blob: 47a6af003c9ecd9b6d9f376d608e646cdc8d0296 [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Lowering arithmetic
(Add(64|32|16|8) ...) => (ADD(Q|L|L|L) ...)
(AddPtr ...) => (ADDQ ...)
(Add(32|64)F ...) => (ADDS(S|D) ...)
(Sub(64|32|16|8) ...) => (SUB(Q|L|L|L) ...)
(SubPtr ...) => (SUBQ ...)
(Sub(32|64)F ...) => (SUBS(S|D) ...)
(Mul(64|32|16|8) ...) => (MUL(Q|L|L|L) ...)
(Mul(32|64)F ...) => (MULS(S|D) ...)
(Select0 (Mul64uover x y)) => (Select0 <typ.UInt64> (MULQU x y))
(Select0 (Mul32uover x y)) => (Select0 <typ.UInt32> (MULLU x y))
(Select1 (Mul(64|32)uover x y)) => (SETO (Select1 <types.TypeFlags> (MUL(Q|L)U x y)))
(Hmul(64|32) ...) => (HMUL(Q|L) ...)
(Hmul(64|32)u ...) => (HMUL(Q|L)U ...)
(Div(64|32|16) [a] x y) => (Select0 (DIV(Q|L|W) [a] x y))
(Div8 x y) => (Select0 (DIVW (SignExt8to16 x) (SignExt8to16 y)))
(Div(64|32|16)u x y) => (Select0 (DIV(Q|L|W)U x y))
(Div8u x y) => (Select0 (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y)))
(Div(32|64)F ...) => (DIVS(S|D) ...)
(Select0 (Add64carry x y c)) =>
(Select0 <typ.UInt64> (ADCQ x y (Select1 <types.TypeFlags> (NEGLflags c))))
(Select1 (Add64carry x y c)) =>
(NEGQ <typ.UInt64> (SBBQcarrymask <typ.UInt64> (Select1 <types.TypeFlags> (ADCQ x y (Select1 <types.TypeFlags> (NEGLflags c))))))
(Select0 (Sub64borrow x y c)) =>
(Select0 <typ.UInt64> (SBBQ x y (Select1 <types.TypeFlags> (NEGLflags c))))
(Select1 (Sub64borrow x y c)) =>
(NEGQ <typ.UInt64> (SBBQcarrymask <typ.UInt64> (Select1 <types.TypeFlags> (SBBQ x y (Select1 <types.TypeFlags> (NEGLflags c))))))
// Optimize ADCQ and friends
(ADCQ x (MOVQconst [c]) carry) && is32Bit(c) => (ADCQconst x [int32(c)] carry)
(ADCQ x y (FlagEQ)) => (ADDQcarry x y)
(ADCQconst x [c] (FlagEQ)) => (ADDQconstcarry x [c])
(ADDQcarry x (MOVQconst [c])) && is32Bit(c) => (ADDQconstcarry x [int32(c)])
(SBBQ x (MOVQconst [c]) borrow) && is32Bit(c) => (SBBQconst x [int32(c)] borrow)
(SBBQ x y (FlagEQ)) => (SUBQborrow x y)
(SBBQconst x [c] (FlagEQ)) => (SUBQconstborrow x [c])
(SUBQborrow x (MOVQconst [c])) && is32Bit(c) => (SUBQconstborrow x [int32(c)])
(Select1 (NEGLflags (MOVQconst [0]))) => (FlagEQ)
(Select1 (NEGLflags (NEGQ (SBBQcarrymask x)))) => x
(Mul64uhilo ...) => (MULQU2 ...)
(Div128u ...) => (DIVQU2 ...)
(Avg64u ...) => (AVGQU ...)
(Mod(64|32|16) [a] x y) => (Select1 (DIV(Q|L|W) [a] x y))
(Mod8 x y) => (Select1 (DIVW (SignExt8to16 x) (SignExt8to16 y)))
(Mod(64|32|16)u x y) => (Select1 (DIV(Q|L|W)U x y))
(Mod8u x y) => (Select1 (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y)))
(And(64|32|16|8) ...) => (AND(Q|L|L|L) ...)
(Or(64|32|16|8) ...) => (OR(Q|L|L|L) ...)
(Xor(64|32|16|8) ...) => (XOR(Q|L|L|L) ...)
(Com(64|32|16|8) ...) => (NOT(Q|L|L|L) ...)
(Neg(64|32|16|8) ...) => (NEG(Q|L|L|L) ...)
(Neg32F x) => (PXOR x (MOVSSconst <typ.Float32> [float32(math.Copysign(0, -1))]))
(Neg64F x) => (PXOR x (MOVSDconst <typ.Float64> [math.Copysign(0, -1)]))
// Lowering boolean ops
(AndB ...) => (ANDL ...)
(OrB ...) => (ORL ...)
(Not x) => (XORLconst [1] x)
// Lowering pointer arithmetic
(OffPtr [off] ptr) && is32Bit(off) => (ADDQconst [int32(off)] ptr)
(OffPtr [off] ptr) => (ADDQ (MOVQconst [off]) ptr)
// Lowering other arithmetic
(Ctz64 x) && buildcfg.GOAMD64 >= 3 => (TZCNTQ x)
(Ctz32 x) && buildcfg.GOAMD64 >= 3 => (TZCNTL x)
(Ctz64 <t> x) && buildcfg.GOAMD64 < 3 => (CMOVQEQ (Select0 <t> (BSFQ x)) (MOVQconst <t> [64]) (Select1 <types.TypeFlags> (BSFQ x)))
(Ctz32 x) && buildcfg.GOAMD64 < 3 => (Select0 (BSFQ (BTSQconst <typ.UInt64> [32] x)))
(Ctz16 x) => (BSFL (BTSLconst <typ.UInt32> [16] x))
(Ctz8 x) => (BSFL (BTSLconst <typ.UInt32> [ 8] x))
(Ctz64NonZero x) && buildcfg.GOAMD64 >= 3 => (TZCNTQ x)
(Ctz32NonZero x) && buildcfg.GOAMD64 >= 3 => (TZCNTL x)
(Ctz16NonZero x) && buildcfg.GOAMD64 >= 3 => (TZCNTL x)
(Ctz8NonZero x) && buildcfg.GOAMD64 >= 3 => (TZCNTL x)
(Ctz64NonZero x) && buildcfg.GOAMD64 < 3 => (Select0 (BSFQ x))
(Ctz32NonZero x) && buildcfg.GOAMD64 < 3 => (BSFL x)
(Ctz16NonZero x) && buildcfg.GOAMD64 < 3 => (BSFL x)
(Ctz8NonZero x) && buildcfg.GOAMD64 < 3 => (BSFL x)
// BitLen64 of a 64 bit value x requires checking whether x == 0, since BSRQ is undefined when x == 0.
// However, for zero-extended values, we can cheat a bit, and calculate
// BSR(x<<1 + 1), which is guaranteed to be non-zero, and which conveniently
// places the index of the highest set bit where we want it.
(BitLen64 <t> x) => (ADDQconst [1] (CMOVQEQ <t> (Select0 <t> (BSRQ x)) (MOVQconst <t> [-1]) (Select1 <types.TypeFlags> (BSRQ x))))
(BitLen32 x) => (Select0 (BSRQ (LEAQ1 <typ.UInt64> [1] (MOVLQZX <typ.UInt64> x) (MOVLQZX <typ.UInt64> x))))
(BitLen16 x) => (BSRL (LEAL1 <typ.UInt32> [1] (MOVWQZX <typ.UInt32> x) (MOVWQZX <typ.UInt32> x)))
(BitLen8 x) => (BSRL (LEAL1 <typ.UInt32> [1] (MOVBQZX <typ.UInt32> x) (MOVBQZX <typ.UInt32> x)))
(Bswap(64|32) ...) => (BSWAP(Q|L) ...)
(PopCount(64|32) ...) => (POPCNT(Q|L) ...)
(PopCount16 x) => (POPCNTL (MOVWQZX <typ.UInt32> x))
(PopCount8 x) => (POPCNTL (MOVBQZX <typ.UInt32> x))
(Sqrt ...) => (SQRTSD ...)
(Sqrt32 ...) => (SQRTSS ...)
(RoundToEven x) => (ROUNDSD [0] x)
(Floor x) => (ROUNDSD [1] x)
(Ceil x) => (ROUNDSD [2] x)
(Trunc x) => (ROUNDSD [3] x)
(FMA x y z) => (VFMADD231SD z x y)
// Lowering extension
// Note: we always extend to 64 bits even though some ops don't need that many result bits.
(SignExt8to16 ...) => (MOVBQSX ...)
(SignExt8to32 ...) => (MOVBQSX ...)
(SignExt8to64 ...) => (MOVBQSX ...)
(SignExt16to32 ...) => (MOVWQSX ...)
(SignExt16to64 ...) => (MOVWQSX ...)
(SignExt32to64 ...) => (MOVLQSX ...)
(ZeroExt8to16 ...) => (MOVBQZX ...)
(ZeroExt8to32 ...) => (MOVBQZX ...)
(ZeroExt8to64 ...) => (MOVBQZX ...)
(ZeroExt16to32 ...) => (MOVWQZX ...)
(ZeroExt16to64 ...) => (MOVWQZX ...)
(ZeroExt32to64 ...) => (MOVLQZX ...)
(Slicemask <t> x) => (SARQconst (NEGQ <t> x) [63])
(SpectreIndex <t> x y) => (CMOVQCC x (MOVQconst [0]) (CMPQ x y))
(SpectreSliceIndex <t> x y) => (CMOVQHI x (MOVQconst [0]) (CMPQ x y))
// Lowering truncation
// Because we ignore high parts of registers, truncates are just copies.
(Trunc16to8 ...) => (Copy ...)
(Trunc32to8 ...) => (Copy ...)
(Trunc32to16 ...) => (Copy ...)
(Trunc64to8 ...) => (Copy ...)
(Trunc64to16 ...) => (Copy ...)
(Trunc64to32 ...) => (Copy ...)
// Lowering float <-> int
(Cvt32to32F ...) => (CVTSL2SS ...)
(Cvt32to64F ...) => (CVTSL2SD ...)
(Cvt64to32F ...) => (CVTSQ2SS ...)
(Cvt64to64F ...) => (CVTSQ2SD ...)
(Cvt32Fto32 ...) => (CVTTSS2SL ...)
(Cvt32Fto64 ...) => (CVTTSS2SQ ...)
(Cvt64Fto32 ...) => (CVTTSD2SL ...)
(Cvt64Fto64 ...) => (CVTTSD2SQ ...)
(Cvt32Fto64F ...) => (CVTSS2SD ...)
(Cvt64Fto32F ...) => (CVTSD2SS ...)
(Round(32|64)F ...) => (Copy ...)
(CvtBoolToUint8 ...) => (Copy ...)
// Lowering shifts
// Unsigned shifts need to return 0 if shift amount is >= width of shifted value.
// result = (arg << shift) & (shift >= argbits ? 0 : 0xffffffffffffffff)
(Lsh64x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDQ (SHLQ <t> x y) (SBBQcarrymask <t> (CMP(Q|L|W|B)const y [64])))
(Lsh32x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [32])))
(Lsh16x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [32])))
(Lsh8x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [32])))
(Lsh64x(64|32|16|8) x y) && shiftIsBounded(v) => (SHLQ x y)
(Lsh32x(64|32|16|8) x y) && shiftIsBounded(v) => (SHLL x y)
(Lsh16x(64|32|16|8) x y) && shiftIsBounded(v) => (SHLL x y)
(Lsh8x(64|32|16|8) x y) && shiftIsBounded(v) => (SHLL x y)
(Rsh64Ux(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDQ (SHRQ <t> x y) (SBBQcarrymask <t> (CMP(Q|L|W|B)const y [64])))
(Rsh32Ux(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [32])))
(Rsh16Ux(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [16])))
(Rsh8Ux(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [8])))
(Rsh64Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SHRQ x y)
(Rsh32Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SHRL x y)
(Rsh16Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SHRW x y)
(Rsh8Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SHRB x y)
// Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value.
// We implement this by setting the shift value to -1 (all ones) if the shift value is >= width.
(Rsh64x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (SARQ <t> x (OR(Q|L|L|L) <y.Type> y (NOT(Q|L|L|L) <y.Type> (SBB(Q|L|L|L)carrymask <y.Type> (CMP(Q|L|W|B)const y [64])))))
(Rsh32x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (SARL <t> x (OR(Q|L|L|L) <y.Type> y (NOT(Q|L|L|L) <y.Type> (SBB(Q|L|L|L)carrymask <y.Type> (CMP(Q|L|W|B)const y [32])))))
(Rsh16x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (SARW <t> x (OR(Q|L|L|L) <y.Type> y (NOT(Q|L|L|L) <y.Type> (SBB(Q|L|L|L)carrymask <y.Type> (CMP(Q|L|W|B)const y [16])))))
(Rsh8x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (SARB <t> x (OR(Q|L|L|L) <y.Type> y (NOT(Q|L|L|L) <y.Type> (SBB(Q|L|L|L)carrymask <y.Type> (CMP(Q|L|W|B)const y [8])))))
(Rsh64x(64|32|16|8) x y) && shiftIsBounded(v) => (SARQ x y)
(Rsh32x(64|32|16|8) x y) && shiftIsBounded(v) => (SARL x y)
(Rsh16x(64|32|16|8) x y) && shiftIsBounded(v) => (SARW x y)
(Rsh8x(64|32|16|8) x y) && shiftIsBounded(v) => (SARB x y)
// Lowering integer comparisons
(Less(64|32|16|8) x y) => (SETL (CMP(Q|L|W|B) x y))
(Less(64|32|16|8)U x y) => (SETB (CMP(Q|L|W|B) x y))
(Leq(64|32|16|8) x y) => (SETLE (CMP(Q|L|W|B) x y))
(Leq(64|32|16|8)U x y) => (SETBE (CMP(Q|L|W|B) x y))
(Eq(Ptr|64|32|16|8|B) x y) => (SETEQ (CMP(Q|Q|L|W|B|B) x y))
(Neq(Ptr|64|32|16|8|B) x y) => (SETNE (CMP(Q|Q|L|W|B|B) x y))
// Lowering floating point comparisons
// Note Go assembler gets UCOMISx operand order wrong, but it is right here
// and the operands are reversed when generating assembly language.
(Eq(32|64)F x y) => (SETEQF (UCOMIS(S|D) x y))
(Neq(32|64)F x y) => (SETNEF (UCOMIS(S|D) x y))
// Use SETGF/SETGEF with reversed operands to dodge NaN case.
(Less(32|64)F x y) => (SETGF (UCOMIS(S|D) y x))
(Leq(32|64)F x y) => (SETGEF (UCOMIS(S|D) y x))
// Lowering loads
(Load <t> ptr mem) && (is64BitInt(t) || isPtr(t)) => (MOVQload ptr mem)
(Load <t> ptr mem) && is32BitInt(t) => (MOVLload ptr mem)
(Load <t> ptr mem) && is16BitInt(t) => (MOVWload ptr mem)
(Load <t> ptr mem) && (t.IsBoolean() || is8BitInt(t)) => (MOVBload ptr mem)
(Load <t> ptr mem) && is32BitFloat(t) => (MOVSSload ptr mem)
(Load <t> ptr mem) && is64BitFloat(t) => (MOVSDload ptr mem)
// Lowering stores
// These more-specific FP versions of Store pattern should come first.
