (8*8)(RSP)
STP (R2, R3), (6*8)(RSP)
STP (R0, R1), (4*8)(RSP)
// Perform a safe-point check.
MOVD R30, 8(RSP) // Caller's PC
CALL runtime·debugCallCheck(SB)
MOVD 16(RSP), R0
CBZ R0, good
// The safety check failed. Put the reason string at the top
// of the stack.
MOVD R0, 8(RSP)
MOVD 24(RSP), R0
MOVD R0, 16(RSP)
// Set R20 to 8 and invoke BRK. The debugger should get the
// reason a call can't be injected from SP+8 and resume execution.
MOVD $8, R20
BRK
JMP restore
good:
// Registers are saved and it's safe to make a call.
// Open up a call frame, moving the stack if necessary.
//
// Once the frame is allocated, this will set R20 to 0 and
// invoke BRK. The debugger should write the argument
// frame for the call at SP+8, set up argument registers,
// set the LR as the signal PC + 4, set the PC to the function
// to call, set R26 to point to the closure (if a closure call),
// and resume execution.
//
// If the function returns, this will set R20 to 1 and invoke
// BRK. The debugger can then inspect any return value saved
// on the stack at SP+8 and in registers. To resume execution,
// the debugger should restore the LR from (SP).
//
// If the function panics, this will set R20 to 2 and invoke BRK.
// The interface{} value of the panic will be at SP+8. The debugger
// can inspect the panic value and resume execution again.
#define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \
CMP $MAXSIZE, R0; \
BGT 5(PC); \
MOVD $NAME(SB), R0; \
MOVD R0, 8(RSP); \
CALL runtime·debugCallWrap(SB); \
JMP restore
MOVD 256(RSP), R0 // the argument frame size
DEBUG_CALL_DISPATCH(debugCall32<>, 32)
DEBUG_CALL_DISPATCH(debugCall64<>, 64)
DEBUG_CALL_DISPATCH(debugCall128<>, 128)
DEBUG_CALL_DISPATCH(debugCall256<>, 256)
DEBUG_CALL_DISPATCH(debugCall512<>, 512)
DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
// The frame size is too large. Report the error.
MOVD $debugCallFrameTooLarge<>(SB), R0
MOVD R0, 8(RSP)
MOVD $20, R0
MOVD R0, 16(RSP) // length of debugCallFrameTooLarge string
MOVD $8, R20
BRK
JMP restore
restore:
// Calls and failures resume here.
//
// Set R20 to 16 and invoke BRK. The debugger should restore
// all registers except for PC and RSP and resume execution.
MOVD $16, R20
BRK
// We must not modify flags after this point.
// Restore pointer-containing registers, which may have been
// modified from the debugger's copy by stack copying.
LDP (30*8)(RSP), (R27, g)
LDP (28*8)(RSP), (R25, R26)
LDP (26*8)(RSP), (R23, R24)
LDP (24*8)(RSP), (R21, R22)
LDP (22*8)(RSP), (R19, R20)
LDP (20*8)(RSP), (R16, R17)
LDP (18*8)(RSP), (R14, R15)
LDP (16*8)(RSP), (R12, R13)
LDP (14*8)(RSP), (R10, R11)
LDP (12*8)(RSP), (R8, R9)
LDP (10*8)(RSP), (R6, R7)
LDP (8*8)(RSP), (R4, R5)
LDP (6*8)(RSP), (R2, R3)
LDP (4*8)(RSP), (R0, R1)
LDP -8(RSP), (R29, R27)
ADD $288, RSP, RSP // Add 16 more bytes, see saveSigContext
MOVD -16(RSP), R30 // restore old lr
JMP (R27)
// runtime.debugCallCheck assumes that functions defined with the
// DEBUG_CALL_FN macro are safe points to inject calls.
#define DEBUG_CALL_FN(NAME,MAXSIZE) \
TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \
NO_LOCAL_POINTERS; \
MOVD $0, R20; \
BRK; \
MOVD $1, R20; \
BRK; \
RET
DEBUG_CALL_FN(debugCall32<>, 32)
DEBUG_CALL_FN(debugCall64<>, 64)
DEBUG_CALL_FN(debugCall128<>, 128)
DEBUG_CALL_FN(debugCall256<>, 256)
DEBUG_CALL_FN(debugCall512<>, 512)
DEBUG_CALL_FN(debugCall1024<>, 1024)
DEBUG_CALL_FN(debugCall2048<>, 2048)
DEBUG_CALL_FN(debugCall4096<>, 4096)
DEBUG_CALL_FN(debugCall8192<>, 8192)
DEBUG_CALL_FN(debugCall16384<>, 16384)
DEBUG_CALL_FN(debugCall32768<>, 32768)
DEBUG_CALL_FN(debugCall65536<>, 65536)
// func debugCallPanicked(val interface{})
TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
// Copy the panic value to the top of stack at SP+8.
MOVD val_type+0(FP), R0
MOVD R0, 8(RSP)
MOVD val_data+8(FP), R0
MOVD R0, 16(RSP)
MOVD $2, R20
BRK
RET
// Note: these functions use a special calling convention to save generated code space.
// Arguments are passed in registers, but the space for those arguments are allocated
// in the caller's stack frame. These stubs write the args into that stack space and
// then tail call to the corresponding runtime handler.
// The tail call makes these stubs disappear in backtraces.
//
// Defined as ABIInternal since the compiler generates ABIInternal
// calls to it directly and it does not use the stack-based Go ABI.
TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicIndex<ABIInternal>(SB)
TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicIndexU<ABIInternal>(SB)
TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R1, R0
MOVD R2, R1
JMP runtime·goPanicSliceAlen<ABIInternal>(SB)
TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R1, R0
MOVD R2, R1
JMP runtime·goPanicSliceAlenU<ABIInternal>(SB)
TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R1, R0
MOVD R2, R1
JMP runtime·goPanicSliceAcap<ABIInternal>(SB)
TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R1, R0
MOVD R2, R1
JMP runtime·goPanicSliceAcapU<ABIInternal>(SB)
TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicSliceB<ABIInternal>(SB)
TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicSliceBU<ABIInternal>(SB)
TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R2, R0
MOVD R3, R1
JMP runtime·goPanicSlice3Alen<ABIInternal>(SB)
TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R2, R0
MOVD R3, R1
JMP runtime·goPanicSlice3AlenU<ABIInternal>(SB)
TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R2, R0
MOVD R3, R1
JMP runtime·goPanicSlice3Acap<ABIInternal>(SB)
TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R2, R0
MOVD R3, R1
JMP runtime·goPanicSlice3AcapU<ABIInternal>(SB)
TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R1, R0
MOVD R2, R1
JMP runtime·goPanicSlice3B<ABIInternal>(SB)
TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R1, R0
MOVD R2, R1
JMP runtime·goPanicSlice3BU<ABIInternal>(SB)
TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicSlice3C<ABIInternal>(SB)
TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
JMP runtime·goPanicSlice3CU<ABIInternal>(SB)
TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
MOVD R2, R0
MOVD R3, R1
JMP runtime·goPanicSliceConvert<ABIInternal>(SB)