| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Malloc profiling. |
| // Patterned after tcmalloc's algorithms; shorter code. |
| |
| package runtime |
| |
| import ( |
| "internal/abi" |
| "runtime/internal/atomic" |
| "unsafe" |
| ) |
| |
| // NOTE(rsc): Everything here could use cas if contention became an issue. |
| var proflock mutex |
| |
| // All memory allocations are local and do not escape outside of the profiler. |
| // The profiler is forbidden from referring to garbage-collected memory. |
| |
| const ( |
| // profile types |
| memProfile bucketType = 1 + iota |
| blockProfile |
| mutexProfile |
| |
| // size of bucket hash table |
| buckHashSize = 179999 |
| |
| // max depth of stack to record in bucket |
| maxStack = 32 |
| ) |
| |
| type bucketType int |
| |
| // A bucket holds per-call-stack profiling information. |
| // The representation is a bit sleazy, inherited from C. |
| // This struct defines the bucket header. It is followed in |
| // memory by the stack words and then the actual record |
| // data, either a memRecord or a blockRecord. |
| // |
| // Per-call-stack profiling information. |
| // Lookup by hashing call stack into a linked-list hash table. |
| // |
| // No heap pointers. |
| // |
| //go:notinheap |
| type bucket struct { |
| next *bucket |
| allnext *bucket |
| typ bucketType // memBucket or blockBucket (includes mutexProfile) |
| hash uintptr |
| size uintptr |
| nstk uintptr |
| } |
| |
| // A memRecord is the bucket data for a bucket of type memProfile, |
| // part of the memory profile. |
| type memRecord struct { |
| // The following complex 3-stage scheme of stats accumulation |
| // is required to obtain a consistent picture of mallocs and frees |
| // for some point in time. |
| // The problem is that mallocs come in real time, while frees |
| // come only after a GC during concurrent sweeping. So if we would |
| // naively count them, we would get a skew toward mallocs. |
| // |
| // Hence, we delay information to get consistent snapshots as |
| // of mark termination. Allocations count toward the next mark |
| // termination's snapshot, while sweep frees count toward the |
| // previous mark termination's snapshot: |
| // |
| // MT MT MT MT |
| // .·| .·| .·| .·| |
| // .·˙ | .·˙ | .·˙ | .·˙ | |
| // .·˙ | .·˙ | .·˙ | .·˙ | |
| // .·˙ |.·˙ |.·˙ |.·˙ | |
| // |
| // alloc → ▲ ← free |
| // ┠┅┅┅┅┅┅┅┅┅┅┅P |
| // C+2 → C+1 → C |
| // |
| // alloc → ▲ ← free |
| // ┠┅┅┅┅┅┅┅┅┅┅┅P |
| // C+2 → C+1 → C |
| // |
| // Since we can't publish a consistent snapshot until all of |
| // the sweep frees are accounted for, we wait until the next |
| // mark termination ("MT" above) to publish the previous mark |
| // termination's snapshot ("P" above). To do this, allocation |
| // and free events are accounted to *future* heap profile |
| // cycles ("C+n" above) and we only publish a cycle once all |
| // of the events from that cycle must be done. Specifically: |
| // |
| // Mallocs are accounted to cycle C+2. |
| // Explicit frees are accounted to cycle C+2. |
| // GC frees (done during sweeping) are accounted to cycle C+1. |
| // |
| // After mark termination, we increment the global heap |
| // profile cycle counter and accumulate the stats from cycle C |
| // into the active profile. |
| |
| // active is the currently published profile. A profiling |
| // cycle can be accumulated into active once its complete. |
| active memRecordCycle |
| |
| // future records the profile events we're counting for cycles |