(Store {t} ptr val mem) && t.Size() == 8 && is64BitFloat(val.Type) => (MOVSDstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 4 && is32BitFloat(val.Type) => (MOVSSstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 8 => (MOVQstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 4 => (MOVLstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 2 => (MOVWstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)
// Lowering moves
(Move [0] _ _ mem) => mem
(Move [1] dst src mem) => (MOVBstore dst (MOVBload src mem) mem)
(Move [2] dst src mem) => (MOVWstore dst (MOVWload src mem) mem)
(Move [4] dst src mem) => (MOVLstore dst (MOVLload src mem) mem)
(Move [8] dst src mem) => (MOVQstore dst (MOVQload src mem) mem)
(Move [16] dst src mem) && config.useSSE => (MOVOstore dst (MOVOload src mem) mem)
(Move [16] dst src mem) && !config.useSSE =>
(MOVQstore [8] dst (MOVQload [8] src mem)
(MOVQstore dst (MOVQload src mem) mem))
(Move [32] dst src mem) =>
(Move [16]
(OffPtr <dst.Type> dst [16])
(OffPtr <src.Type> src [16])
(Move [16] dst src mem))
(Move [48] dst src mem) && config.useSSE =>
(Move [32]
(OffPtr <dst.Type> dst [16])
(OffPtr <src.Type> src [16])
(Move [16] dst src mem))
(Move [64] dst src mem) && config.useSSE =>
(Move [32]
(OffPtr <dst.Type> dst [32])
(OffPtr <src.Type> src [32])
(Move [32] dst src mem))
(Move [3] dst src mem) =>
(MOVBstore [2] dst (MOVBload [2] src mem)
(MOVWstore dst (MOVWload src mem) mem))
(Move [5] dst src mem) =>
(MOVBstore [4] dst (MOVBload [4] src mem)
(MOVLstore dst (MOVLload src mem) mem))
(Move [6] dst src mem) =>
(MOVWstore [4] dst (MOVWload [4] src mem)
(MOVLstore dst (MOVLload src mem) mem))
(Move [7] dst src mem) =>
(MOVLstore [3] dst (MOVLload [3] src mem)
(MOVLstore dst (MOVLload src mem) mem))
(Move [9] dst src mem) =>
(MOVBstore [8] dst (MOVBload [8] src mem)
(MOVQstore dst (MOVQload src mem) mem))
(Move [10] dst src mem) =>
(MOVWstore [8] dst (MOVWload [8] src mem)
(MOVQstore dst (MOVQload src mem) mem))
(Move [12] dst src mem) =>
(MOVLstore [8] dst (MOVLload [8] src mem)
(MOVQstore dst (MOVQload src mem) mem))
(Move [s] dst src mem) && s == 11 || s >= 13 && s <= 15 =>
(MOVQstore [int32(s-8)] dst (MOVQload [int32(s-8)] src mem)
(MOVQstore dst (MOVQload src mem) mem))
// Adjust moves to be a multiple of 16 bytes.
(Move [s] dst src mem)
&& s > 16 && s%16 != 0 && s%16 <= 8 =>
(Move [s-s%16]
(OffPtr <dst.Type> dst [s%16])
(OffPtr <src.Type> src [s%16])
(MOVQstore dst (MOVQload src mem) mem))
(Move [s] dst src mem)
&& s > 16 && s%16 != 0 && s%16 > 8 && config.useSSE =>
(Move [s-s%16]
(OffPtr <dst.Type> dst [s%16])
(OffPtr <src.Type> src [s%16])
(MOVOstore dst (MOVOload src mem) mem))
(Move [s] dst src mem)
&& s > 16 && s%16 != 0 && s%16 > 8 && !config.useSSE =>
(Move [s-s%16]
(OffPtr <dst.Type> dst [s%16])
(OffPtr <src.Type> src [s%16])
(MOVQstore [8] dst (MOVQload [8] src mem)
(MOVQstore dst (MOVQload src mem) mem)))
// Medium copying uses a duff device.
(Move [s] dst src mem)
&& s > 64 && s <= 16*64 && s%16 == 0
&& !config.noDuffDevice && logLargeCopy(v, s) =>
(DUFFCOPY [s] dst src mem)
// Large copying uses REP MOVSQ.
(Move [s] dst src mem) && (s > 16*64 || config.noDuffDevice) && s%8 == 0 && logLargeCopy(v, s) =>
(REPMOVSQ dst src (MOVQconst [s/8]) mem)
// Lowering Zero instructions
(Zero [0] _ mem) => mem
(Zero [1] destptr mem) => (MOVBstoreconst [makeValAndOff(0,0)] destptr mem)
(Zero [2] destptr mem) => (MOVWstoreconst [makeValAndOff(0,0)] destptr mem)
(Zero [4] destptr mem) => (MOVLstoreconst [makeValAndOff(0,0)] destptr mem)
(Zero [8] destptr mem) => (MOVQstoreconst [makeValAndOff(0,0)] destptr mem)
(Zero [3] destptr mem) =>
(MOVBstoreconst [makeValAndOff(0,2)] destptr
(MOVWstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [5] destptr mem) =>
(MOVBstoreconst [makeValAndOff(0,4)] destptr
(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [6] destptr mem) =>
(MOVWstoreconst [makeValAndOff(0,4)] destptr
(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [7] destptr mem) =>
(MOVLstoreconst [makeValAndOff(0,3)] destptr
(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
// Strip off any fractional word zeroing.
(Zero [s] destptr mem) && s%8 != 0 && s > 8 && !config.useSSE =>
(Zero [s-s%8] (OffPtr <destptr.Type> destptr [s%8])
(MOVQstoreconst [makeValAndOff(0,0)] destptr mem))
// Zero small numbers of words directly.
(Zero [16] destptr mem) && !config.useSSE =>
(MOVQstoreconst [makeValAndOff(0,8)] destptr
(MOVQstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [24] destptr mem) && !config.useSSE =>
(MOVQstoreconst [makeValAndOff(0,16)] destptr
(MOVQstoreconst [makeValAndOff(0,8)] destptr
(MOVQstoreconst [makeValAndOff(0,0)] destptr mem)))
(Zero [32] destptr mem) && !config.useSSE =>
(MOVQstoreconst [makeValAndOff(0,24)] destptr
(MOVQstoreconst [makeValAndOff(0,16)] destptr
(MOVQstoreconst [makeValAndOff(0,8)] destptr
(MOVQstoreconst [makeValAndOff(0,0)] destptr mem))))
(Zero [s] destptr mem) && s > 8 && s < 16 && config.useSSE =>
(MOVQstoreconst [makeValAndOff(0,int32(s-8))] destptr
(MOVQstoreconst [makeValAndOff(0,0)] destptr mem))
// Adjust zeros to be a multiple of 16 bytes.
(Zero [s] destptr mem) && s%16 != 0 && s > 16 && s%16 > 8 && config.useSSE =>
(Zero [s-s%16] (OffPtr <destptr.Type> destptr [s%16])
(MOVOstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [s] destptr mem) && s%16 != 0 && s > 16 && s%16 <= 8 && config.useSSE =>
(Zero [s-s%16] (OffPtr <destptr.Type> destptr [s%16])
(MOVOstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [16] destptr mem) && config.useSSE =>
(MOVOstoreconst [makeValAndOff(0,0)] destptr mem)
(Zero [32] destptr mem) && config.useSSE =>
(MOVOstoreconst [makeValAndOff(0,16)] destptr
(MOVOstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [48] destptr mem) && config.useSSE =>
(MOVOstoreconst [makeValAndOff(0,32)] destptr
(MOVOstoreconst [makeValAndOff(0,16)] destptr
(MOVOstoreconst [makeValAndOff(0,0)] destptr mem)))
(Zero [64] destptr mem) && config.useSSE =>
(MOVOstoreconst [makeValAndOff(0,48)] destptr
(MOVOstoreconst [makeValAndOff(0,32)] destptr
(MOVOstoreconst [makeValAndOff(0,16)] destptr
(MOVOstoreconst [makeValAndOff(0,0)] destptr mem))))
// Medium zeroing uses a duff device.
(Zero [s] destptr mem)
&& s > 64 && s <= 1024 && s%16 == 0 && !config.noDuffDevice =>
(DUFFZERO [s] destptr mem)
// Large zeroing uses REP STOSQ.
(Zero [s] destptr mem)
&& (s > 1024 || (config.noDuffDevice && s > 64 || !config.useSSE && s > 32))
&& s%8 == 0 =>
(REPSTOSQ destptr (MOVQconst [s/8]) (MOVQconst [0]) mem)
// Lowering constants
(Const8 [c]) => (MOVLconst [int32(c)])
(Const16 [c]) => (MOVLconst [int32(c)])
(Const32 ...) => (MOVLconst ...)
(Const64 ...) => (MOVQconst ...)
(Const32F ...) => (MOVSSconst ...)
(Const64F ...) => (MOVSDconst ...)
(ConstNil ) => (MOVQconst [0])
(ConstBool [c]) => (MOVLconst [b2i32(c)])
// Lowering calls
(StaticCall ...) => (CALLstatic ...)
(ClosureCall ...) => (CALLclosure ...)
(InterCall ...) => (CALLinter ...)
(TailCall ...) => (CALLtail ...)
// Lowering conditional moves
// If the condition is a SETxx, we can just run a CMOV from the comparison that was
// setting the flags.
// Legend: HI=unsigned ABOVE, CS=unsigned BELOW, CC=unsigned ABOVE EQUAL, LS=unsigned BELOW EQUAL
(CondSelect <t> x y (SET(EQ|NE|L|G|LE|GE|A|B|AE|BE|EQF|NEF|GF|GEF) cond)) && (is64BitInt(t) || isPtr(t))
=> (CMOVQ(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS|EQF|NEF|GTF|GEF) y x cond)
(CondSelect <t> x y (SET(EQ|NE|L|G|LE|GE|A|B|AE|BE|EQF|NEF|GF|GEF) cond)) && is32BitInt(t)
=> (CMOVL(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS|EQF|NEF|GTF|GEF) y x cond)
(CondSelect <t> x y (SET(EQ|NE|L|G|LE|GE|A|B|AE|BE|EQF|NEF|GF|GEF) cond)) && is16BitInt(t)
=> (CMOVW(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS|EQF|NEF|GTF|GEF) y x cond)
// If the condition does not set the flags, we need to generate a comparison.
(CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 1
=> (CondSelect <t> x y (MOVBQZX <typ.UInt64> check))
(CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 2
=> (CondSelect <t> x y (MOVWQZX <typ.UInt64> check))
(CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 4
=> (CondSelect <t> x y (MOVLQZX <typ.UInt64> check))
(CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 8 && (is64BitInt(t) || isPtr(t))
=> (CMOVQNE y x (CMPQconst [0] check))
(CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 8 && is32BitInt(t)
=> (CMOVLNE y x (CMPQconst [0] check))
(CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 8 && is16BitInt(t)
=> (CMOVWNE y x (CMPQconst [0] check))
// Absorb InvertFlags
(CMOVQ(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS) x y (InvertFlags cond))
=> (CMOVQ(EQ|NE|GT|LT|GE|LE|CS|HI|LS|CC) x y cond)
(CMOVL(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS) x y (InvertFlags cond))
=> (CMOVL(EQ|NE|GT|LT|GE|LE|CS|HI|LS|CC) x y cond)
(CMOVW(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS) x y (InvertFlags cond))
=> (CMOVW(EQ|NE|GT|LT|GE|LE|CS|HI|LS|CC) x y cond)
// Absorb constants generated during lower
(CMOV(QEQ|QLE|QGE|QCC|QLS|LEQ|LLE|LGE|LCC|LLS|WEQ|WLE|WGE|WCC|WLS) _ x (FlagEQ)) => x
(CMOV(QNE|QLT|QGT|QCS|QHI|LNE|LLT|LGT|LCS|LHI|WNE|WLT|WGT|WCS|WHI) y _ (FlagEQ)) => y
(CMOV(QNE|QGT|QGE|QHI|QCC|LNE|LGT|LGE|LHI|LCC|WNE|WGT|WGE|WHI|WCC) _ x (FlagGT_UGT)) => x
(CMOV(QEQ|QLE|QLT|QLS|QCS|LEQ|LLE|LLT|LLS|LCS|WEQ|WLE|WLT|WLS|WCS) y _ (FlagGT_UGT)) => y
(CMOV(QNE|QGT|QGE|QLS|QCS|LNE|LGT|LGE|LLS|LCS|WNE|WGT|WGE|WLS|WCS) _ x (FlagGT_ULT)) => x
(CMOV(QEQ|QLE|QLT|QHI|QCC|LEQ|LLE|LLT|LHI|LCC|WEQ|WLE|WLT|WHI|WCC) y _ (FlagGT_ULT)) => y
(CMOV(QNE|QLT|QLE|QCS|QLS|LNE|LLT|LLE|LCS|LLS|WNE|WLT|WLE|WCS|WLS) _ x (FlagLT_ULT)) => x
(CMOV(QEQ|QGT|QGE|QHI|QCC|LEQ|LGT|LGE|LHI|LCC|WEQ|WGT|WGE|WHI|WCC) y _ (FlagLT_ULT)) => y
(CMOV(QNE|QLT|QLE|QHI|QCC|LNE|LLT|LLE|LHI|LCC|WNE|WLT|WLE|WHI|WCC) _ x (FlagLT_UGT)) => x
(CMOV(QEQ|QGT|QGE|QCS|QLS|LEQ|LGT|LGE|LCS|LLS|WEQ|WGT|WGE|WCS|WLS) y _ (FlagLT_UGT)) => y
// Miscellaneous
(IsNonNil p) => (SETNE (TESTQ p p))
(IsInBounds idx len) => (SETB (CMPQ idx len))
(IsSliceInBounds idx len) => (SETBE (CMPQ idx len))
(NilCheck ...) => (LoweredNilCheck ...)
(GetG mem) && v.Block.Func.OwnAux.Fn.ABI() != obj.ABIInternal => (LoweredGetG mem) // only lower in old ABI. in new ABI we have a G register.
(GetClosurePtr ...) => (LoweredGetClosurePtr ...)
(GetCallerPC ...) => (LoweredGetCallerPC ...)
(GetCallerSP ...) => (LoweredGetCallerSP ...)
(HasCPUFeature {s}) => (SETNE (CMPLconst [0] (LoweredHasCPUFeature {s})))
(Addr {sym} base) => (LEAQ {sym} base)
(LocalAddr {sym} base _) => (LEAQ {sym} base)
(MOVBstore [off] {sym} ptr y:(SETL x) mem) && y.Uses == 1 => (SETLstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr y:(SETLE x) mem) && y.Uses == 1 => (SETLEstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr y:(SETG x) mem) && y.Uses == 1 => (SETGstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr y:(SETGE x) mem) && y.Uses == 1 => (SETGEstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr y:(SETEQ x) mem) && y.Uses == 1 => (SETEQstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr y:(SETNE x) mem) && y.Uses == 1 => (SETNEstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr y:(SETB x) mem) && y.Uses == 1 => (SETBstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr y:(SETBE x) mem) && y.Uses == 1 => (SETBEstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr y:(SETA x) mem) && y.Uses == 1 => (SETAstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr y:(SETAE x) mem) && y.Uses == 1 => (SETAEstore [off] {sym} ptr x mem)
// block rewrites
(If (SETL cmp) yes no) => (LT cmp yes no)
(If (SETLE cmp) yes no) => (LE cmp yes no)
(If (SETG cmp) yes no) => (GT cmp yes no)
(If (SETGE cmp) yes no) => (GE cmp yes no)
(If (SETEQ cmp) yes no) => (EQ cmp yes no)
(If (SETNE cmp) yes no) => (NE cmp yes no)
(If (SETB cmp) yes no) => (ULT cmp yes no)
(If (SETBE cmp) yes no) => (ULE cmp yes no)
(If (SETA cmp) yes no) => (UGT cmp yes no)
(If (SETAE cmp) yes no) => (UGE cmp yes no)
(If (SETO cmp) yes no) => (OS cmp yes no)
// Special case for floating point - LF/LEF not generated
(If (SETGF cmp) yes no) => (UGT cmp yes no)
(If (SETGEF cmp) yes no) => (UGE cmp yes no)
(If (SETEQF cmp) yes no) => (EQF cmp yes no)
(If (SETNEF cmp) yes no) => (NEF cmp yes no)
(If cond yes no) => (NE (TESTB cond cond) yes no)
// Atomic loads. Other than preserving their ordering with respect to other loads, nothing special here.
(AtomicLoad8 ptr mem) => (MOVBatomicload ptr mem)
(AtomicLoad32 ptr mem) => (MOVLatomicload ptr mem)
(AtomicLoad64 ptr mem) => (MOVQatomicload ptr mem)
(AtomicLoadPtr ptr mem) => (MOVQatomicload ptr mem)
// Atomic stores. We use XCHG to prevent the hardware reordering a subsequent load.
