| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| import ( |
| "runtime/internal/atomic" |
| "unsafe" |
| ) |
| |
| // Per-thread (in Go, per-P) cache for small objects. |
| // This includes a small object cache and local allocation stats. |
| // No locking needed because it is per-thread (per-P). |
| // |
| // mcaches are allocated from non-GC'd memory, so any heap pointers |
| // must be specially handled. |
| // |
| //go:notinheap |
| type mcache struct { |
| // The following members are accessed on every malloc, |
| // so they are grouped here for better caching. |
| nextSample uintptr // trigger heap sample after allocating this many bytes |
| scanAlloc uintptr // bytes of scannable heap allocated |
| |
| // Allocator cache for tiny objects w/o pointers. |
| // See "Tiny allocator" comment in malloc.go. |
| |
| // tiny points to the beginning of the current tiny block, or |
| // nil if there is no current tiny block. |
| // |
| // tiny is a heap pointer. Since mcache is in non-GC'd memory, |
| // we handle it by clearing it in releaseAll during mark |
| // termination. |
| // |
| // tinyAllocs is the number of tiny allocations performed |
| // by the P that owns this mcache. |
| tiny uintptr |
| tinyoffset uintptr |
| tinyAllocs uintptr |
| |
| // The rest is not accessed on every malloc. |
| |
| alloc [numSpanClasses]*mspan // spans to allocate from, indexed by spanClass |
| |
| stackcache [_NumStackOrders]stackfreelist |
| |
| // flushGen indicates the sweepgen during which this mcache |
| // was last flushed. If flushGen != mheap_.sweepgen, the spans |
| // in this mcache are stale and need to the flushed so they |
| // can be swept. This is done in acquirep. |
| flushGen uint32 |
| } |
| |
| // A gclink is a node in a linked list of blocks, like mlink, |
| // but it is opaque to the garbage collector. |
| // The GC does not trace the pointers during collection, |
| // and the compiler does not emit write barriers for assignments |
| // of gclinkptr values. Code should store references to gclinks |
| // as gclinkptr, not as *gclink. |
| type gclink struct { |
| next gclinkptr |
| } |
| |
| // A gclinkptr is a pointer to a gclink, but it is opaque |
| // to the garbage collector. |
| type gclinkptr uintptr |
| |
| // ptr returns the *gclink form of p. |
| // The result should be used for accessing fields, not stored |
| // in other data structures. |
| func (p gclinkptr) ptr() *gclink { |
| return (*gclink)(unsafe.Pointer(p)) |
| } |
| |
| type stackfreelist struct { |
| list gclinkptr // linked list of free stacks |
| size uintptr // total size of stacks in list |
| } |
| |
| // dummy mspan that contains no free objects. |
| var emptymspan mspan |
| |
| func allocmcache() *mcache { |
| var c *mcache |
| systemstack(func() { |
| lock(&mheap_.lock) |
| c = (*mcache)(mheap_.cachealloc.alloc()) |
| c.flushGen = mheap_.sweepgen |
| unlock(&mheap_.lock) |
| }) |
| for i := range c.alloc { |
| c.alloc[i] = &emptymspan |
| } |
| c.nextSample = nextSample() |
| return c |
| } |
| |
| // freemcache releases resources associated with this |
| // mcache and puts the object onto a free list. |
| // |
| // In some cases there is no way to simply release |
| // resources, such as statistics, so donate them to |
| // a different mcache (the recipient). |
| func freemcache(c *mcache) { |
| systemstack(func() { |
| c.releaseAll() |
| stackcache_clear(c) |
| |
| // NOTE(rsc,rlh): If gcworkbuffree comes back, we need to coordinate |
| // with the stealing of gcworkbufs during garbage collection to avoid |