| // that have not yet been published. This is ring buffer |
| // indexed by the global heap profile cycle C and stores |
| // cycles C, C+1, and C+2. Unlike active, these counts are |
| // only for a single cycle; they are not cumulative across |
| // cycles. |
| // |
| // We store cycle C here because there's a window between when |
| // C becomes the active cycle and when we've flushed it to |
| // active. |
| future [3]memRecordCycle |
| } |
| |
| // memRecordCycle |
| type memRecordCycle struct { |
| allocs, frees uintptr |
| alloc_bytes, free_bytes uintptr |
| } |
| |
| // add accumulates b into a. It does not zero b. |
| func (a *memRecordCycle) add(b *memRecordCycle) { |
| a.allocs += b.allocs |
| a.frees += b.frees |
| a.alloc_bytes += b.alloc_bytes |
| a.free_bytes += b.free_bytes |
| } |
| |
| // A blockRecord is the bucket data for a bucket of type blockProfile, |
| // which is used in blocking and mutex profiles. |
| type blockRecord struct { |
| count float64 |
| cycles int64 |
| } |
| |
| var ( |
| mbuckets *bucket // memory profile buckets |
| bbuckets *bucket // blocking profile buckets |
| xbuckets *bucket // mutex profile buckets |
| buckhash *[buckHashSize]*bucket |
| bucketmem uintptr |
| |
| mProf struct { |
| // All fields in mProf are protected by proflock. |
| |
| // cycle is the global heap profile cycle. This wraps |
| // at mProfCycleWrap. |
| cycle uint32 |
| // flushed indicates that future[cycle] in all buckets |
| // has been flushed to the active profile. |
| flushed bool |
| } |
| ) |
| |
| const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24) |
| |
| // newBucket allocates a bucket with the given type and number of stack entries. |
| func newBucket(typ bucketType, nstk int) *bucket { |
| size := unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(uintptr(0)) |
| switch typ { |
| default: |
| throw("invalid profile bucket type") |
| case memProfile: |
| size += unsafe.Sizeof(memRecord{}) |
| case blockProfile, mutexProfile: |
| size += unsafe.Sizeof(blockRecord{}) |
| } |
| |
| b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys)) |
| bucketmem += size |
| b.typ = typ |
| b.nstk = uintptr(nstk) |
| return b |
| } |
| |
| // stk returns the slice in b holding the stack. |
| func (b *bucket) stk() []uintptr { |
| stk := (*[maxStack]uintptr)(add(unsafe.Pointer(b), unsafe.Sizeof(*b))) |
| return stk[:b.nstk:b.nstk] |
| } |
| |
| // mp returns the memRecord associated with the memProfile bucket b. |
| func (b *bucket) mp() *memRecord { |
| if b.typ != memProfile { |
| throw("bad use of bucket.mp") |
| } |
| data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0))) |
| return (*memRecord)(data) |
| } |
| |
| // bp returns the blockRecord associated with the blockProfile bucket b. |
| func (b *bucket) bp() *blockRecord { |
| if b.typ != blockProfile && b.typ != mutexProfile { |
| throw("bad use of bucket.bp") |
| } |
| data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0))) |
| return (*blockRecord)(data) |
| } |
| |
| // Return the bucket for stk[0:nstk], allocating new bucket if needed. |
| func stkbucket(typ bucketType, size uintptr, stk []uintptr, alloc bool) *bucket { |
| if buckhash == nil { |
| buckhash = (*[buckHashSize]*bucket)(sysAlloc(unsafe.Sizeof(*buckhash), &memstats.buckhash_sys)) |
| if buckhash == nil { |
| throw("runtime: cannot allocate memory") |
| } |
| } |
| |
| // Hash stack. |
| var h uintptr |
| for _, pc := range stk { |
| h += pc |
| h += h << 10 |
| h ^= h >> 6 |
| } |
| // hash in size |
| h += size |
| h += h << 10 |