// TODO: most runtime uses of atomic stores don't need that property. Use normal stores for those?
(AtomicStore8 ptr val mem) => (Select1 (XCHGB <types.NewTuple(typ.UInt8,types.TypeMem)> val ptr mem))
(AtomicStore32 ptr val mem) => (Select1 (XCHGL <types.NewTuple(typ.UInt32,types.TypeMem)> val ptr mem))
(AtomicStore64 ptr val mem) => (Select1 (XCHGQ <types.NewTuple(typ.UInt64,types.TypeMem)> val ptr mem))
(AtomicStorePtrNoWB ptr val mem) => (Select1 (XCHGQ <types.NewTuple(typ.BytePtr,types.TypeMem)> val ptr mem))
// Atomic exchanges.
(AtomicExchange32 ptr val mem) => (XCHGL val ptr mem)
(AtomicExchange64 ptr val mem) => (XCHGQ val ptr mem)
// Atomic adds.
(AtomicAdd32 ptr val mem) => (AddTupleFirst32 val (XADDLlock val ptr mem))
(AtomicAdd64 ptr val mem) => (AddTupleFirst64 val (XADDQlock val ptr mem))
(Select0 <t> (AddTupleFirst32 val tuple)) => (ADDL val (Select0 <t> tuple))
(Select1 (AddTupleFirst32 _ tuple)) => (Select1 tuple)
(Select0 <t> (AddTupleFirst64 val tuple)) => (ADDQ val (Select0 <t> tuple))
(Select1 (AddTupleFirst64 _ tuple)) => (Select1 tuple)
// Atomic compare and swap.
(AtomicCompareAndSwap32 ptr old new_ mem) => (CMPXCHGLlock ptr old new_ mem)
(AtomicCompareAndSwap64 ptr old new_ mem) => (CMPXCHGQlock ptr old new_ mem)
// Atomic memory updates.
(AtomicAnd8 ptr val mem) => (ANDBlock ptr val mem)
(AtomicAnd32 ptr val mem) => (ANDLlock ptr val mem)
(AtomicOr8 ptr val mem) => (ORBlock ptr val mem)
(AtomicOr32 ptr val mem) => (ORLlock ptr val mem)
// Write barrier.
(WB ...) => (LoweredWB ...)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)
// ***************************
// Above: lowering rules
// Below: optimizations
// ***************************
// TODO: Should the optimizations be a separate pass?
// Fold boolean tests into blocks
(NE (TESTB (SETL cmp) (SETL cmp)) yes no) => (LT cmp yes no)
(NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) => (LE cmp yes no)
(NE (TESTB (SETG cmp) (SETG cmp)) yes no) => (GT cmp yes no)
(NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) => (GE cmp yes no)
(NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) => (EQ cmp yes no)
(NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) => (NE cmp yes no)
(NE (TESTB (SETB cmp) (SETB cmp)) yes no) => (ULT cmp yes no)
(NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) => (ULE cmp yes no)
(NE (TESTB (SETA cmp) (SETA cmp)) yes no) => (UGT cmp yes no)
(NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) => (UGE cmp yes no)
(NE (TESTB (SETO cmp) (SETO cmp)) yes no) => (OS cmp yes no)
// Unsigned comparisons to 0/1
(ULT (TEST(Q|L|W|B) x x) yes no) => (First no yes)
(UGE (TEST(Q|L|W|B) x x) yes no) => (First yes no)
(SETB (TEST(Q|L|W|B) x x)) => (ConstBool [false])
(SETAE (TEST(Q|L|W|B) x x)) => (ConstBool [true])
// x & 1 != 0 -> x & 1
(SETNE (TEST(B|W)const [1] x)) => (AND(L|L)const [1] x)
(SETB (BT(L|Q)const [0] x)) => (AND(L|Q)const [1] x)
// Recognize bit tests: a&(1<<b) != 0 for b suitably bounded
// Note that BTx instructions use the carry bit, so we need to convert tests for zero flag
// into tests for carry flags.
// ULT and SETB check the carry flag; they are identical to CS and SETCS. Same, mutatis
// mutandis, for UGE and SETAE, and CC and SETCC.
((NE|EQ) (TESTL (SHLL (MOVLconst [1]) x) y)) => ((ULT|UGE) (BTL x y))
((NE|EQ) (TESTQ (SHLQ (MOVQconst [1]) x) y)) => ((ULT|UGE) (BTQ x y))
((NE|EQ) (TESTLconst [c] x)) && isUint32PowerOfTwo(int64(c))
=> ((ULT|UGE) (BTLconst [int8(log32(c))] x))
((NE|EQ) (TESTQconst [c] x)) && isUint64PowerOfTwo(int64(c))
=> ((ULT|UGE) (BTQconst [int8(log32(c))] x))
((NE|EQ) (TESTQ (MOVQconst [c]) x)) && isUint64PowerOfTwo(c)
=> ((ULT|UGE) (BTQconst [int8(log64(c))] x))
(SET(NE|EQ) (TESTL (SHLL (MOVLconst [1]) x) y)) => (SET(B|AE) (BTL x y))
(SET(NE|EQ) (TESTQ (SHLQ (MOVQconst [1]) x) y)) => (SET(B|AE) (BTQ x y))
(SET(NE|EQ) (TESTLconst [c] x)) && isUint32PowerOfTwo(int64(c))
=> (SET(B|AE) (BTLconst [int8(log32(c))] x))
(SET(NE|EQ) (TESTQconst [c] x)) && isUint64PowerOfTwo(int64(c))
=> (SET(B|AE) (BTQconst [int8(log32(c))] x))
(SET(NE|EQ) (TESTQ (MOVQconst [c]) x)) && isUint64PowerOfTwo(c)
=> (SET(B|AE) (BTQconst [int8(log64(c))] x))
// SET..store variant
(SET(NE|EQ)store [off] {sym} ptr (TESTL (SHLL (MOVLconst [1]) x) y) mem)
=> (SET(B|AE)store [off] {sym} ptr (BTL x y) mem)
(SET(NE|EQ)store [off] {sym} ptr (TESTQ (SHLQ (MOVQconst [1]) x) y) mem)
=> (SET(B|AE)store [off] {sym} ptr (BTQ x y) mem)
(SET(NE|EQ)store [off] {sym} ptr (TESTLconst [c] x) mem) && isUint32PowerOfTwo(int64(c))
=> (SET(B|AE)store [off] {sym} ptr (BTLconst [int8(log32(c))] x) mem)
(SET(NE|EQ)store [off] {sym} ptr (TESTQconst [c] x) mem) && isUint64PowerOfTwo(int64(c))
=> (SET(B|AE)store [off] {sym} ptr (BTQconst [int8(log32(c))] x) mem)
(SET(NE|EQ)store [off] {sym} ptr (TESTQ (MOVQconst [c]) x) mem) && isUint64PowerOfTwo(c)
=> (SET(B|AE)store [off] {sym} ptr (BTQconst [int8(log64(c))] x) mem)
// Handle bit-testing in the form (a>>b)&1 != 0 by building the above rules
// and further combining shifts.
(BT(Q|L)const [c] (SHRQconst [d] x)) && (c+d)<64 => (BTQconst [c+d] x)
(BT(Q|L)const [c] (SHLQconst [d] x)) && c>d => (BT(Q|L)const [c-d] x)
(BT(Q|L)const [0] s:(SHRQ x y)) => (BTQ y x)
(BTLconst [c] (SHRLconst [d] x)) && (c+d)<32 => (BTLconst [c+d] x)
(BTLconst [c] (SHLLconst [d] x)) && c>d => (BTLconst [c-d] x)
(BTLconst [0] s:(SHRL x y)) => (BTL y x)
// Rewrite a & 1 != 1 into a & 1 == 0.
// Among other things, this lets us turn (a>>b)&1 != 1 into a bit test.
(SET(NE|EQ) (CMPLconst [1] s:(ANDLconst [1] _))) => (SET(EQ|NE) (CMPLconst [0] s))
(SET(NE|EQ)store [off] {sym} ptr (CMPLconst [1] s:(ANDLconst [1] _)) mem) => (SET(EQ|NE)store [off] {sym} ptr (CMPLconst [0] s) mem)
(SET(NE|EQ) (CMPQconst [1] s:(ANDQconst [1] _))) => (SET(EQ|NE) (CMPQconst [0] s))
(SET(NE|EQ)store [off] {sym} ptr (CMPQconst [1] s:(ANDQconst [1] _)) mem) => (SET(EQ|NE)store [off] {sym} ptr (CMPQconst [0] s) mem)
// Recognize bit setting (a |= 1<<b) and toggling (a ^= 1<<b)
(OR(Q|L) (SHL(Q|L) (MOV(Q|L)const [1]) y) x) => (BTS(Q|L) x y)
(XOR(Q|L) (SHL(Q|L) (MOV(Q|L)const [1]) y) x) => (BTC(Q|L) x y)
// Convert ORconst into BTS, if the code gets smaller, with boundary being
// (ORL $40,AX is 3 bytes, ORL $80,AX is 6 bytes).
((ORQ|XORQ)const [c] x) && isUint64PowerOfTwo(int64(c)) && uint64(c) >= 128
=> (BT(S|C)Qconst [int8(log32(c))] x)
((ORL|XORL)const [c] x) && isUint32PowerOfTwo(int64(c)) && uint64(c) >= 128
=> (BT(S|C)Lconst [int8(log32(c))] x)
((ORQ|XORQ) (MOVQconst [c]) x) && isUint64PowerOfTwo(c) && uint64(c) >= 128
=> (BT(S|C)Qconst [int8(log64(c))] x)
((ORL|XORL) (MOVLconst [c]) x) && isUint32PowerOfTwo(int64(c)) && uint64(c) >= 128
=> (BT(S|C)Lconst [int8(log32(c))] x)
// Recognize bit clearing: a &^= 1<<b
(AND(Q|L) (NOT(Q|L) (SHL(Q|L) (MOV(Q|L)const [1]) y)) x) => (BTR(Q|L) x y)
(ANDN(Q|L) x (SHL(Q|L) (MOV(Q|L)const [1]) y)) => (BTR(Q|L) x y)
(ANDQconst [c] x) && isUint64PowerOfTwo(int64(^c)) && uint64(^c) >= 128
=> (BTRQconst [int8(log32(^c))] x)
(ANDLconst [c] x) && isUint32PowerOfTwo(int64(^c)) && uint64(^c) >= 128
=> (BTRLconst [int8(log32(^c))] x)
(ANDQ (MOVQconst [c]) x) && isUint64PowerOfTwo(^c) && uint64(^c) >= 128
=> (BTRQconst [int8(log64(^c))] x)
(ANDL (MOVLconst [c]) x) && isUint32PowerOfTwo(int64(^c)) && uint64(^c) >= 128
=> (BTRLconst [int8(log32(^c))] x)
// Special-case bit patterns on first/last bit.
// generic.rules changes ANDs of high-part/low-part masks into a couple of shifts,
// for instance:
// x & 0xFFFF0000 -> (x >> 16) << 16
// x & 0x80000000 -> (x >> 31) << 31
//
// In case the mask is just one bit (like second example above), it conflicts
// with the above rules to detect bit-testing / bit-clearing of first/last bit.
// We thus special-case them, by detecting the shift patterns.
// Special case resetting first/last bit
(SHL(L|Q)const [1] (SHR(L|Q)const [1] x))
=> (BTR(L|Q)const [0] x)
(SHRLconst [1] (SHLLconst [1] x))
=> (BTRLconst [31] x)
(SHRQconst [1] (SHLQconst [1] x))
=> (BTRQconst [63] x)
// Special case testing first/last bit (with double-shift generated by generic.rules)
((SETNE|SETEQ|NE|EQ) (TESTQ z1:(SHLQconst [63] (SHRQconst [63] x)) z2)) && z1==z2
=> ((SETB|SETAE|ULT|UGE) (BTQconst [63] x))
((SETNE|SETEQ|NE|EQ) (TESTL z1:(SHLLconst [31] (SHRQconst [31] x)) z2)) && z1==z2
=> ((SETB|SETAE|ULT|UGE) (BTQconst [31] x))
(SET(NE|EQ)store [off] {sym} ptr (TESTQ z1:(SHLQconst [63] (SHRQconst [63] x)) z2) mem) && z1==z2
=> (SET(B|AE)store [off] {sym} ptr (BTQconst [63] x) mem)
(SET(NE|EQ)store [off] {sym} ptr (TESTL z1:(SHLLconst [31] (SHRLconst [31] x)) z2) mem) && z1==z2
=> (SET(B|AE)store [off] {sym} ptr (BTLconst [31] x) mem)
((SETNE|SETEQ|NE|EQ) (TESTQ z1:(SHRQconst [63] (SHLQconst [63] x)) z2)) && z1==z2
=> ((SETB|SETAE|ULT|UGE) (BTQconst [0] x))
((SETNE|SETEQ|NE|EQ) (TESTL z1:(SHRLconst [31] (SHLLconst [31] x)) z2)) && z1==z2
=> ((SETB|SETAE|ULT|UGE) (BTLconst [0] x))
(SET(NE|EQ)store [off] {sym} ptr (TESTQ z1:(SHRQconst [63] (SHLQconst [63] x)) z2) mem) && z1==z2
=> (SET(B|AE)store [off] {sym} ptr (BTQconst [0] x) mem)
(SET(NE|EQ)store [off] {sym} ptr (TESTL z1:(SHRLconst [31] (SHLLconst [31] x)) z2) mem) && z1==z2
=> (SET(B|AE)store [off] {sym} ptr (BTLconst [0] x) mem)
// Special-case manually testing last bit with "a>>63 != 0" (without "&1")
((SETNE|SETEQ|NE|EQ) (TESTQ z1:(SHRQconst [63] x) z2)) && z1==z2
=> ((SETB|SETAE|ULT|UGE) (BTQconst [63] x))
((SETNE|SETEQ|NE|EQ) (TESTL z1:(SHRLconst [31] x) z2)) && z1==z2
=> ((SETB|SETAE|ULT|UGE) (BTLconst [31] x))
(SET(NE|EQ)store [off] {sym} ptr (TESTQ z1:(SHRQconst [63] x) z2) mem) && z1==z2
=> (SET(B|AE)store [off] {sym} ptr (BTQconst [63] x) mem)
(SET(NE|EQ)store [off] {sym} ptr (TESTL z1:(SHRLconst [31] x) z2) mem) && z1==z2
=> (SET(B|AE)store [off] {sym} ptr (BTLconst [31] x) mem)
// Fold combinations of bit ops on same bit. An example is math.Copysign(c,-1)
(BTS(Q|L)const [c] (BTR(Q|L)const [c] x)) => (BTS(Q|L)const [c] x)
(BTS(Q|L)const [c] (BTC(Q|L)const [c] x)) => (BTS(Q|L)const [c] x)
(BTR(Q|L)const [c] (BTS(Q|L)const [c] x)) => (BTR(Q|L)const [c] x)
(BTR(Q|L)const [c] (BTC(Q|L)const [c] x)) => (BTR(Q|L)const [c] x)
// Fold boolean negation into SETcc.
(XORLconst [1] (SETNE x)) => (SETEQ x)
(XORLconst [1] (SETEQ x)) => (SETNE x)
(XORLconst [1] (SETL x)) => (SETGE x)
(XORLconst [1] (SETGE x)) => (SETL x)
(XORLconst [1] (SETLE x)) => (SETG x)
(XORLconst [1] (SETG x)) => (SETLE x)
(XORLconst [1] (SETB x)) => (SETAE x)
(XORLconst [1] (SETAE x)) => (SETB x)
(XORLconst [1] (SETBE x)) => (SETA x)
(XORLconst [1] (SETA x)) => (SETBE x)
// Special case for floating point - LF/LEF not generated
(NE (TESTB (SETGF cmp) (SETGF cmp)) yes no) => (UGT cmp yes no)
(NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) => (UGE cmp yes no)
(NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) => (EQF cmp yes no)
(NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) => (NEF cmp yes no)
// Disabled because it interferes with the pattern match above and makes worse code.