| // a race where the workbuf is double-freed. |
| // gcworkbuffree(c.gcworkbuf) |
| |
| lock(&mheap_.lock) |
| mheap_.cachealloc.free(unsafe.Pointer(c)) |
| unlock(&mheap_.lock) |
| }) |
| } |
| |
| // getMCache is a convenience function which tries to obtain an mcache. |
| // |
| // Returns nil if we're not bootstrapping or we don't have a P. The caller's |
| // P must not change, so we must be in a non-preemptible state. |
| func getMCache(mp *m) *mcache { |
| // Grab the mcache, since that's where stats live. |
| pp := mp.p.ptr() |
| var c *mcache |
| if pp == nil { |
| // We will be called without a P while bootstrapping, |
| // in which case we use mcache0, which is set in mallocinit. |
| // mcache0 is cleared when bootstrapping is complete, |
| // by procresize. |
| c = mcache0 |
| } else { |
| c = pp.mcache |
| } |
| return c |
| } |
| |
| // refill acquires a new span of span class spc for c. This span will |
| // have at least one free object. The current span in c must be full. |
| // |
| // Must run in a non-preemptible context since otherwise the owner of |
| // c could change. |
| func (c *mcache) refill(spc spanClass) { |
| // Return the current cached span to the central lists. |
| s := c.alloc[spc] |
| |
| if uintptr(s.allocCount) != s.nelems { |
| throw("refill of span with free space remaining") |
| } |
| if s != &emptymspan { |
| // Mark this span as no longer cached. |
| if s.sweepgen != mheap_.sweepgen+3 { |
| throw("bad sweepgen in refill") |
| } |
| mheap_.central[spc].mcentral.uncacheSpan(s) |
| } |
| |
| // Get a new cached span from the central lists. |
| s = mheap_.central[spc].mcentral.cacheSpan() |
| if s == nil { |
| throw("out of memory") |
| } |
| |
| if uintptr(s.allocCount) == s.nelems { |
| throw("span has no free space") |
| } |
| |
| // Indicate that this span is cached and prevent asynchronous |
| // sweeping in the next sweep phase. |
| s.sweepgen = mheap_.sweepgen + 3 |
| |
| // Assume all objects from this span will be allocated in the |
| // mcache. If it gets uncached, we'll adjust this. |
| stats := memstats.heapStats.acquire() |
| atomic.Xadduintptr(&stats.smallAllocCount[spc.sizeclass()], uintptr(s.nelems)-uintptr(s.allocCount)) |
| |
| // Flush tinyAllocs. |
| if spc == tinySpanClass { |
| atomic.Xadduintptr(&stats.tinyAllocCount, c.tinyAllocs) |
| c.tinyAllocs = 0 |
| } |
| memstats.heapStats.release() |
| |
| // Update gcController.heapLive with the same assumption. |
| usedBytes := uintptr(s.allocCount) * s.elemsize |
| atomic.Xadd64(&gcController.heapLive, int64(s.npages*pageSize)-int64(usedBytes)) |
| |
| // While we're here, flush scanAlloc, since we have to call |
| // revise anyway. |
| atomic.Xadd64(&gcController.heapScan, int64(c.scanAlloc)) |
| c.scanAlloc = 0 |
| |
| if trace.enabled { |
| // gcController.heapLive changed. |
| traceHeapAlloc() |
| } |
| if gcBlackenEnabled != 0 { |
| // gcController.heapLive and heapScan changed. |
| gcController.revise() |
| } |
| |
| c.alloc[spc] = s |
| } |
| |
| // allocLarge allocates a span for a large object. |
| // The boolean result indicates whether the span is known-zeroed. |
| // If it did not need to be zeroed, it may not have been zeroed; |
| // but if it came directly from the OS, it is already zeroed. |
| func (c *mcache) allocLarge(size uintptr, needzero bool, noscan bool) (*mspan, bool) { |
| if size+_PageSize < size { |
| throw("out of memory") |
| } |
| npages := size >> _PageShift |
| if size&_PageMask != 0 { |
| npages++ |
| } |
| |
| // Deduct credit for this span allocation and sweep if |