| h ^= h >> 6 |
| // finalize |
| h += h << 3 |
| h ^= h >> 11 |
| |
| i := int(h % buckHashSize) |
| for b := buckhash[i]; b != nil; b = b.next { |
| if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) { |
| return b |
| } |
| } |
| |
| if !alloc { |
| return nil |
| } |
| |
| // Create new bucket. |
| b := newBucket(typ, len(stk)) |
| copy(b.stk(), stk) |
| b.hash = h |
| b.size = size |
| b.next = buckhash[i] |
| buckhash[i] = b |
| if typ == memProfile { |
| b.allnext = mbuckets |
| mbuckets = b |
| } else if typ == mutexProfile { |
| b.allnext = xbuckets |
| xbuckets = b |
| } else { |
| b.allnext = bbuckets |
| bbuckets = b |
| } |
| return b |
| } |
| |
| func eqslice(x, y []uintptr) bool { |
| if len(x) != len(y) { |
| return false |
| } |
| for i, xi := range x { |
| if xi != y[i] { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // mProf_NextCycle publishes the next heap profile cycle and creates a |
| // fresh heap profile cycle. This operation is fast and can be done |
| // during STW. The caller must call mProf_Flush before calling |
| // mProf_NextCycle again. |
| // |
| // This is called by mark termination during STW so allocations and |
| // frees after the world is started again count towards a new heap |
| // profiling cycle. |
| func mProf_NextCycle() { |
| lock(&proflock) |
| // We explicitly wrap mProf.cycle rather than depending on |
| // uint wraparound because the memRecord.future ring does not |
| // itself wrap at a power of two. |
| mProf.cycle = (mProf.cycle + 1) % mProfCycleWrap |
| mProf.flushed = false |
| unlock(&proflock) |
| } |
| |
| // mProf_Flush flushes the events from the current heap profiling |
| // cycle into the active profile. After this it is safe to start a new |
| // heap profiling cycle with mProf_NextCycle. |
| // |
| // This is called by GC after mark termination starts the world. In |
| // contrast with mProf_NextCycle, this is somewhat expensive, but safe |
| // to do concurrently. |
| func mProf_Flush() { |
| lock(&proflock) |
| if !mProf.flushed { |
| mProf_FlushLocked() |
| mProf.flushed = true |
| } |
| unlock(&proflock) |
| } |
| |
| func mProf_FlushLocked() { |
| c := mProf.cycle |
| for b := mbuckets; b != nil; b = b.allnext { |
| mp := b.mp() |
| |
| // Flush cycle C into the published profile and clear |
| // it for reuse. |
| mpc := &mp.future[c%uint32(len(mp.future))] |
| mp.active.add(mpc) |
| *mpc = memRecordCycle{} |
| } |
| } |
| |
| // mProf_PostSweep records that all sweep frees for this GC cycle have |
| // completed. This has the effect of publishing the heap profile |
| // snapshot as of the last mark termination without advancing the heap |
| // profile cycle. |
| func mProf_PostSweep() { |
| lock(&proflock) |
| // Flush cycle C+1 to the active profile so everything as of |
| // the last mark termination becomes visible. *Don't* advance |
| // the cycle, since we're still accumulating allocs in cycle |
| // C+2, which have to become C+1 in the next mark termination |
| // and so on. |
| c := mProf.cycle |
| for b := mbuckets; b != nil; b = b.allnext { |
| mp := b.mp() |
| mpc := &mp.future[(c+1)%uint32(len(mp.future))] |
| mp.active.add(mpc) |
| *mpc = memRecordCycle{} |
| } |
| unlock(&proflock) |
| } |
| |
| // Called by malloc to record a profiled block. |
| func mProf_Malloc(p unsafe.Pointer, size uintptr) { |
| var stk [maxStack]uintptr |
| nstk := callers(4, stk[:]) |
| lock(&proflock) |
| b := stkbucket(memProfile, size, stk[:nstk], true) |
| c := mProf.cycle |
| mp := b.mp() |