// (SETNEF x) => (ORQ (SETNE <typ.Int8> x) (SETNAN <typ.Int8> x))
// (SETEQF x) => (ANDQ (SETEQ <typ.Int8> x) (SETORD <typ.Int8> x))
// fold constants into instructions
(ADDQ x (MOVQconst [c])) && is32Bit(c) => (ADDQconst [int32(c)] x)
(ADDQ x (MOVLconst [c])) => (ADDQconst [c] x)
(ADDL x (MOVLconst [c])) => (ADDLconst [c] x)
(SUBQ x (MOVQconst [c])) && is32Bit(c) => (SUBQconst x [int32(c)])
(SUBQ (MOVQconst [c]) x) && is32Bit(c) => (NEGQ (SUBQconst <v.Type> x [int32(c)]))
(SUBL x (MOVLconst [c])) => (SUBLconst x [c])
(SUBL (MOVLconst [c]) x) => (NEGL (SUBLconst <v.Type> x [c]))
(MULQ x (MOVQconst [c])) && is32Bit(c) => (MULQconst [int32(c)] x)
(MULL x (MOVLconst [c])) => (MULLconst [c] x)
(ANDQ x (MOVQconst [c])) && is32Bit(c) => (ANDQconst [int32(c)] x)
(ANDL x (MOVLconst [c])) => (ANDLconst [c] x)
(AND(L|Q)const [c] (AND(L|Q)const [d] x)) => (AND(L|Q)const [c & d] x)
(XOR(L|Q)const [c] (XOR(L|Q)const [d] x)) => (XOR(L|Q)const [c ^ d] x)
(OR(L|Q)const [c] (OR(L|Q)const [d] x)) => (OR(L|Q)const [c | d] x)
(BTRLconst [c] (ANDLconst [d] x)) => (ANDLconst [d &^ (1<<uint32(c))] x)
(ANDLconst [c] (BTRLconst [d] x)) => (ANDLconst [c &^ (1<<uint32(d))] x)
(BTRLconst [c] (BTRLconst [d] x)) => (ANDLconst [^(1<<uint32(c) | 1<<uint32(d))] x)
(BTCLconst [c] (XORLconst [d] x)) => (XORLconst [d ^ 1<<uint32(c)] x)
(XORLconst [c] (BTCLconst [d] x)) => (XORLconst [c ^ 1<<uint32(d)] x)
(BTCLconst [c] (BTCLconst [d] x)) => (XORLconst [1<<uint32(c) | 1<<uint32(d)] x)
(BTSLconst [c] (ORLconst [d] x)) => (ORLconst [d | 1<<uint32(c)] x)
(ORLconst [c] (BTSLconst [d] x)) => (ORLconst [c | 1<<uint32(d)] x)
(BTSLconst [c] (BTSLconst [d] x)) => (ORLconst [1<<uint32(c) | 1<<uint32(d)] x)
(BTRQconst [c] (ANDQconst [d] x)) && is32Bit(int64(d) &^ (1<<uint32(c))) => (ANDQconst [d &^ (1<<uint32(c))] x)
(ANDQconst [c] (BTRQconst [d] x)) && is32Bit(int64(c) &^ (1<<uint32(d))) => (ANDQconst [c &^ (1<<uint32(d))] x)
(BTRQconst [c] (BTRQconst [d] x)) && is32Bit(^(1<<uint32(c) | 1<<uint32(d))) => (ANDQconst [^(1<<uint32(c) | 1<<uint32(d))] x)
(BTCQconst [c] (XORQconst [d] x)) && is32Bit(int64(d) ^ 1<<uint32(c)) => (XORQconst [d ^ 1<<uint32(c)] x)
(XORQconst [c] (BTCQconst [d] x)) && is32Bit(int64(c) ^ 1<<uint32(d)) => (XORQconst [c ^ 1<<uint32(d)] x)
(BTCQconst [c] (BTCQconst [d] x)) && is32Bit(1<<uint32(c) ^ 1<<uint32(d)) => (XORQconst [1<<uint32(c) ^ 1<<uint32(d)] x)
(BTSQconst [c] (ORQconst [d] x)) && is32Bit(int64(d) | 1<<uint32(c)) => (ORQconst [d | 1<<uint32(c)] x)
(ORQconst [c] (BTSQconst [d] x)) && is32Bit(int64(c) | 1<<uint32(d)) => (ORQconst [c | 1<<uint32(d)] x)
(BTSQconst [c] (BTSQconst [d] x)) && is32Bit(1<<uint32(c) | 1<<uint32(d)) => (ORQconst [1<<uint32(c) | 1<<uint32(d)] x)
(MULLconst [c] (MULLconst [d] x)) => (MULLconst [c * d] x)
(MULQconst [c] (MULQconst [d] x)) && is32Bit(int64(c)*int64(d)) => (MULQconst [c * d] x)
(ORQ x (MOVQconst [c])) && is32Bit(c) => (ORQconst [int32(c)] x)
(ORQ x (MOVLconst [c])) => (ORQconst [c] x)
(ORL x (MOVLconst [c])) => (ORLconst [c] x)
(XORQ x (MOVQconst [c])) && is32Bit(c) => (XORQconst [int32(c)] x)
(XORL x (MOVLconst [c])) => (XORLconst [c] x)
(SHLQ x (MOV(Q|L)const [c])) => (SHLQconst [int8(c&63)] x)
(SHLL x (MOV(Q|L)const [c])) => (SHLLconst [int8(c&31)] x)
(SHRQ x (MOV(Q|L)const [c])) => (SHRQconst [int8(c&63)] x)
(SHRL x (MOV(Q|L)const [c])) => (SHRLconst [int8(c&31)] x)
(SHRW x (MOV(Q|L)const [c])) && c&31 < 16 => (SHRWconst [int8(c&31)] x)
(SHRW _ (MOV(Q|L)const [c])) && c&31 >= 16 => (MOVLconst [0])
(SHRB x (MOV(Q|L)const [c])) && c&31 < 8 => (SHRBconst [int8(c&31)] x)
(SHRB _ (MOV(Q|L)const [c])) && c&31 >= 8 => (MOVLconst [0])
(SARQ x (MOV(Q|L)const [c])) => (SARQconst [int8(c&63)] x)
(SARL x (MOV(Q|L)const [c])) => (SARLconst [int8(c&31)] x)
(SARW x (MOV(Q|L)const [c])) => (SARWconst [int8(min(int64(c)&31,15))] x)
(SARB x (MOV(Q|L)const [c])) => (SARBconst [int8(min(int64(c)&31,7))] x)
// Operations which don't affect the low 6/5 bits of the shift amount are NOPs.
((SHLQ|SHRQ|SARQ) x (ADDQconst [c] y)) && c & 63 == 0 => ((SHLQ|SHRQ|SARQ) x y)
((SHLQ|SHRQ|SARQ) x (NEGQ <t> (ADDQconst [c] y))) && c & 63 == 0 => ((SHLQ|SHRQ|SARQ) x (NEGQ <t> y))
((SHLQ|SHRQ|SARQ) x (ANDQconst [c] y)) && c & 63 == 63 => ((SHLQ|SHRQ|SARQ) x y)
((SHLQ|SHRQ|SARQ) x (NEGQ <t> (ANDQconst [c] y))) && c & 63 == 63 => ((SHLQ|SHRQ|SARQ) x (NEGQ <t> y))
((SHLL|SHRL|SARL) x (ADDQconst [c] y)) && c & 31 == 0 => ((SHLL|SHRL|SARL) x y)
((SHLL|SHRL|SARL) x (NEGQ <t> (ADDQconst [c] y))) && c & 31 == 0 => ((SHLL|SHRL|SARL) x (NEGQ <t> y))
((SHLL|SHRL|SARL) x (ANDQconst [c] y)) && c & 31 == 31 => ((SHLL|SHRL|SARL) x y)
((SHLL|SHRL|SARL) x (NEGQ <t> (ANDQconst [c] y))) && c & 31 == 31 => ((SHLL|SHRL|SARL) x (NEGQ <t> y))
((SHLQ|SHRQ|SARQ) x (ADDLconst [c] y)) && c & 63 == 0 => ((SHLQ|SHRQ|SARQ) x y)
((SHLQ|SHRQ|SARQ) x (NEGL <t> (ADDLconst [c] y))) && c & 63 == 0 => ((SHLQ|SHRQ|SARQ) x (NEGL <t> y))
((SHLQ|SHRQ|SARQ) x (ANDLconst [c] y)) && c & 63 == 63 => ((SHLQ|SHRQ|SARQ) x y)
((SHLQ|SHRQ|SARQ) x (NEGL <t> (ANDLconst [c] y))) && c & 63 == 63 => ((SHLQ|SHRQ|SARQ) x (NEGL <t> y))
((SHLL|SHRL|SARL) x (ADDLconst [c] y)) && c & 31 == 0 => ((SHLL|SHRL|SARL) x y)
((SHLL|SHRL|SARL) x (NEGL <t> (ADDLconst [c] y))) && c & 31 == 0 => ((SHLL|SHRL|SARL) x (NEGL <t> y))
((SHLL|SHRL|SARL) x (ANDLconst [c] y)) && c & 31 == 31 => ((SHLL|SHRL|SARL) x y)
((SHLL|SHRL|SARL) x (NEGL <t> (ANDLconst [c] y))) && c & 31 == 31 => ((SHLL|SHRL|SARL) x (NEGL <t> y))
// Constant rotate instructions
((ADDQ|ORQ|XORQ) (SHLQconst x [c]) (SHRQconst x [d])) && d==64-c => (ROLQconst x [c])
((ADDL|ORL|XORL) (SHLLconst x [c]) (SHRLconst x [d])) && d==32-c => (ROLLconst x [c])
((ADDL|ORL|XORL) <t> (SHLLconst x [c]) (SHRWconst x [d])) && d==16-c && c < 16 && t.Size() == 2 => (ROLWconst x [c])
((ADDL|ORL|XORL) <t> (SHLLconst x [c]) (SHRBconst x [d])) && d==8-c && c < 8 && t.Size() == 1 => (ROLBconst x [c])
(ROLQconst [c] (ROLQconst [d] x)) => (ROLQconst [(c+d)&63] x)
(ROLLconst [c] (ROLLconst [d] x)) => (ROLLconst [(c+d)&31] x)
(ROLWconst [c] (ROLWconst [d] x)) => (ROLWconst [(c+d)&15] x)
(ROLBconst [c] (ROLBconst [d] x)) => (ROLBconst [(c+d)& 7] x)
(RotateLeft8 ...) => (ROLB ...)
(RotateLeft16 ...) => (ROLW ...)
(RotateLeft32 ...) => (ROLL ...)
(RotateLeft64 ...) => (ROLQ ...)
// Non-constant rotates.
// We want to issue a rotate when the Go source contains code like
// y &= 63
// x << y | x >> (64-y)
// The shift rules above convert << to SHLx and >> to SHRx.
// SHRx converts its shift argument from 64-y to -y.
// A tricky situation occurs when y==0. Then the original code would be:
// x << 0 | x >> 64
// But x >> 64 is 0, not x. So there's an additional mask that is ANDed in
// to force the second term to 0. We don't need that mask, but we must match
// it in order to strip it out.
(ORQ (SHLQ x y) (ANDQ (SHRQ x (NEG(Q|L) y)) (SBBQcarrymask (CMP(Q|L)const (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [63]) [-64])) [64])))) => (ROLQ x y)
(ORQ (SHRQ x y) (ANDQ (SHLQ x (NEG(Q|L) y)) (SBBQcarrymask (CMP(Q|L)const (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [63]) [-64])) [64])))) => (RORQ x y)
(ORL (SHLL x y) (ANDL (SHRL x (NEG(Q|L) y)) (SBBLcarrymask (CMP(Q|L)const (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [31]) [-32])) [32])))) => (ROLL x y)
(ORL (SHRL x y) (ANDL (SHLL x (NEG(Q|L) y)) (SBBLcarrymask (CMP(Q|L)const (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [31]) [-32])) [32])))) => (RORL x y)
// Help with rotate detection
(CMPQconst (NEGQ (ADDQconst [-16] (ANDQconst [15] _))) [32]) => (FlagLT_ULT)
(CMPQconst (NEGQ (ADDQconst [ -8] (ANDQconst [7] _))) [32]) => (FlagLT_ULT)
(ORL (SHLL x (AND(Q|L)const y [15]))
(ANDL (SHRW x (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [15]) [-16])))
(SBBLcarrymask (CMP(Q|L)const (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [15]) [-16])) [16]))))
&& v.Type.Size() == 2
=> (ROLW x y)
(ORL (SHRW x (AND(Q|L)const y [15]))
(SHLL x (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [15]) [-16]))))
&& v.Type.Size() == 2
=> (RORW x y)
(ORL (SHLL x (AND(Q|L)const y [ 7]))
(ANDL (SHRB x (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [ 7]) [ -8])))
(SBBLcarrymask (CMP(Q|L)const (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [ 7]) [ -8])) [ 8]))))
&& v.Type.Size() == 1
=> (ROLB x y)
(ORL (SHRB x (AND(Q|L)const y [ 7]))
(SHLL x (NEG(Q|L) (ADD(Q|L)const (AND(Q|L)const y [ 7]) [ -8]))))
&& v.Type.Size() == 1
=> (RORB x y)
// rotate left negative = rotate right
(ROLQ x (NEG(Q|L) y)) => (RORQ x y)
(ROLL x (NEG(Q|L) y)) => (RORL x y)
(ROLW x (NEG(Q|L) y)) => (RORW x y)
(ROLB x (NEG(Q|L) y)) => (RORB x y)
// rotate right negative = rotate left
(RORQ x (NEG(Q|L) y)) => (ROLQ x y)
(RORL x (NEG(Q|L) y)) => (ROLL x y)
(RORW x (NEG(Q|L) y)) => (ROLW x y)
(RORB x (NEG(Q|L) y)) => (ROLB x y)
// rotate by constants
(ROLQ x (MOV(Q|L)const [c])) => (ROLQconst [int8(c&63)] x)
(ROLL x (MOV(Q|L)const [c])) => (ROLLconst [int8(c&31)] x)
(ROLW x (MOV(Q|L)const [c])) => (ROLWconst [int8(c&15)] x)
(ROLB x (MOV(Q|L)const [c])) => (ROLBconst [int8(c&7) ] x)
(RORQ x (MOV(Q|L)const [c])) => (ROLQconst [int8((-c)&63)] x)
(RORL x (MOV(Q|L)const [c])) => (ROLLconst [int8((-c)&31)] x)
(RORW x (MOV(Q|L)const [c])) => (ROLWconst [int8((-c)&15)] x)
(RORB x (MOV(Q|L)const [c])) => (ROLBconst [int8((-c)&7) ] x)
// Constant shift simplifications
((SHLQ|SHRQ|SARQ)const x [0]) => x
((SHLL|SHRL|SARL)const x [0]) => x
((SHRW|SARW)const x [0]) => x
((SHRB|SARB)const x [0]) => x
((ROLQ|ROLL|ROLW|ROLB)const x [0]) => x
// Multi-register shifts
(ORQ (SH(R|L)Q lo bits) (SH(L|R)Q hi (NEGQ bits))) => (SH(R|L)DQ lo hi bits)
// Note: the word and byte shifts keep the low 5 bits (not the low 4 or 3 bits)
// because the x86 instructions are defined to use all 5 bits of the shift even
// for the small shifts. I don't think we'll ever generate a weird shift (e.g.
// (SHRW x (MOVLconst [24])), but just in case.
(CMPQ x (MOVQconst [c])) && is32Bit(c) => (CMPQconst x [int32(c)])
(CMPQ (MOVQconst [c]) x) && is32Bit(c) => (InvertFlags (CMPQconst x [int32(c)]))
(CMPL x (MOVLconst [c])) => (CMPLconst x [c])
(CMPL (MOVLconst [c]) x) => (InvertFlags (CMPLconst x [c]))
(CMPW x (MOVLconst [c])) => (CMPWconst x [int16(c)])
(CMPW (MOVLconst [c]) x) => (InvertFlags (CMPWconst x [int16(c)]))
(CMPB x (MOVLconst [c])) => (CMPBconst x [int8(c)])
(CMPB (MOVLconst [c]) x) => (InvertFlags (CMPBconst x [int8(c)]))
// Canonicalize the order of arguments to comparisons - helps with CSE.