| // necessary. mHeap_Alloc will also sweep npages, so this only |
| // pays the debt down to npage pages. |
| deductSweepCredit(npages*_PageSize, npages) |
| |
| spc := makeSpanClass(0, noscan) |
| s, isZeroed := mheap_.alloc(npages, spc, needzero) |
| if s == nil { |
| throw("out of memory") |
| } |
| stats := memstats.heapStats.acquire() |
| atomic.Xadduintptr(&stats.largeAlloc, npages*pageSize) |
| atomic.Xadduintptr(&stats.largeAllocCount, 1) |
| memstats.heapStats.release() |
| |
| // Update gcController.heapLive and revise pacing if needed. |
| atomic.Xadd64(&gcController.heapLive, int64(npages*pageSize)) |
| if trace.enabled { |
| // Trace that a heap alloc occurred because gcController.heapLive changed. |
| traceHeapAlloc() |
| } |
| if gcBlackenEnabled != 0 { |
| gcController.revise() |
| } |
| |
| // Put the large span in the mcentral swept list so that it's |
| // visible to the background sweeper. |
| mheap_.central[spc].mcentral.fullSwept(mheap_.sweepgen).push(s) |
| s.limit = s.base() + size |
| heapBitsForAddr(s.base()).initSpan(s) |
| return s, isZeroed |
| } |
| |
| func (c *mcache) releaseAll() { |
| // Take this opportunity to flush scanAlloc. |
| atomic.Xadd64(&gcController.heapScan, int64(c.scanAlloc)) |
| c.scanAlloc = 0 |
| |
| sg := mheap_.sweepgen |
| for i := range c.alloc { |
| s := c.alloc[i] |
| if s != &emptymspan { |
| // Adjust nsmallalloc in case the span wasn't fully allocated. |
| n := uintptr(s.nelems) - uintptr(s.allocCount) |
| stats := memstats.heapStats.acquire() |
| atomic.Xadduintptr(&stats.smallAllocCount[spanClass(i).sizeclass()], -n) |
| memstats.heapStats.release() |
| if s.sweepgen != sg+1 { |
| // refill conservatively counted unallocated slots in gcController.heapLive. |
| // Undo this. |
| // |
| // If this span was cached before sweep, then |
| // gcController.heapLive was totally recomputed since |
| // caching this span, so we don't do this for |
| // stale spans. |
| atomic.Xadd64(&gcController.heapLive, -int64(n)*int64(s.elemsize)) |
| } |
| // Release the span to the mcentral. |
| mheap_.central[i].mcentral.uncacheSpan(s) |
| c.alloc[i] = &emptymspan |
| } |
| } |
| // Clear tinyalloc pool. |
| c.tiny = 0 |
| c.tinyoffset = 0 |
| |
| // Flush tinyAllocs. |
| stats := memstats.heapStats.acquire() |
| atomic.Xadduintptr(&stats.tinyAllocCount, c.tinyAllocs) |
| c.tinyAllocs = 0 |
| memstats.heapStats.release() |
| |
| // Updated heapScan and possible gcController.heapLive. |
| if gcBlackenEnabled != 0 { |
| gcController.revise() |
| } |
| } |
| |
| // prepareForSweep flushes c if the system has entered a new sweep phase |
| // since c was populated. This must happen between the sweep phase |
| // starting and the first allocation from c. |
| func (c *mcache) prepareForSweep() { |
| // Alternatively, instead of making sure we do this on every P |
| // between starting the world and allocating on that P, we |
| // could leave allocate-black on, allow allocation to continue |
| // as usual, use a ragged barrier at the beginning of sweep to |
| // ensure all cached spans are swept, and then disable |
| // allocate-black. However, with this approach it's difficult |
| // to avoid spilling mark bits into the *next* GC cycle. |
| sg := mheap_.sweepgen |
| if c.flushGen == sg { |
| return |
| } else if c.flushGen != sg-2 { |
| println("bad flushGen", c.flushGen, "in prepareForSweep; sweepgen", sg) |
| throw("bad flushGen") |
| } |
| c.releaseAll() |
| stackcache_clear(c) |
| atomic.Store(&c.flushGen, mheap_.sweepgen) // Synchronizes with gcStart |
| } |