| mpc := &mp.future[(c+2)%uint32(len(mp.future))] |
| mpc.allocs++ |
| mpc.alloc_bytes += size |
| unlock(&proflock) |
| |
| // Setprofilebucket locks a bunch of other mutexes, so we call it outside of proflock. |
| // This reduces potential contention and chances of deadlocks. |
| // Since the object must be alive during call to mProf_Malloc, |
| // it's fine to do this non-atomically. |
| systemstack(func() { |
| setprofilebucket(p, b) |
| }) |
| } |
| |
| // Called when freeing a profiled block. |
| func mProf_Free(b *bucket, size uintptr) { |
| lock(&proflock) |
| c := mProf.cycle |
| mp := b.mp() |
| mpc := &mp.future[(c+1)%uint32(len(mp.future))] |
| mpc.frees++ |
| mpc.free_bytes += size |
| unlock(&proflock) |
| } |
| |
| var blockprofilerate uint64 // in CPU ticks |
| |
| // SetBlockProfileRate controls the fraction of goroutine blocking events |
| // that are reported in the blocking profile. The profiler aims to sample |
| // an average of one blocking event per rate nanoseconds spent blocked. |
| // |
| // To include every blocking event in the profile, pass rate = 1. |
| // To turn off profiling entirely, pass rate <= 0. |
| func SetBlockProfileRate(rate int) { |
| var r int64 |
| if rate <= 0 { |
| r = 0 // disable profiling |
| } else if rate == 1 { |
| r = 1 // profile everything |
| } else { |
| // convert ns to cycles, use float64 to prevent overflow during multiplication |
| r = int64(float64(rate) * float64(tickspersecond()) / (1000 * 1000 * 1000)) |
| if r == 0 { |
| r = 1 |
| } |
| } |
| |
| atomic.Store64(&blockprofilerate, uint64(r)) |
| } |
| |
| func blockevent(cycles int64, skip int) { |
| if cycles <= 0 { |
| cycles = 1 |
| } |
| |
| rate := int64(atomic.Load64(&blockprofilerate)) |
| if blocksampled(cycles, rate) { |
| saveblockevent(cycles, rate, skip+1, blockProfile) |
| } |
| } |
| |
| // blocksampled returns true for all events where cycles >= rate. Shorter |
| // events have a cycles/rate random chance of returning true. |
| func blocksampled(cycles, rate int64) bool { |
| if rate <= 0 || (rate > cycles && int64(fastrand())%rate > cycles) { |
| return false |
| } |
| return true |
| } |
| |
| func saveblockevent(cycles, rate int64, skip int, which bucketType) { |
| gp := getg() |
| var nstk int |
| var stk [maxStack]uintptr |
| if gp.m.curg == nil || gp.m.curg == gp { |
| nstk = callers(skip, stk[:]) |
| } else { |
| nstk = gcallers(gp.m.curg, skip, stk[:]) |
| } |
| lock(&proflock) |
| b := stkbucket(which, 0, stk[:nstk], true) |
| |
| if which == blockProfile && cycles < rate { |
| // Remove sampling bias, see discussion on http://golang.org/cl/299991. |
| b.bp().count += float64(rate) / float64(cycles) |
| b.bp().cycles += rate |
| } else { |
| b.bp().count++ |
| b.bp().cycles += cycles |
| } |
| unlock(&proflock) |
| } |
| |
| var mutexprofilerate uint64 // fraction sampled |
| |
| // SetMutexProfileFraction controls the fraction of mutex contention events |
| // that are reported in the mutex profile. On average 1/rate events are |
| // reported. The previous rate is returned. |
| // |
| // To turn off profiling entirely, pass rate 0. |
| // To just read the current rate, pass rate < 0. |
| // (For n>1 the details of sampling may change.) |
| func SetMutexProfileFraction(rate int) int { |
| if rate < 0 { |
| return int(mutexprofilerate) |
| } |
| old := mutexprofilerate |
| atomic.Store64(&mutexprofilerate, uint64(rate)) |
| return int(old) |
| } |
| |
| //go:linkname mutexevent sync.event |
| func mutexevent(cycles int64, skip int) { |