(CMP(Q|L|W|B) x y) && canonLessThan(x,y) => (InvertFlags (CMP(Q|L|W|B) y x))
// Using MOVZX instead of AND is cheaper.
(AND(Q|L)const [ 0xFF] x) => (MOVBQZX x)
(AND(Q|L)const [0xFFFF] x) => (MOVWQZX x)
// This rule is currently invalid because 0xFFFFFFFF is not representable by a signed int32.
// Commenting out for now, because it also can't trigger because of the is32bit guard on the
// ANDQconst lowering-rule, above, prevents 0xFFFFFFFF from matching (for the same reason)
// Using an alternate form of this rule segfaults some binaries because of
// adverse interactions with other passes.
// (ANDQconst [0xFFFFFFFF] x) => (MOVLQZX x)
// strength reduction
// Assumes that the following costs from https://gmplib.org/~tege/x86-timing.pdf:
// 1 - addq, shlq, leaq, negq, subq
// 3 - imulq
// This limits the rewrites to two instructions.
// Note that negq always operates in-place,
// which can require a register-register move
// to preserve the original value,
// so it must be used with care.
(MUL(Q|L)const [-9] x) => (NEG(Q|L) (LEA(Q|L)8 <v.Type> x x))
(MUL(Q|L)const [-5] x) => (NEG(Q|L) (LEA(Q|L)4 <v.Type> x x))
(MUL(Q|L)const [-3] x) => (NEG(Q|L) (LEA(Q|L)2 <v.Type> x x))
(MUL(Q|L)const [-1] x) => (NEG(Q|L) x)
(MUL(Q|L)const [ 0] _) => (MOV(Q|L)const [0])
(MUL(Q|L)const [ 1] x) => x
(MUL(Q|L)const [ 3] x) => (LEA(Q|L)2 x x)
(MUL(Q|L)const [ 5] x) => (LEA(Q|L)4 x x)
(MUL(Q|L)const [ 7] x) => (LEA(Q|L)2 x (LEA(Q|L)2 <v.Type> x x))
(MUL(Q|L)const [ 9] x) => (LEA(Q|L)8 x x)
(MUL(Q|L)const [11] x) => (LEA(Q|L)2 x (LEA(Q|L)4 <v.Type> x x))
(MUL(Q|L)const [13] x) => (LEA(Q|L)4 x (LEA(Q|L)2 <v.Type> x x))
(MUL(Q|L)const [19] x) => (LEA(Q|L)2 x (LEA(Q|L)8 <v.Type> x x))
(MUL(Q|L)const [21] x) => (LEA(Q|L)4 x (LEA(Q|L)4 <v.Type> x x))
(MUL(Q|L)const [25] x) => (LEA(Q|L)8 x (LEA(Q|L)2 <v.Type> x x))
(MUL(Q|L)const [27] x) => (LEA(Q|L)8 (LEA(Q|L)2 <v.Type> x x) (LEA(Q|L)2 <v.Type> x x))
(MUL(Q|L)const [37] x) => (LEA(Q|L)4 x (LEA(Q|L)8 <v.Type> x x))
(MUL(Q|L)const [41] x) => (LEA(Q|L)8 x (LEA(Q|L)4 <v.Type> x x))
(MUL(Q|L)const [45] x) => (LEA(Q|L)8 (LEA(Q|L)4 <v.Type> x x) (LEA(Q|L)4 <v.Type> x x))
(MUL(Q|L)const [73] x) => (LEA(Q|L)8 x (LEA(Q|L)8 <v.Type> x x))
(MUL(Q|L)const [81] x) => (LEA(Q|L)8 (LEA(Q|L)8 <v.Type> x x) (LEA(Q|L)8 <v.Type> x x))
(MUL(Q|L)const [c] x) && isPowerOfTwo64(int64(c)+1) && c >= 15 => (SUB(Q|L) (SHL(Q|L)const <v.Type> [int8(log64(int64(c)+1))] x) x)
(MUL(Q|L)const [c] x) && isPowerOfTwo32(c-1) && c >= 17 => (LEA(Q|L)1 (SHL(Q|L)const <v.Type> [int8(log32(c-1))] x) x)
(MUL(Q|L)const [c] x) && isPowerOfTwo32(c-2) && c >= 34 => (LEA(Q|L)2 (SHL(Q|L)const <v.Type> [int8(log32(c-2))] x) x)
(MUL(Q|L)const [c] x) && isPowerOfTwo32(c-4) && c >= 68 => (LEA(Q|L)4 (SHL(Q|L)const <v.Type> [int8(log32(c-4))] x) x)
(MUL(Q|L)const [c] x) && isPowerOfTwo32(c-8) && c >= 136 => (LEA(Q|L)8 (SHL(Q|L)const <v.Type> [int8(log32(c-8))] x) x)
(MUL(Q|L)const [c] x) && c%3 == 0 && isPowerOfTwo32(c/3) => (SHL(Q|L)const [int8(log32(c/3))] (LEA(Q|L)2 <v.Type> x x))
(MUL(Q|L)const [c] x) && c%5 == 0 && isPowerOfTwo32(c/5) => (SHL(Q|L)const [int8(log32(c/5))] (LEA(Q|L)4 <v.Type> x x))
(MUL(Q|L)const [c] x) && c%9 == 0 && isPowerOfTwo32(c/9) => (SHL(Q|L)const [int8(log32(c/9))] (LEA(Q|L)8 <v.Type> x x))
// combine add/shift into LEAQ/LEAL
(ADD(L|Q) x (SHL(L|Q)const [3] y)) => (LEA(L|Q)8 x y)
(ADD(L|Q) x (SHL(L|Q)const [2] y)) => (LEA(L|Q)4 x y)
(ADD(L|Q) x (SHL(L|Q)const [1] y)) => (LEA(L|Q)2 x y)
(ADD(L|Q) x (ADD(L|Q) y y)) => (LEA(L|Q)2 x y)
(ADD(L|Q) x (ADD(L|Q) x y)) => (LEA(L|Q)2 y x)
// combine ADDQ/ADDQconst into LEAQ1/LEAL1
(ADD(Q|L)const [c] (ADD(Q|L) x y)) => (LEA(Q|L)1 [c] x y)
(ADD(Q|L) (ADD(Q|L)const [c] x) y) => (LEA(Q|L)1 [c] x y)
(ADD(Q|L)const [c] (SHL(Q|L)const [1] x)) => (LEA(Q|L)1 [c] x x)
// fold ADDQ/ADDL into LEAQ/LEAL
(ADD(Q|L)const [c] (LEA(Q|L) [d] {s} x)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L) [c+d] {s} x)
(LEA(Q|L) [c] {s} (ADD(Q|L)const [d] x)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L) [c+d] {s} x)
(LEA(Q|L) [c] {s} (ADD(Q|L) x y)) && x.Op != OpSB && y.Op != OpSB => (LEA(Q|L)1 [c] {s} x y)
(ADD(Q|L) x (LEA(Q|L) [c] {s} y)) && x.Op != OpSB && y.Op != OpSB => (LEA(Q|L)1 [c] {s} x y)
// fold ADDQconst/ADDLconst into LEAQx/LEALx
(ADD(Q|L)const [c] (LEA(Q|L)1 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L)1 [c+d] {s} x y)
(ADD(Q|L)const [c] (LEA(Q|L)2 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L)2 [c+d] {s} x y)
(ADD(Q|L)const [c] (LEA(Q|L)4 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L)4 [c+d] {s} x y)
(ADD(Q|L)const [c] (LEA(Q|L)8 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L)8 [c+d] {s} x y)
(LEA(Q|L)1 [c] {s} (ADD(Q|L)const [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEA(Q|L)1 [c+d] {s} x y)
(LEA(Q|L)2 [c] {s} (ADD(Q|L)const [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEA(Q|L)2 [c+d] {s} x y)
(LEA(Q|L)2 [c] {s} x (ADD(Q|L)const [d] y)) && is32Bit(int64(c)+2*int64(d)) && y.Op != OpSB => (LEA(Q|L)2 [c+2*d] {s} x y)
(LEA(Q|L)4 [c] {s} (ADD(Q|L)const [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEA(Q|L)4 [c+d] {s} x y)
(LEA(Q|L)4 [c] {s} x (ADD(Q|L)const [d] y)) && is32Bit(int64(c)+4*int64(d)) && y.Op != OpSB => (LEA(Q|L)4 [c+4*d] {s} x y)
(LEA(Q|L)8 [c] {s} (ADD(Q|L)const [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEA(Q|L)8 [c+d] {s} x y)
(LEA(Q|L)8 [c] {s} x (ADD(Q|L)const [d] y)) && is32Bit(int64(c)+8*int64(d)) && y.Op != OpSB => (LEA(Q|L)8 [c+8*d] {s} x y)
// fold shifts into LEAQx/LEALx
(LEA(Q|L)1 [c] {s} x (SHL(Q|L)const [1] y)) => (LEA(Q|L)2 [c] {s} x y)
(LEA(Q|L)1 [c] {s} x (SHL(Q|L)const [2] y)) => (LEA(Q|L)4 [c] {s} x y)
(LEA(Q|L)1 [c] {s} x (SHL(Q|L)const [3] y)) => (LEA(Q|L)8 [c] {s} x y)
(LEA(Q|L)2 [c] {s} x (SHL(Q|L)const [1] y)) => (LEA(Q|L)4 [c] {s} x y)
(LEA(Q|L)2 [c] {s} x (SHL(Q|L)const [2] y)) => (LEA(Q|L)8 [c] {s} x y)
(LEA(Q|L)4 [c] {s} x (SHL(Q|L)const [1] y)) => (LEA(Q|L)8 [c] {s} x y)
// reverse ordering of compare instruction
(SETL (InvertFlags x)) => (SETG x)
(SETG (InvertFlags x)) => (SETL x)
(SETB (InvertFlags x)) => (SETA x)
(SETA (InvertFlags x)) => (SETB x)
(SETLE (InvertFlags x)) => (SETGE x)
(SETGE (InvertFlags x)) => (SETLE x)
(SETBE (InvertFlags x)) => (SETAE x)
(SETAE (InvertFlags x)) => (SETBE x)
(SETEQ (InvertFlags x)) => (SETEQ x)
(SETNE (InvertFlags x)) => (SETNE x)
(SETLstore [off] {sym} ptr (InvertFlags x) mem) => (SETGstore [off] {sym} ptr x mem)
(SETGstore [off] {sym} ptr (InvertFlags x) mem) => (SETLstore [off] {sym} ptr x mem)
(SETBstore [off] {sym} ptr (InvertFlags x) mem) => (SETAstore [off] {sym} ptr x mem)
(SETAstore [off] {sym} ptr (InvertFlags x) mem) => (SETBstore [off] {sym} ptr x mem)
(SETLEstore [off] {sym} ptr (InvertFlags x) mem) => (SETGEstore [off] {sym} ptr x mem)
(SETGEstore [off] {sym} ptr (InvertFlags x) mem) => (SETLEstore [off] {sym} ptr x mem)
(SETBEstore [off] {sym} ptr (InvertFlags x) mem) => (SETAEstore [off] {sym} ptr x mem)
(SETAEstore [off] {sym} ptr (InvertFlags x) mem) => (SETBEstore [off] {sym} ptr x mem)
(SETEQstore [off] {sym} ptr (InvertFlags x) mem) => (SETEQstore [off] {sym} ptr x mem)
(SETNEstore [off] {sym} ptr (InvertFlags x) mem) => (SETNEstore [off] {sym} ptr x mem)
// sign extended loads
// Note: The combined instruction must end up in the same block
// as the original load. If not, we end up making a value with
// memory type live in two different blocks, which can lead to
// multiple memory values alive simultaneously.
// Make sure we don't combine these ops if the load has another use.
// This prevents a single load from being split into multiple loads
// which then might return different values. See test/atomicload.go.
(MOVBQSX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBQSXload <v.Type> [off] {sym} ptr mem)
(MOVBQSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBQSXload <v.Type> [off] {sym} ptr mem)
(MOVBQSX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBQSXload <v.Type> [off] {sym} ptr mem)
(MOVBQSX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBQSXload <v.Type> [off] {sym} ptr mem)
(MOVBQZX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
(MOVBQZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
(MOVBQZX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
(MOVBQZX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
(MOVWQSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWQSXload <v.Type> [off] {sym} ptr mem)
(MOVWQSX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWQSXload <v.Type> [off] {sym} ptr mem)
(MOVWQSX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWQSXload <v.Type> [off] {sym} ptr mem)
(MOVWQZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)
(MOVWQZX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)
(MOVWQZX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)
(MOVLQSX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVLQSXload <v.Type> [off] {sym} ptr mem)
(MOVLQSX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVLQSXload <v.Type> [off] {sym} ptr mem)
(MOVLQZX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVLload <v.Type> [off] {sym} ptr mem)
(MOVLQZX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVLload <v.Type> [off] {sym} ptr mem)
(MOVLQZX x) && zeroUpper32Bits(x,3) => x
(MOVWQZX x) && zeroUpper48Bits(x,3) => x
(MOVBQZX x) && zeroUpper56Bits(x,3) => x
// replace load from same location as preceding store with zero/sign extension (or copy in case of full width)
(MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBQZX x)
(MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWQZX x)
(MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVLQZX x)
(MOVQload [off] {sym} ptr (MOVQstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => x
(MOVBQSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBQSX x)
(MOVWQSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWQSX x)
(MOVLQSXload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVLQSX x)
// Fold extensions and ANDs together.
(MOVBQZX (ANDLconst [c] x)) => (ANDLconst [c & 0xff] x)
(MOVWQZX (ANDLconst [c] x)) => (ANDLconst [c & 0xffff] x)
(MOVLQZX (ANDLconst [c] x)) => (ANDLconst [c] x)
(MOVBQSX (ANDLconst [c] x)) && c & 0x80 == 0 => (ANDLconst [c & 0x7f] x)
(MOVWQSX (ANDLconst [c] x)) && c & 0x8000 == 0 => (ANDLconst [c & 0x7fff] x)
(MOVLQSX (ANDLconst [c] x)) && uint32(c) & 0x80000000 == 0 => (ANDLconst [c & 0x7fffffff] x)
// Don't extend before storing
(MOVLstore [off] {sym} ptr (MOVLQSX x) mem) => (MOVLstore [off] {sym} ptr x mem)
(MOVWstore [off] {sym} ptr (MOVWQSX x) mem) => (MOVWstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr (MOVBQSX x) mem) => (MOVBstore [off] {sym} ptr x mem)
(MOVLstore [off] {sym} ptr (MOVLQZX x) mem) => (MOVLstore [off] {sym} ptr x mem)
(MOVWstore [off] {sym} ptr (MOVWQZX x) mem) => (MOVWstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr (MOVBQZX x) mem) => (MOVBstore [off] {sym} ptr x mem)
// fold constants into memory operations
// Note that this is not always a good idea because if not all the uses of
// the ADDQconst get eliminated, we still have to compute the ADDQconst and we now
// have potentially two live values (ptr and (ADDQconst [off] ptr)) instead of one.
// Nevertheless, let's do it!