| if cycles < 0 { |
| cycles = 0 |
| } |
| rate := int64(atomic.Load64(&mutexprofilerate)) |
| // TODO(pjw): measure impact of always calling fastrand vs using something |
| // like malloc.go:nextSample() |
| if rate > 0 && int64(fastrand())%rate == 0 { |
| saveblockevent(cycles, rate, skip+1, mutexProfile) |
| } |
| } |
| |
| // Go interface to profile data. |
| |
| // A StackRecord describes a single execution stack. |
| type StackRecord struct { |
| Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry |
| } |
| |
| // Stack returns the stack trace associated with the record, |
| // a prefix of r.Stack0. |
| func (r *StackRecord) Stack() []uintptr { |
| for i, v := range r.Stack0 { |
| if v == 0 { |
| return r.Stack0[0:i] |
| } |
| } |
| return r.Stack0[0:] |
| } |
| |
| // MemProfileRate controls the fraction of memory allocations |
| // that are recorded and reported in the memory profile. |
| // The profiler aims to sample an average of |
| // one allocation per MemProfileRate bytes allocated. |
| // |
| // To include every allocated block in the profile, set MemProfileRate to 1. |
| // To turn off profiling entirely, set MemProfileRate to 0. |
| // |
| // The tools that process the memory profiles assume that the |
| // profile rate is constant across the lifetime of the program |
| // and equal to the current value. Programs that change the |
| // memory profiling rate should do so just once, as early as |
| // possible in the execution of the program (for example, |
| // at the beginning of main). |
| var MemProfileRate int = defaultMemProfileRate(512 * 1024) |
| |
| // defaultMemProfileRate returns 0 if disableMemoryProfiling is set. |
| // It exists primarily for the godoc rendering of MemProfileRate |
| // above. |
| func defaultMemProfileRate(v int) int { |
| if disableMemoryProfiling { |
| return 0 |
| } |
| return v |
| } |
| |
| // disableMemoryProfiling is set by the linker if runtime.MemProfile |
| // is not used and the link type guarantees nobody else could use it |
| // elsewhere. |
| var disableMemoryProfiling bool |
| |
| // A MemProfileRecord describes the live objects allocated |
| // by a particular call sequence (stack trace). |
| type MemProfileRecord struct { |
| AllocBytes, FreeBytes int64 // number of bytes allocated, freed |
| AllocObjects, FreeObjects int64 // number of objects allocated, freed |
| Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry |
| } |
| |
| // InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes). |
| func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes } |
| |
| // InUseObjects returns the number of objects in use (AllocObjects - FreeObjects). |
| func (r *MemProfileRecord) InUseObjects() int64 { |
| return r.AllocObjects - r.FreeObjects |
| } |
| |
| // Stack returns the stack trace associated with the record, |
| // a prefix of r.Stack0. |
| func (r *MemProfileRecord) Stack() []uintptr { |
| for i, v := range r.Stack0 { |
| if v == 0 { |
| return r.Stack0[0:i] |
| } |
| } |
| return r.Stack0[0:] |
| } |
| |
| // MemProfile returns a profile of memory allocated and freed per allocation |
| // site. |
| // |
| // MemProfile returns n, the number of records in the current memory profile. |
| // If len(p) >= n, MemProfile copies the profile into p and returns n, true. |
| // If len(p) < n, MemProfile does not change p and returns n, false. |
| // |
| // If inuseZero is true, the profile includes allocation records |
| // where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes. |
| // These are sites where memory was allocated, but it has all |
| // been released back to the runtime. |
| // |
| // The returned profile may be up to two garbage collection cycles old. |
| // This is to avoid skewing the profile toward allocations; because |
| // allocations happen in real time but frees are delayed until the garbage |
| // collector performs sweeping, the profile only accounts for allocations |
| // that have had a chance to be freed by the garbage collector. |
| // |
| // Most clients should use the runtime/pprof package or |
| // the testing package's -test.memprofile flag instead |
| // of calling MemProfile directly. |
| func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) { |
| lock(&proflock) |
| // If we're between mProf_NextCycle and mProf_Flush, take care |
| // of flushing to the active profile so we only have to look |
| // at the active profile below. |
| mProf_FlushLocked() |
| clear := true |
| for b := mbuckets; b != nil; b = b.allnext { |
| mp := b.mp() |
| if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes { |
| n++ |
| } |
| if mp.active.allocs != 0 || mp.active.frees != 0 { |
| clear = false |
| } |
| } |
| if clear { |
| // Absolutely no data, suggesting that a garbage collection |
| // has not yet happened. In order to allow profiling when |
| // garbage collection is disabled from the beginning of execution, |
| // accumulate all of the cycles, and recount buckets. |
| n = 0 |
| for b := mbuckets; b != nil; b = b.allnext { |
| mp := b.mp() |
| for c := range mp.future { |
| mp.active.add(&mp.future[c]) |
| mp.future[c] = memRecordCycle{} |
| } |
| if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes { |
| n++ |
| } |
| } |
| } |
| if n <= len(p) { |
| ok = true |
| idx := 0 |
| for b := mbuckets; b != nil; b = b.allnext { |
| mp := b.mp() |
| if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes { |
| record(&p[idx], b) |
| idx++ |
| } |
| } |
| } |
| unlock(&proflock) |
| return |
| } |
| |
| // Write b's data to r. |
| func record(r *MemProfileRecord, b *bucket) { |
| mp := b.mp() |
| r.AllocBytes = int64(mp.active.alloc_bytes) |
| r.FreeBytes = int64(mp.active.free_bytes) |
| r.AllocObjects = int64(mp.active.allocs) |
| r.FreeObjects = int64(mp.active.frees) |
| if raceenabled { |
| racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), abi.FuncPCABIInternal(MemProfile)) |
| } |
| if msanenabled { |
| msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0)) |
| } |
| copy(r.Stack0[:], b.stk()) |
| for i := int(b.nstk); i < len(r.Stack0); i++ { |
| r.Stack0[i] = 0 |
| } |
| } |
| |
| func iterate_memprof(fn func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) { |
| lock(&proflock) |
| for b := mbuckets; b != nil; b = b.allnext { |
| mp := b.mp() |
| fn(b, b.nstk, &b.stk()[0], b.size, mp.active.allocs, mp.active.frees) |
| } |
| unlock(&proflock) |
| } |
| |
| // BlockProfileRecord describes blocking events originated |
| // at a particular call sequence (stack trace). |
| type BlockProfileRecord struct { |
| Count int64 |
| Cycles int64 |
| StackRecord |
| } |
| |
| // BlockProfile returns n, the number of records in the current blocking profile. |
| // If len(p) >= n, BlockProfile copies the profile into p and returns n, true. |
| // If len(p) < n, BlockProfile does not change p and returns n, false. |
| // |
| // Most clients should use the runtime/pprof package or |
| // the testing package's -test.blockprofile flag instead |
| // of calling BlockProfile directly. |
| func BlockProfile(p []BlockProfileRecord) (n int, ok bool) { |