(MOV(Q|L|W|B|SS|SD|O)load [off1] {sym} (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
(MOV(Q|L|W|B|SS|SD|O)load [off1+off2] {sym} ptr mem)
(MOV(Q|L|W|B|SS|SD|O)store [off1] {sym} (ADDQconst [off2] ptr) val mem) && is32Bit(int64(off1)+int64(off2)) =>
(MOV(Q|L|W|B|SS|SD|O)store [off1+off2] {sym} ptr val mem)
(SET(L|G|B|A|LE|GE|BE|AE|EQ|NE)store [off1] {sym} (ADDQconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
(SET(L|G|B|A|LE|GE|BE|AE|EQ|NE)store [off1+off2] {sym} base val mem)
((ADD|SUB|AND|OR|XOR)Qload [off1] {sym} val (ADDQconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
((ADD|SUB|AND|OR|XOR)Qload [off1+off2] {sym} val base mem)
((ADD|SUB|AND|OR|XOR)Lload [off1] {sym} val (ADDQconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
((ADD|SUB|AND|OR|XOR)Lload [off1+off2] {sym} val base mem)
(CMP(Q|L|W|B)load [off1] {sym} (ADDQconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
(CMP(Q|L|W|B)load [off1+off2] {sym} base val mem)
(CMP(Q|L|W|B)constload [valoff1] {sym} (ADDQconst [off2] base) mem) && ValAndOff(valoff1).canAdd32(off2) =>
(CMP(Q|L|W|B)constload [ValAndOff(valoff1).addOffset32(off2)] {sym} base mem)
((ADD|SUB|MUL|DIV)SSload [off1] {sym} val (ADDQconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
((ADD|SUB|MUL|DIV)SSload [off1+off2] {sym} val base mem)
((ADD|SUB|MUL|DIV)SDload [off1] {sym} val (ADDQconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
((ADD|SUB|MUL|DIV)SDload [off1+off2] {sym} val base mem)
((ADD|AND|OR|XOR)Qconstmodify [valoff1] {sym} (ADDQconst [off2] base) mem) && ValAndOff(valoff1).canAdd32(off2) =>
((ADD|AND|OR|XOR)Qconstmodify [ValAndOff(valoff1).addOffset32(off2)] {sym} base mem)
((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym} (ADDQconst [off2] base) mem) && ValAndOff(valoff1).canAdd32(off2) =>
((ADD|AND|OR|XOR)Lconstmodify [ValAndOff(valoff1).addOffset32(off2)] {sym} base mem)
((ADD|SUB|AND|OR|XOR)Qmodify [off1] {sym} (ADDQconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
((ADD|SUB|AND|OR|XOR)Qmodify [off1+off2] {sym} base val mem)
((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym} (ADDQconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {sym} base val mem)
// Fold constants into stores.
(MOVQstore [off] {sym} ptr (MOVQconst [c]) mem) && validVal(c) =>
(MOVQstoreconst [makeValAndOff(int32(c),off)] {sym} ptr mem)
(MOVLstore [off] {sym} ptr (MOV(L|Q)const [c]) mem) =>
(MOVLstoreconst [makeValAndOff(int32(c),off)] {sym} ptr mem)
(MOVWstore [off] {sym} ptr (MOV(L|Q)const [c]) mem) =>
(MOVWstoreconst [makeValAndOff(int32(int16(c)),off)] {sym} ptr mem)
(MOVBstore [off] {sym} ptr (MOV(L|Q)const [c]) mem) =>
(MOVBstoreconst [makeValAndOff(int32(int8(c)),off)] {sym} ptr mem)
// Fold address offsets into constant stores.
(MOV(Q|L|W|B|O)storeconst [sc] {s} (ADDQconst [off] ptr) mem) && ValAndOff(sc).canAdd32(off) =>
(MOV(Q|L|W|B|O)storeconst [ValAndOff(sc).addOffset32(off)] {s} ptr mem)
// We need to fold LEAQ into the MOVx ops so that the live variable analysis knows
// what variables are being read/written by the ops.
(MOV(Q|L|W|B|SS|SD|O|BQSX|WQSX|LQSX)load [off1] {sym1} (LEAQ [off2] {sym2} base) mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOV(Q|L|W|B|SS|SD|O|BQSX|WQSX|LQSX)load [off1+off2] {mergeSym(sym1,sym2)} base mem)
(MOV(Q|L|W|B|SS|SD|O)store [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOV(Q|L|W|B|SS|SD|O)store [off1+off2] {mergeSym(sym1,sym2)} base val mem)
(MOV(Q|L|W|B|O)storeconst [sc] {sym1} (LEAQ [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && ValAndOff(sc).canAdd32(off) =>
(MOV(Q|L|W|B|O)storeconst [ValAndOff(sc).addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem)
(SET(L|G|B|A|LE|GE|BE|AE|EQ|NE)store [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(SET(L|G|B|A|LE|GE|BE|AE|EQ|NE)store [off1+off2] {mergeSym(sym1,sym2)} base val mem)
((ADD|SUB|AND|OR|XOR)Qload [off1] {sym1} val (LEAQ [off2] {sym2} base) mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
((ADD|SUB|AND|OR|XOR)Qload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
((ADD|SUB|AND|OR|XOR)Lload [off1] {sym1} val (LEAQ [off2] {sym2} base) mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
((ADD|SUB|AND|OR|XOR)Lload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
(CMP(Q|L|W|B)load [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(CMP(Q|L|W|B)load [off1+off2] {mergeSym(sym1,sym2)} base val mem)
(CMP(Q|L|W|B)constload [valoff1] {sym1} (LEAQ [off2] {sym2} base) mem)
&& ValAndOff(valoff1).canAdd32(off2) && canMergeSym(sym1, sym2) =>
(CMP(Q|L|W|B)constload [ValAndOff(valoff1).addOffset32(off2)] {mergeSym(sym1,sym2)} base mem)
((ADD|SUB|MUL|DIV)SSload [off1] {sym1} val (LEAQ [off2] {sym2} base) mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
((ADD|SUB|MUL|DIV)SSload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
((ADD|SUB|MUL|DIV)SDload [off1] {sym1} val (LEAQ [off2] {sym2} base) mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
((ADD|SUB|MUL|DIV)SDload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
((ADD|AND|OR|XOR)Qconstmodify [valoff1] {sym1} (LEAQ [off2] {sym2} base) mem)
&& ValAndOff(valoff1).canAdd32(off2) && canMergeSym(sym1, sym2) =>
((ADD|AND|OR|XOR)Qconstmodify [ValAndOff(valoff1).addOffset32(off2)] {mergeSym(sym1,sym2)} base mem)
((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym1} (LEAQ [off2] {sym2} base) mem)
&& ValAndOff(valoff1).canAdd32(off2) && canMergeSym(sym1, sym2) =>
((ADD|AND|OR|XOR)Lconstmodify [ValAndOff(valoff1).addOffset32(off2)] {mergeSym(sym1,sym2)} base mem)
((ADD|SUB|AND|OR|XOR)Qmodify [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
((ADD|SUB|AND|OR|XOR)Qmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem)
((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem)
// fold LEAQs together
(LEAQ [off1] {sym1} (LEAQ [off2] {sym2} x)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(LEAQ [off1+off2] {mergeSym(sym1,sym2)} x)
// LEAQ into LEAQ1
(LEAQ1 [off1] {sym1} (LEAQ [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
(LEAQ1 [off1+off2] {mergeSym(sym1,sym2)} x y)
// LEAQ1 into LEAQ
(LEAQ [off1] {sym1} (LEAQ1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(LEAQ1 [off1+off2] {mergeSym(sym1,sym2)} x y)
// LEAQ into LEAQ[248]
(LEAQ2 [off1] {sym1} (LEAQ [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
(LEAQ2 [off1+off2] {mergeSym(sym1,sym2)} x y)
(LEAQ4 [off1] {sym1} (LEAQ [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
(LEAQ4 [off1+off2] {mergeSym(sym1,sym2)} x y)
(LEAQ8 [off1] {sym1} (LEAQ [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
(LEAQ8 [off1+off2] {mergeSym(sym1,sym2)} x y)
// LEAQ[248] into LEAQ
(LEAQ [off1] {sym1} (LEAQ2 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(LEAQ2 [off1+off2] {mergeSym(sym1,sym2)} x y)
(LEAQ [off1] {sym1} (LEAQ4 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(LEAQ4 [off1+off2] {mergeSym(sym1,sym2)} x y)
(LEAQ [off1] {sym1} (LEAQ8 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(LEAQ8 [off1+off2] {mergeSym(sym1,sym2)} x y)
// LEAQ[1248] into LEAQ[1248]. Only some such merges are possible.
(LEAQ1 [off1] {sym1} x (LEAQ1 [off2] {sym2} y y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(LEAQ2 [off1+off2] {mergeSym(sym1, sym2)} x y)
(LEAQ1 [off1] {sym1} x (LEAQ1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(LEAQ2 [off1+off2] {mergeSym(sym1, sym2)} y x)
(LEAQ2 [off1] {sym1} x (LEAQ1 [off2] {sym2} y y)) && is32Bit(int64(off1)+2*int64(off2)) && sym2 == nil =>
(LEAQ4 [off1+2*off2] {sym1} x y)
(LEAQ4 [off1] {sym1} x (LEAQ1 [off2] {sym2} y y)) && is32Bit(int64(off1)+4*int64(off2)) && sym2 == nil =>
(LEAQ8 [off1+4*off2] {sym1} x y)
// TODO: more?
// Lower LEAQ2/4/8 when the offset is a constant
(LEAQ2 [off] {sym} x (MOV(Q|L)const [scale])) && is32Bit(int64(off)+int64(scale)*2) =>
(LEAQ [off+int32(scale)*2] {sym} x)
(LEAQ4 [off] {sym} x (MOV(Q|L)const [scale])) && is32Bit(int64(off)+int64(scale)*4) =>
(LEAQ [off+int32(scale)*4] {sym} x)
(LEAQ8 [off] {sym} x (MOV(Q|L)const [scale])) && is32Bit(int64(off)+int64(scale)*8) =>
(LEAQ [off+int32(scale)*8] {sym} x)
// Absorb InvertFlags into branches.
(LT (InvertFlags cmp) yes no) => (GT cmp yes no)
(GT (InvertFlags cmp) yes no) => (LT cmp yes no)
(LE (InvertFlags cmp) yes no) => (GE cmp yes no)
(GE (InvertFlags cmp) yes no) => (LE cmp yes no)
(ULT (InvertFlags cmp) yes no) => (UGT cmp yes no)
(UGT (InvertFlags cmp) yes no) => (ULT cmp yes no)
(ULE (InvertFlags cmp) yes no) => (UGE cmp yes no)
(UGE (InvertFlags cmp) yes no) => (ULE cmp yes no)
(EQ (InvertFlags cmp) yes no) => (EQ cmp yes no)
(NE (InvertFlags cmp) yes no) => (NE cmp yes no)
// Constant comparisons.
(CMPQconst (MOVQconst [x]) [y]) && x==int64(y) => (FlagEQ)
(CMPQconst (MOVQconst [x]) [y]) && x<int64(y) && uint64(x)<uint64(int64(y)) => (FlagLT_ULT)
(CMPQconst (MOVQconst [x]) [y]) && x<int64(y) && uint64(x)>uint64(int64(y)) => (FlagLT_UGT)
(CMPQconst (MOVQconst [x]) [y]) && x>int64(y) && uint64(x)<uint64(int64(y)) => (FlagGT_ULT)
(CMPQconst (MOVQconst [x]) [y]) && x>int64(y) && uint64(x)>uint64(int64(y)) => (FlagGT_UGT)
(CMPLconst (MOVLconst [x]) [y]) && x==y => (FlagEQ)
(CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)<uint32(y) => (FlagLT_ULT)
(CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)>uint32(y) => (FlagLT_UGT)
(CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)<uint32(y) => (FlagGT_ULT)
(CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)>uint32(y) => (FlagGT_UGT)
(CMPWconst (MOVLconst [x]) [y]) && int16(x)==y => (FlagEQ)
(CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)<uint16(y) => (FlagLT_ULT)
(CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)>uint16(y) => (FlagLT_UGT)
(CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)<uint16(y) => (FlagGT_ULT)
(CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)>uint16(y) => (FlagGT_UGT)
(CMPBconst (MOVLconst [x]) [y]) && int8(x)==y => (FlagEQ)
(CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)<uint8(y) => (FlagLT_ULT)
(CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)>uint8(y) => (FlagLT_UGT)
(CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)<uint8(y) => (FlagGT_ULT)
(CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)>uint8(y) => (FlagGT_UGT)
// CMPQconst requires a 32 bit const, but we can still constant-fold 64 bit consts.
// In theory this applies to any of the simplifications above,
// but CMPQ is the only one I've actually seen occur.
(CMPQ (MOVQconst [x]) (MOVQconst [y])) && x==y => (FlagEQ)
(CMPQ (MOVQconst [x]) (MOVQconst [y])) && x<y && uint64(x)<uint64(y) => (FlagLT_ULT)
(CMPQ (MOVQconst [x]) (MOVQconst [y])) && x<y && uint64(x)>uint64(y) => (FlagLT_UGT)
(CMPQ (MOVQconst [x]) (MOVQconst [y])) && x>y && uint64(x)<uint64(y) => (FlagGT_ULT)
(CMPQ (MOVQconst [x]) (MOVQconst [y])) && x>y && uint64(x)>uint64(y) => (FlagGT_UGT)
// Other known comparisons.
(CMPQconst (MOVBQZX _) [c]) && 0xFF < c => (FlagLT_ULT)
(CMPQconst (MOVWQZX _) [c]) && 0xFFFF < c => (FlagLT_ULT)
(CMPLconst (SHRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint64(32-c)) <= uint64(n) => (FlagLT_ULT)
(CMPQconst (SHRQconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 64 && (1<<uint64(64-c)) <= uint64(n) => (FlagLT_ULT)
(CMPQconst (ANDQconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT)
(CMPQconst (ANDLconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT)
(CMPLconst (ANDLconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT)
(CMPWconst (ANDLconst _ [m]) [n]) && 0 <= int16(m) && int16(m) < n => (FlagLT_ULT)
(CMPBconst (ANDLconst _ [m]) [n]) && 0 <= int8(m) && int8(m) < n => (FlagLT_ULT)
// TESTQ c c sets flags like CMPQ c 0.
(TESTQconst [c] (MOVQconst [d])) && int64(c) == d && c == 0 => (FlagEQ)
(TESTLconst [c] (MOVLconst [c])) && c == 0 => (FlagEQ)
(TESTQconst [c] (MOVQconst [d])) && int64(c) == d && c < 0 => (FlagLT_UGT)
(TESTLconst [c] (MOVLconst [c])) && c < 0 => (FlagLT_UGT)
(TESTQconst [c] (MOVQconst [d])) && int64(c) == d && c > 0 => (FlagGT_UGT)
(TESTLconst [c] (MOVLconst [c])) && c > 0 => (FlagGT_UGT)
// TODO: DIVxU also.
// Absorb flag constants into SBB ops.
(SBBQcarrymask (FlagEQ)) => (MOVQconst [0])
(SBBQcarrymask (FlagLT_ULT)) => (MOVQconst [-1])
(SBBQcarrymask (FlagLT_UGT)) => (MOVQconst [0])
(SBBQcarrymask (FlagGT_ULT)) => (MOVQconst [-1])
(SBBQcarrymask (FlagGT_UGT)) => (MOVQconst [0])
(SBBLcarrymask (FlagEQ)) => (MOVLconst [0])
(SBBLcarrymask (FlagLT_ULT)) => (MOVLconst [-1])
(SBBLcarrymask (FlagLT_UGT)) => (MOVLconst [0])
(SBBLcarrymask (FlagGT_ULT)) => (MOVLconst [-1])
(SBBLcarrymask (FlagGT_UGT)) => (MOVLconst [0])
// Absorb flag constants into branches.
((EQ|LE|GE|ULE|UGE) (FlagEQ) yes no) => (First yes no)
((NE|LT|GT|ULT|UGT) (FlagEQ) yes no) => (First no yes)
((NE|LT|LE|ULT|ULE) (FlagLT_ULT) yes no) => (First yes no)
((EQ|GT|GE|UGT|UGE) (FlagLT_ULT) yes no) => (First no yes)
((NE|LT|LE|UGT|UGE) (FlagLT_UGT) yes no) => (First yes no)
((EQ|GT|GE|ULT|ULE) (FlagLT_UGT) yes no) => (First no yes)
((NE|GT|GE|ULT|ULE) (FlagGT_ULT) yes no) => (First yes no)
((EQ|LT|LE|UGT|UGE) (FlagGT_ULT) yes no) => (First no yes)
((NE|GT|GE|UGT|UGE) (FlagGT_UGT) yes no) => (First yes no)
((EQ|LT|LE|ULT|ULE) (FlagGT_UGT) yes no) => (First no yes)
// Absorb flag constants into SETxx ops.