| lock(&proflock) |
| for b := bbuckets; b != nil; b = b.allnext { |
| n++ |
| } |
| if n <= len(p) { |
| ok = true |
| for b := bbuckets; b != nil; b = b.allnext { |
| bp := b.bp() |
| r := &p[0] |
| r.Count = int64(bp.count) |
| // Prevent callers from having to worry about division by zero errors. |
| // See discussion on http://golang.org/cl/299991. |
| if r.Count == 0 { |
| r.Count = 1 |
| } |
| r.Cycles = bp.cycles |
| if raceenabled { |
| racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), abi.FuncPCABIInternal(BlockProfile)) |
| } |
| if msanenabled { |
| msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0)) |
| } |
| i := copy(r.Stack0[:], b.stk()) |
| for ; i < len(r.Stack0); i++ { |
| r.Stack0[i] = 0 |
| } |
| p = p[1:] |
| } |
| } |
| unlock(&proflock) |
| return |
| } |
| |
| // MutexProfile returns n, the number of records in the current mutex profile. |
| // If len(p) >= n, MutexProfile copies the profile into p and returns n, true. |
| // Otherwise, MutexProfile does not change p, and returns n, false. |
| // |
| // Most clients should use the runtime/pprof package |
| // instead of calling MutexProfile directly. |
| func MutexProfile(p []BlockProfileRecord) (n int, ok bool) { |
| lock(&proflock) |
| for b := xbuckets; b != nil; b = b.allnext { |
| n++ |
| } |
| if n <= len(p) { |
| ok = true |
| for b := xbuckets; b != nil; b = b.allnext { |
| bp := b.bp() |
| r := &p[0] |
| r.Count = int64(bp.count) |
| r.Cycles = bp.cycles |
| i := copy(r.Stack0[:], b.stk()) |
| for ; i < len(r.Stack0); i++ { |
| r.Stack0[i] = 0 |
| } |
| p = p[1:] |
| } |
| } |
| unlock(&proflock) |
| return |
| } |
| |
| // ThreadCreateProfile returns n, the number of records in the thread creation profile. |
| // If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true. |
| // If len(p) < n, ThreadCreateProfile does not change p and returns n, false. |
| // |
| // Most clients should use the runtime/pprof package instead |
| // of calling ThreadCreateProfile directly. |
| func ThreadCreateProfile(p []StackRecord) (n int, ok bool) { |
| first := (*m)(atomic.Loadp(unsafe.Pointer(&allm))) |
| for mp := first; mp != nil; mp = mp.alllink { |
| n++ |
| } |
| if n <= len(p) { |
| ok = true |
| i := 0 |
| for mp := first; mp != nil; mp = mp.alllink { |
| p[i].Stack0 = mp.createstack |
| i++ |
| } |
| } |
| return |
| } |
| |
| //go:linkname runtime_goroutineProfileWithLabels runtime/pprof.runtime_goroutineProfileWithLabels |
| func runtime_goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) { |
| return goroutineProfileWithLabels(p, labels) |
| } |
| |
| // labels may be nil. If labels is non-nil, it must have the same length as p. |
| func goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) { |
| if labels != nil && len(labels) != len(p) { |
| labels = nil |
| } |
| gp := getg() |
| |
| isOK := func(gp1 *g) bool { |
| // Checking isSystemGoroutine here makes GoroutineProfile |
| // consistent with both NumGoroutine and Stack. |
| return gp1 != gp && readgstatus(gp1) != _Gdead && !isSystemGoroutine(gp1, false) |
| } |
| |
| stopTheWorld("profile") |
| |
| // World is stopped, no locking required. |
| n = 1 |
| forEachGRace(func(gp1 *g) { |
| if isOK(gp1) { |
| n++ |
| } |
| }) |
| |
| if n <= len(p) { |
| ok = true |
| r, lbl := p, labels |
| |
| // Save current goroutine. |
| sp := getcallersp() |
| pc := getcallerpc() |
| systemstack(func() { |
| saveg(pc, sp, gp, &r[0]) |
| }) |
| r = r[1:] |
| |
| // If we have a place to put our goroutine labelmap, insert it there. |