((SETEQ|SETLE|SETGE|SETBE|SETAE) (FlagEQ)) => (MOVLconst [1])
((SETNE|SETL|SETG|SETB|SETA) (FlagEQ)) => (MOVLconst [0])
((SETNE|SETL|SETLE|SETB|SETBE) (FlagLT_ULT)) => (MOVLconst [1])
((SETEQ|SETG|SETGE|SETA|SETAE) (FlagLT_ULT)) => (MOVLconst [0])
((SETNE|SETL|SETLE|SETA|SETAE) (FlagLT_UGT)) => (MOVLconst [1])
((SETEQ|SETG|SETGE|SETB|SETBE) (FlagLT_UGT)) => (MOVLconst [0])
((SETNE|SETG|SETGE|SETB|SETBE) (FlagGT_ULT)) => (MOVLconst [1])
((SETEQ|SETL|SETLE|SETA|SETAE) (FlagGT_ULT)) => (MOVLconst [0])
((SETNE|SETG|SETGE|SETA|SETAE) (FlagGT_UGT)) => (MOVLconst [1])
((SETEQ|SETL|SETLE|SETB|SETBE) (FlagGT_UGT)) => (MOVLconst [0])
(SETEQstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETEQstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETEQstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETEQstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETEQstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETNEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETNEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETNEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETNEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETNEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETLstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETLstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETLstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETLstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETLstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETLEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETLEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETLEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETLEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETLEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETGstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETGstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETGstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETGstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETGstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETGEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETGEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETGEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETGEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETGEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETBstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETBstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETBstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETBstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETBstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETBEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETBEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETBEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETBEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETBEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETAstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETAstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETAstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETAstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETAstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETAEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETAEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETAEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
(SETAEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
(SETAEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
// Remove redundant *const ops
(ADDQconst [0] x) => x
(ADDLconst [c] x) && c==0 => x
(SUBQconst [0] x) => x
(SUBLconst [c] x) && c==0 => x
(ANDQconst [0] _) => (MOVQconst [0])
(ANDLconst [c] _) && c==0 => (MOVLconst [0])
(ANDQconst [-1] x) => x
(ANDLconst [c] x) && c==-1 => x
(ORQconst [0] x) => x
(ORLconst [c] x) && c==0 => x
(ORQconst [-1] _) => (MOVQconst [-1])
(ORLconst [c] _) && c==-1 => (MOVLconst [-1])
(XORQconst [0] x) => x
(XORLconst [c] x) && c==0 => x
// TODO: since we got rid of the W/B versions, we might miss
// things like (ANDLconst [0x100] x) which were formerly
// (ANDBconst [0] x). Probably doesn't happen very often.
// If we cared, we might do:
// (ANDLconst <t> [c] x) && t.Size()==1 && int8(x)==0 -> (MOVLconst [0])
// Remove redundant ops
// Not in generic rules, because they may appear after lowering e. g. Slicemask
(NEG(Q|L) (NEG(Q|L) x)) => x
(NEG(Q|L) s:(SUB(Q|L) x y)) && s.Uses == 1 => (SUB(Q|L) y x)
// Convert constant subtracts to constant adds
(SUBQconst [c] x) && c != -(1<<31) => (ADDQconst [-c] x)
(SUBLconst [c] x) => (ADDLconst [-c] x)
// generic constant folding
// TODO: more of this
(ADDQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)+d])
(ADDLconst [c] (MOVLconst [d])) => (MOVLconst [c+d])
(ADDQconst [c] (ADDQconst [d] x)) && is32Bit(int64(c)+int64(d)) => (ADDQconst [c+d] x)
(ADDLconst [c] (ADDLconst [d] x)) => (ADDLconst [c+d] x)
(SUBQconst (MOVQconst [d]) [c]) => (MOVQconst [d-int64(c)])
(SUBQconst (SUBQconst x [d]) [c]) && is32Bit(int64(-c)-int64(d)) => (ADDQconst [-c-d] x)
(SARQconst [c] (MOVQconst [d])) => (MOVQconst [d>>uint64(c)])
(SARLconst [c] (MOVQconst [d])) => (MOVQconst [int64(int32(d))>>uint64(c)])
(SARWconst [c] (MOVQconst [d])) => (MOVQconst [int64(int16(d))>>uint64(c)])
(SARBconst [c] (MOVQconst [d])) => (MOVQconst [int64(int8(d))>>uint64(c)])
(NEGQ (MOVQconst [c])) => (MOVQconst [-c])
(NEGL (MOVLconst [c])) => (MOVLconst [-c])
(MULQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)*d])
(MULLconst [c] (MOVLconst [d])) => (MOVLconst [c*d])
(ANDQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)&d])
(ANDLconst [c] (MOVLconst [d])) => (MOVLconst [c&d])
(ORQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)|d])
(ORLconst [c] (MOVLconst [d])) => (MOVLconst [c|d])
(XORQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)^d])
(XORLconst [c] (MOVLconst [d])) => (MOVLconst [c^d])
(NOTQ (MOVQconst [c])) => (MOVQconst [^c])
(NOTL (MOVLconst [c])) => (MOVLconst [^c])
(BTSQconst [c] (MOVQconst [d])) => (MOVQconst [d|(1<<uint32(c))])
(BTSLconst [c] (MOVLconst [d])) => (MOVLconst [d|(1<<uint32(c))])
(BTRQconst [c] (MOVQconst [d])) => (MOVQconst [d&^(1<<uint32(c))])
(BTRLconst [c] (MOVLconst [d])) => (MOVLconst [d&^(1<<uint32(c))])
(BTCQconst [c] (MOVQconst [d])) => (MOVQconst [d^(1<<uint32(c))])
(BTCLconst [c] (MOVLconst [d])) => (MOVLconst [d^(1<<uint32(c))])
// If c or d doesn't fit into 32 bits, then we can't construct ORQconst,
// but we can still constant-fold.
// In theory this applies to any of the simplifications above,
// but ORQ is the only one I've actually seen occur.
(ORQ (MOVQconst [c]) (MOVQconst [d])) => (MOVQconst [c|d])
// generic simplifications
// TODO: more of this
(ADDQ x (NEGQ y)) => (SUBQ x y)
(ADDL x (NEGL y)) => (SUBL x y)
(SUBQ x x) => (MOVQconst [0])
(SUBL x x) => (MOVLconst [0])
(ANDQ x x) => x
(ANDL x x) => x
(ORQ x x) => x
(ORL x x) => x
(XORQ x x) => (MOVQconst [0])
(XORL x x) => (MOVLconst [0])
(SHLLconst [d] (MOVLconst [c])) => (MOVLconst [c << uint64(d)])
(SHLQconst [d] (MOVQconst [c])) => (MOVQconst [c << uint64(d)])
(SHLQconst [d] (MOVLconst [c])) => (MOVQconst [int64(c) << uint64(d)])
// Fold NEG into ADDconst/MULconst. Take care to keep c in 32 bit range.
(NEGQ (ADDQconst [c] (NEGQ x))) && c != -(1<<31) => (ADDQconst [-c] x)
(MULQconst [c] (NEGQ x)) && c != -(1<<31) => (MULQconst [-c] x)
// checking AND against 0.
(CMPQconst a:(ANDQ x y) [0]) && a.Uses == 1 => (TESTQ x y)
(CMPLconst a:(ANDL x y) [0]) && a.Uses == 1 => (TESTL x y)
(CMPWconst a:(ANDL x y) [0]) && a.Uses == 1 => (TESTW x y)
(CMPBconst a:(ANDL x y) [0]) && a.Uses == 1 => (TESTB x y)
(CMPQconst a:(ANDQconst [c] x) [0]) && a.Uses == 1 => (TESTQconst [c] x)
(CMPLconst a:(ANDLconst [c] x) [0]) && a.Uses == 1 => (TESTLconst [c] x)
(CMPWconst a:(ANDLconst [c] x) [0]) && a.Uses == 1 => (TESTWconst [int16(c)] x)
(CMPBconst a:(ANDLconst [c] x) [0]) && a.Uses == 1 => (TESTBconst [int8(c)] x)
// Convert TESTx to TESTxconst if possible.
(TESTQ (MOVQconst [c]) x) && is32Bit(c) => (TESTQconst [int32(c)] x)
(TESTL (MOVLconst [c]) x) => (TESTLconst [c] x)
(TESTW (MOVLconst [c]) x) => (TESTWconst [int16(c)] x)
(TESTB (MOVLconst [c]) x) => (TESTBconst [int8(c)] x)
// TEST %reg,%reg is shorter than CMP
(CMPQconst x [0]) => (TESTQ x x)
(CMPLconst x [0]) => (TESTL x x)
(CMPWconst x [0]) => (TESTW x x)
(CMPBconst x [0]) => (TESTB x x)
(TESTQconst [-1] x) && x.Op != OpAMD64MOVQconst => (TESTQ x x)
(TESTLconst [-1] x) && x.Op != OpAMD64MOVLconst => (TESTL x x)
(TESTWconst [-1] x) && x.Op != OpAMD64MOVLconst => (TESTW x x)
(TESTBconst [-1] x) && x.Op != OpAMD64MOVLconst => (TESTB x x)
// Convert LEAQ1 back to ADDQ if we can
(LEAQ1 [0] x y) && v.Aux == nil => (ADDQ x y)
// Combining byte loads into larger (unaligned) loads.
// There are many ways these combinations could occur. This is
// designed to match the way encoding/binary.LittleEndian does it.
// Little-endian loads
(OR(L|Q) x0:(MOVBload [i0] {s} p mem)
sh:(SHL(L|Q)const [8] x1:(MOVBload [i1] {s} p mem)))
&& i1 == i0+1
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (MOVWload [i0] {s} p mem)
(OR(L|Q) x0:(MOVBload [i] {s} p0 mem)
sh:(SHL(L|Q)const [8] x1:(MOVBload [i] {s} p1 mem)))
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (MOVWload [i] {s} p0 mem)
(OR(L|Q) x0:(MOVWload [i0] {s} p mem)
sh:(SHL(L|Q)const [16] x1:(MOVWload [i1] {s} p mem)))
&& i1 == i0+2
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (MOVLload [i0] {s} p mem)
(OR(L|Q) x0:(MOVWload [i] {s} p0 mem)
sh:(SHL(L|Q)const [16] x1:(MOVWload [i] {s} p1 mem)))
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& sequentialAddresses(p0, p1, 2)
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (MOVLload [i] {s} p0 mem)
(ORQ x0:(MOVLload [i0] {s} p mem)
sh:(SHLQconst [32] x1:(MOVLload [i1] {s} p mem)))
&& i1 == i0+4
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (MOVQload [i0] {s} p mem)
(ORQ x0:(MOVLload [i] {s} p0 mem)
sh:(SHLQconst [32] x1:(MOVLload [i] {s} p1 mem)))
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& sequentialAddresses(p0, p1, 4)
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (MOVQload [i] {s} p0 mem)
(OR(L|Q)
s1:(SHL(L|Q)const [j1] x1:(MOVBload [i1] {s} p mem))
or:(OR(L|Q)
s0:(SHL(L|Q)const [j0] x0:(MOVBload [i0] {s} p mem))
y))
&& i1 == i0+1
&& j1 == j0+8
&& j0 % 16 == 0
&& x0.Uses == 1
&& x1.Uses == 1
&& s0.Uses == 1
&& s1.Uses == 1
&& or.Uses == 1
&& mergePoint(b,x0,x1,y) != nil
&& clobber(x0, x1, s0, s1, or)
=> @mergePoint(b,x0,x1,y) (OR(L|Q) <v.Type> (SHL(L|Q)const <v.Type> [j0] (MOVWload [i0] {s} p mem)) y)
(OR(L|Q)
s1:(SHL(L|Q)const [j1] x1:(MOVBload [i] {s} p1 mem))
or:(OR(L|Q)
s0:(SHL(L|Q)const [j0] x0:(MOVBload [i] {s} p0 mem))
y))
&& j1 == j0+8
&& j0 % 16 == 0
&& x0.Uses == 1
&& x1.Uses == 1
&& s0.Uses == 1
&& s1.Uses == 1
&& or.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& mergePoint(b,x0,x1,y) != nil
&& clobber(x0, x1, s0, s1, or)
=> @mergePoint(b,x0,x1,y) (OR(L|Q) <v.Type> (SHL(L|Q)const <v.Type> [j0] (MOVWload [i] {s} p0 mem)) y)
(ORQ
s1:(SHLQconst [j1] x1:(MOVWload [i1] {s} p mem))
or:(ORQ
s0:(SHLQconst [j0] x0:(MOVWload [i0] {s} p mem))
y))
&& i1 == i0+2
&& j1 == j0+16
&& j0 % 32 == 0
&& x0.Uses == 1
&& x1.Uses == 1
&& s0.Uses == 1
&& s1.Uses == 1
&& or.Uses == 1
&& mergePoint(b,x0,x1,y) != nil
&& clobber(x0, x1, s0, s1, or)
=> @mergePoint(b,x0,x1,y) (ORQ <v.Type> (SHLQconst <v.Type> [j0] (MOVLload [i0] {s} p mem)) y)
(ORQ
s1:(SHLQconst [j1] x1:(MOVWload [i] {s} p1 mem))
or:(ORQ
s0:(SHLQconst [j0] x0:(MOVWload [i] {s} p0 mem))
y))
&& j1 == j0+16
&& j0 % 32 == 0
&& x0.Uses == 1
&& x1.Uses == 1
&& s0.Uses == 1
&& s1.Uses == 1
&& or.Uses == 1
&& sequentialAddresses(p0, p1, 2)
&& mergePoint(b,x0,x1,y) != nil
&& clobber(x0, x1, s0, s1, or)
=> @mergePoint(b,x0,x1,y) (ORQ <v.Type> (SHLQconst <v.Type> [j0] (MOVLload [i] {s} p0 mem)) y)