| if labels != nil { |
| lbl[0] = gp.labels |
| lbl = lbl[1:] |
| } |
| |
| // Save other goroutines. |
| forEachGRace(func(gp1 *g) { |
| if !isOK(gp1) { |
| return |
| } |
| |
| if len(r) == 0 { |
| // Should be impossible, but better to return a |
| // truncated profile than to crash the entire process. |
| return |
| } |
| saveg(^uintptr(0), ^uintptr(0), gp1, &r[0]) |
| if labels != nil { |
| lbl[0] = gp1.labels |
| lbl = lbl[1:] |
| } |
| r = r[1:] |
| }) |
| } |
| |
| startTheWorld() |
| return n, ok |
| } |
| |
| // GoroutineProfile returns n, the number of records in the active goroutine stack profile. |
| // If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true. |
| // If len(p) < n, GoroutineProfile does not change p and returns n, false. |
| // |
| // Most clients should use the runtime/pprof package instead |
| // of calling GoroutineProfile directly. |
| func GoroutineProfile(p []StackRecord) (n int, ok bool) { |
| |
| return goroutineProfileWithLabels(p, nil) |
| } |
| |
| func saveg(pc, sp uintptr, gp *g, r *StackRecord) { |
| n := gentraceback(pc, sp, 0, gp, 0, &r.Stack0[0], len(r.Stack0), nil, nil, 0) |
| if n < len(r.Stack0) { |
| r.Stack0[n] = 0 |
| } |
| } |
| |
| // Stack formats a stack trace of the calling goroutine into buf |
| // and returns the number of bytes written to buf. |
| // If all is true, Stack formats stack traces of all other goroutines |
| // into buf after the trace for the current goroutine. |
| func Stack(buf []byte, all bool) int { |
| if all { |
| stopTheWorld("stack trace") |
| } |
| |
| n := 0 |
| if len(buf) > 0 { |
| gp := getg() |
| sp := getcallersp() |
| pc := getcallerpc() |
| systemstack(func() { |
| g0 := getg() |
| // Force traceback=1 to override GOTRACEBACK setting, |
| // so that Stack's results are consistent. |
| // GOTRACEBACK is only about crash dumps. |
| g0.m.traceback = 1 |
| g0.writebuf = buf[0:0:len(buf)] |
| goroutineheader(gp) |
| traceback(pc, sp, 0, gp) |
| if all { |
| tracebackothers(gp) |
| } |
| g0.m.traceback = 0 |
| n = len(g0.writebuf) |
| g0.writebuf = nil |
| }) |
| } |
| |
| if all { |
| startTheWorld() |
| } |
| return n |
| } |
| |
| // Tracing of alloc/free/gc. |
| |
| var tracelock mutex |
| |
| func tracealloc(p unsafe.Pointer, size uintptr, typ *_type) { |
| lock(&tracelock) |
| gp := getg() |
| gp.m.traceback = 2 |
| if typ == nil { |
| print("tracealloc(", p, ", ", hex(size), ")\n") |
| } else { |
| print("tracealloc(", p, ", ", hex(size), ", ", typ.string(), ")\n") |
| } |
| if gp.m.curg == nil || gp == gp.m.curg { |
| goroutineheader(gp) |
| pc := getcallerpc() |
| sp := getcallersp() |
| systemstack(func() { |
| traceback(pc, sp, 0, gp) |
| }) |
| } else { |
| goroutineheader(gp.m.curg) |
| traceback(^uintptr(0), ^uintptr(0), 0, gp.m.curg) |
| } |
| print("\n") |
| gp.m.traceback = 0 |
| unlock(&tracelock) |
| } |
| |
| func tracefree(p unsafe.Pointer, size uintptr) { |
| lock(&tracelock) |
| gp := getg() |
| gp.m.traceback = 2 |
| print("tracefree(", p, ", ", hex(size), ")\n") |
| goroutineheader(gp) |
| pc := getcallerpc() |
| sp := getcallersp() |
| systemstack(func() { |
| traceback(pc, sp, 0, gp) |
| }) |
| print("\n") |
| gp.m.traceback = 0 |
| unlock(&tracelock) |
| } |
| |
| func tracegc() { |
| lock(&tracelock) |
| gp := getg() |
| gp.m.traceback = 2 |
| print("tracegc()\n") |
| // running on m->g0 stack; show all non-g0 goroutines |
| tracebackothers(gp) |
| print("end tracegc\n") |
| print("\n") |
| gp.m.traceback = 0 |
| unlock(&tracelock) |
| } |