// Big-endian loads
(OR(L|Q)
x1:(MOVBload [i1] {s} p mem)
sh:(SHL(L|Q)const [8] x0:(MOVBload [i0] {s} p mem)))
&& i1 == i0+1
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (ROLWconst <v.Type> [8] (MOVWload [i0] {s} p mem))
(OR(L|Q)
x1:(MOVBload [i] {s} p1 mem)
sh:(SHL(L|Q)const [8] x0:(MOVBload [i] {s} p0 mem)))
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (ROLWconst <v.Type> [8] (MOVWload [i] {s} p0 mem))
(OR(L|Q)
r1:(ROLWconst [8] x1:(MOVWload [i1] {s} p mem))
sh:(SHL(L|Q)const [16] r0:(ROLWconst [8] x0:(MOVWload [i0] {s} p mem))))
&& i1 == i0+2
&& x0.Uses == 1
&& x1.Uses == 1
&& r0.Uses == 1
&& r1.Uses == 1
&& sh.Uses == 1
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, r0, r1, sh)
=> @mergePoint(b,x0,x1) (BSWAPL <v.Type> (MOVLload [i0] {s} p mem))
(OR(L|Q)
r1:(ROLWconst [8] x1:(MOVWload [i] {s} p1 mem))
sh:(SHL(L|Q)const [16] r0:(ROLWconst [8] x0:(MOVWload [i] {s} p0 mem))))
&& x0.Uses == 1
&& x1.Uses == 1
&& r0.Uses == 1
&& r1.Uses == 1
&& sh.Uses == 1
&& sequentialAddresses(p0, p1, 2)
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, r0, r1, sh)
=> @mergePoint(b,x0,x1) (BSWAPL <v.Type> (MOVLload [i] {s} p0 mem))
(ORQ
r1:(BSWAPL x1:(MOVLload [i1] {s} p mem))
sh:(SHLQconst [32] r0:(BSWAPL x0:(MOVLload [i0] {s} p mem))))
&& i1 == i0+4
&& x0.Uses == 1
&& x1.Uses == 1
&& r0.Uses == 1
&& r1.Uses == 1
&& sh.Uses == 1
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, r0, r1, sh)
=> @mergePoint(b,x0,x1) (BSWAPQ <v.Type> (MOVQload [i0] {s} p mem))
(ORQ
r1:(BSWAPL x1:(MOVLload [i] {s} p1 mem))
sh:(SHLQconst [32] r0:(BSWAPL x0:(MOVLload [i] {s} p0 mem))))
&& x0.Uses == 1
&& x1.Uses == 1
&& r0.Uses == 1
&& r1.Uses == 1
&& sh.Uses == 1
&& sequentialAddresses(p0, p1, 4)
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, r0, r1, sh)
=> @mergePoint(b,x0,x1) (BSWAPQ <v.Type> (MOVQload [i] {s} p0 mem))
(OR(L|Q)
s0:(SHL(L|Q)const [j0] x0:(MOVBload [i0] {s} p mem))
or:(OR(L|Q)
s1:(SHL(L|Q)const [j1] x1:(MOVBload [i1] {s} p mem))
y))
&& i1 == i0+1
&& j1 == j0-8
&& j1 % 16 == 0
&& x0.Uses == 1
&& x1.Uses == 1
&& s0.Uses == 1
&& s1.Uses == 1
&& or.Uses == 1
&& mergePoint(b,x0,x1,y) != nil
&& clobber(x0, x1, s0, s1, or)
=> @mergePoint(b,x0,x1,y) (OR(L|Q) <v.Type> (SHL(L|Q)const <v.Type> [j1] (ROLWconst <typ.UInt16> [8] (MOVWload [i0] {s} p mem))) y)
(OR(L|Q)
s0:(SHL(L|Q)const [j0] x0:(MOVBload [i] {s} p0 mem))
or:(OR(L|Q)
s1:(SHL(L|Q)const [j1] x1:(MOVBload [i] {s} p1 mem))
y))
&& j1 == j0-8
&& j1 % 16 == 0
&& x0.Uses == 1
&& x1.Uses == 1
&& s0.Uses == 1
&& s1.Uses == 1
&& or.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& mergePoint(b,x0,x1,y) != nil
&& clobber(x0, x1, s0, s1, or)
=> @mergePoint(b,x0,x1,y) (OR(L|Q) <v.Type> (SHL(L|Q)const <v.Type> [j1] (ROLWconst <typ.UInt16> [8] (MOVWload [i] {s} p0 mem))) y)
(ORQ
s0:(SHLQconst [j0] r0:(ROLWconst [8] x0:(MOVWload [i0] {s} p mem)))
or:(ORQ
s1:(SHLQconst [j1] r1:(ROLWconst [8] x1:(MOVWload [i1] {s} p mem)))
y))
&& i1 == i0+2
&& j1 == j0-16
&& j1 % 32 == 0
&& x0.Uses == 1
&& x1.Uses == 1
&& r0.Uses == 1
&& r1.Uses == 1
&& s0.Uses == 1
&& s1.Uses == 1
&& or.Uses == 1
&& mergePoint(b,x0,x1,y) != nil
&& clobber(x0, x1, r0, r1, s0, s1, or)
=> @mergePoint(b,x0,x1,y) (ORQ <v.Type> (SHLQconst <v.Type> [j1] (BSWAPL <typ.UInt32> (MOVLload [i0] {s} p mem))) y)
(ORQ
s0:(SHLQconst [j0] r0:(ROLWconst [8] x0:(MOVWload [i] {s} p0 mem)))
or:(ORQ
s1:(SHLQconst [j1] r1:(ROLWconst [8] x1:(MOVWload [i] {s} p1 mem)))
y))
&& j1 == j0-16
&& j1 % 32 == 0
&& x0.Uses == 1
&& x1.Uses == 1
&& r0.Uses == 1
&& r1.Uses == 1
&& s0.Uses == 1
&& s1.Uses == 1
&& or.Uses == 1
&& sequentialAddresses(p0, p1, 2)
&& mergePoint(b,x0,x1,y) != nil
&& clobber(x0, x1, r0, r1, s0, s1, or)
=> @mergePoint(b,x0,x1,y) (ORQ <v.Type> (SHLQconst <v.Type> [j1] (BSWAPL <typ.UInt32> (MOVLload [i] {s} p0 mem))) y)
// Combine 2 byte stores + shift into rolw 8 + word store
(MOVBstore [i] {s} p w
x0:(MOVBstore [i-1] {s} p (SHRWconst [8] w) mem))
&& x0.Uses == 1
&& clobber(x0)
=> (MOVWstore [i-1] {s} p (ROLWconst <w.Type> [8] w) mem)
(MOVBstore [i] {s} p1 w
x0:(MOVBstore [i] {s} p0 (SHRWconst [8] w) mem))
&& x0.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& clobber(x0)
=> (MOVWstore [i] {s} p0 (ROLWconst <w.Type> [8] w) mem)
// Combine stores + shifts into bswap and larger (unaligned) stores
(MOVBstore [i] {s} p w
x2:(MOVBstore [i-1] {s} p (SHRLconst [8] w)
x1:(MOVBstore [i-2] {s} p (SHRLconst [16] w)
x0:(MOVBstore [i-3] {s} p (SHRLconst [24] w) mem))))
&& x0.Uses == 1
&& x1.Uses == 1
&& x2.Uses == 1
&& clobber(x0, x1, x2)
=> (MOVLstore [i-3] {s} p (BSWAPL <w.Type> w) mem)
(MOVBstore [i] {s} p3 w
x2:(MOVBstore [i] {s} p2 (SHRLconst [8] w)
x1:(MOVBstore [i] {s} p1 (SHRLconst [16] w)
x0:(MOVBstore [i] {s} p0 (SHRLconst [24] w) mem))))
&& x0.Uses == 1
&& x1.Uses == 1
&& x2.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& sequentialAddresses(p1, p2, 1)
&& sequentialAddresses(p2, p3, 1)
&& clobber(x0, x1, x2)
=> (MOVLstore [i] {s} p0 (BSWAPL <w.Type> w) mem)
(MOVBstore [i] {s} p w
x6:(MOVBstore [i-1] {s} p (SHRQconst [8] w)
x5:(MOVBstore [i-2] {s} p (SHRQconst [16] w)
x4:(MOVBstore [i-3] {s} p (SHRQconst [24] w)
x3:(MOVBstore [i-4] {s} p (SHRQconst [32] w)
x2:(MOVBstore [i-5] {s} p (SHRQconst [40] w)
x1:(MOVBstore [i-6] {s} p (SHRQconst [48] w)
x0:(MOVBstore [i-7] {s} p (SHRQconst [56] w) mem))))))))
&& x0.Uses == 1
&& x1.Uses == 1
&& x2.Uses == 1
&& x3.Uses == 1
&& x4.Uses == 1
&& x5.Uses == 1
&& x6.Uses == 1
&& clobber(x0, x1, x2, x3, x4, x5, x6)
=> (MOVQstore [i-7] {s} p (BSWAPQ <w.Type> w) mem)
(MOVBstore [i] {s} p7 w
x6:(MOVBstore [i] {s} p6 (SHRQconst [8] w)
x5:(MOVBstore [i] {s} p5 (SHRQconst [16] w)
x4:(MOVBstore [i] {s} p4 (SHRQconst [24] w)
x3:(MOVBstore [i] {s} p3 (SHRQconst [32] w)
x2:(MOVBstore [i] {s} p2 (SHRQconst [40] w)
x1:(MOVBstore [i] {s} p1 (SHRQconst [48] w)
x0:(MOVBstore [i] {s} p0 (SHRQconst [56] w) mem))))))))
&& x0.Uses == 1
&& x1.Uses == 1
&& x2.Uses == 1
&& x3.Uses == 1
&& x4.Uses == 1
&& x5.Uses == 1
&& x6.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& sequentialAddresses(p1, p2, 1)
&& sequentialAddresses(p2, p3, 1)
&& sequentialAddresses(p3, p4, 1)
&& sequentialAddresses(p4, p5, 1)
&& sequentialAddresses(p5, p6, 1)
&& sequentialAddresses(p6, p7, 1)
&& clobber(x0, x1, x2, x3, x4, x5, x6)
=> (MOVQstore [i] {s} p0 (BSWAPQ <w.Type> w) mem)
// Combine constant stores into larger (unaligned) stores.
(MOVBstoreconst [c] {s} p x:(MOVBstoreconst [a] {s} p mem))
&& x.Uses == 1
&& a.Off() + 1 == c.Off()
&& clobber(x)
=> (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p mem)
(MOVBstoreconst [a] {s} p x:(MOVBstoreconst [c] {s} p mem))
&& x.Uses == 1
&& a.Off() + 1 == c.Off()
&& clobber(x)
=> (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p mem)
(MOVWstoreconst [c] {s} p x:(MOVWstoreconst [a] {s} p mem))
&& x.Uses == 1
&& a.Off() + 2 == c.Off()
&& clobber(x)
=> (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p mem)
(MOVWstoreconst [a] {s} p x:(MOVWstoreconst [c] {s} p mem))
&& x.Uses == 1
&& a.Off() + 2 == c.Off()
&& clobber(x)
=> (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p mem)
(MOVLstoreconst [c] {s} p x:(MOVLstoreconst [a] {s} p mem))
&& x.Uses == 1
&& a.Off() + 4 == c.Off()
&& clobber(x)
=> (MOVQstore [a.Off()] {s} p (MOVQconst [a.Val64()&0xffffffff | c.Val64()<<32]) mem)
(MOVLstoreconst [a] {s} p x:(MOVLstoreconst [c] {s} p mem))
&& x.Uses == 1
&& a.Off() + 4 == c.Off()
&& clobber(x)
=> (MOVQstore [a.Off()] {s} p (MOVQconst [a.Val64()&0xffffffff | c.Val64()<<32]) mem)
(MOVQstoreconst [c] {s} p x:(MOVQstoreconst [a] {s} p mem))
&& config.useSSE
&& x.Uses == 1
&& a.Off() + 8 == c.Off()
&& a.Val() == 0
&& c.Val() == 0
&& clobber(x)
=> (MOVOstoreconst [makeValAndOff(0,a.Off())] {s} p mem)
(MOVQstoreconst [a] {s} p x:(MOVQstoreconst [c] {s} p mem))
&& config.useSSE
&& x.Uses == 1
&& a.Off() + 8 == c.Off()
&& a.Val() == 0
&& c.Val() == 0
&& clobber(x)
=> (MOVOstoreconst [makeValAndOff(0,a.Off())] {s} p mem)
// Combine stores into larger (unaligned) stores. Little endian.
(MOVBstore [i] {s} p (SHR(W|L|Q)const [8] w) x:(MOVBstore [i-1] {s} p w mem))
&& x.Uses == 1
&& clobber(x)
=> (MOVWstore [i-1] {s} p w mem)
(MOVBstore [i] {s} p w x:(MOVBstore [i+1] {s} p (SHR(W|L|Q)const [8] w) mem))
&& x.Uses == 1
&& clobber(x)
=> (MOVWstore [i] {s} p w mem)
(MOVBstore [i] {s} p (SHR(L|Q)const [j] w) x:(MOVBstore [i-1] {s} p w0:(SHR(L|Q)const [j-8] w) mem))
&& x.Uses == 1
&& clobber(x)
=> (MOVWstore [i-1] {s} p w0 mem)
(MOVBstore [i] {s} p1 (SHR(W|L|Q)const [8] w) x:(MOVBstore [i] {s} p0 w mem))
&& x.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& clobber(x)
=> (MOVWstore [i] {s} p0 w mem)
(MOVBstore [i] {s} p0 w x:(MOVBstore [i] {s} p1 (SHR(W|L|Q)const [8] w) mem))
&& x.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& clobber(x)
=> (MOVWstore [i] {s} p0 w mem)
(MOVBstore [i] {s} p1 (SHR(L|Q)const [j] w) x:(MOVBstore [i] {s} p0 w0:(SHR(L|Q)const [j-8] w) mem))
&& x.Uses == 1
&& sequentialAddresses(p0, p1, 1)
&& clobber(x)
=> (MOVWstore [i] {s} p0 w0 mem)
(MOVWstore [i] {s} p (SHR(L|Q)const [16] w) x:(MOVWstore [i-2] {s} p w mem))
&& x.Uses == 1
&& clobber(x)
=> (MOVLstore [i-2] {s} p w mem)
(MOVWstore [i] {s} p (SHR(L|Q)const [j] w) x:(MOVWstore [i-2] {s} p w0:(SHR(L|Q)const [j-16] w) mem))
&& x.Uses == 1
&& clobber(x)
=> (MOVLstore [i-2] {s} p w0 mem)
(MOVWstore [i] {s} p1 (SHR(L|Q)const [16] w) x:(MOVWstore [i] {s} p0 w mem))
&& x.Uses == 1
&& sequentialAddresses(p0, p1, 2)
&& clobber(x)
=> (MOVLstore [i] {s} p0 w mem)
(MOVWstore [i] {s} p1 (SHR(L|Q)const [j] w) x:(MOVWstore [i] {s} p0 w0:(SHR(L|Q)const [j-16] w) mem))
&& x.Uses == 1
&& sequentialAddresses(p0, p1, 2)
&& clobber(x)
=> (MOVLstore [i] {s} p0 w0 mem)
(MOVLstore [i] {s} p (SHRQconst [32] w) x:(MOVLstore [i-4] {s} p w mem))
&& x.Uses == 1
&& clobber(x)
=> (MOVQstore [i-4] {s} p w mem)
(MOVLstore [i] {s} p (SHRQconst [j] w) x:(MOVLstore [i-4] {s} p w0:(SHRQconst [j-32] w) mem))
&& x.Uses == 1
&& clobber(x)
=> (MOVQstore [i-4] {s} p w0 mem)
(MOVLstore [i] {s} p1 (SHRQconst [32] w) x:(MOVLstore [i] {s} p0 w mem))
&& x.Uses == 1
&& sequentialAddresses(p0, p1, 4)
&& clobber(x)
=> (MOVQstore [i] {s} p0 w mem)
(MOVLstore [i] {s} p1 (SHRQconst [j] w) x:(MOVLstore [i] {s} p0 w0:(SHRQconst [j-32] w) mem))
&& x.Uses == 1
&& sequentialAddresses(p0, p1, 4)
&& clobber(x)
=> (MOVQstore [i] {s} p0 w0 mem)
(MOVBstore [7] {s} p1 (SHRQconst [56] w)
x1:(MOVWstore [5] {s} p1 (SHRQconst [40] w)
x2:(MOVLstore [1] {s} p1 (SHRQconst [8] w)
x3:(MOVBstore [0] {s} p1 w mem))))
&& x1.Uses == 1
&& x2.Uses == 1
&& x3.Uses == 1
&& clobber(x1, x2, x3)
=> (MOVQstore {s} p1 w mem)
(MOVBstore [i] {s} p
x1:(MOVBload [j] {s2} p2 mem)
mem2:(MOVBstore [i-1] {s} p
x2:(MOVBload [j-1] {s2} p2 mem) mem))
&& x1.Uses == 1
&& x2.Uses == 1
&& mem2.Uses == 1
&& clobber(x1, x2, mem2)
=> (MOVWstore [i-1] {s} p (MOVWload [j-1] {s2} p2 mem) mem)
(MOVWstore [i] {s} p
x1:(MOVWload [j] {s2} p2 mem)
mem2:(MOVWstore [i-2] {s} p
x2:(MOVWload [j-2] {s2} p2 mem) mem))
&& x1.Uses == 1
&& x2.Uses == 1
&& mem2.Uses == 1
&& clobber(x1, x2, mem2)
=> (MOVLstore [i-2] {s} p (MOVLload [j-2] {s2} p2 mem) mem)
(MOVLstore [i] {s} p
x1:(MOVLload [j] {s2} p2 mem)
mem2:(MOVLstore [i-4] {s} p
x2:(MOVLload [j-4] {s2} p2 mem) mem))
&& x1.Uses == 1
&& x2.Uses == 1
&& mem2.Uses == 1
&& clobber(x1, x2, mem2)
=> (MOVQstore [i-4] {s} p (MOVQload [j-4] {s2} p2 mem) mem)
// Merge load and op
// TODO: add indexed variants?
((ADD|SUB|AND|OR|XOR)Q x l:(MOVQload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|AND|OR|XOR)Qload x [off] {sym} ptr mem)
((ADD|SUB|AND|OR|XOR)L x l:(MOVLload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|AND|OR|XOR)Lload x [off] {sym} ptr mem)
((ADD|SUB|MUL|DIV)SD x l:(MOVSDload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SDload x [off] {sym} ptr mem)
((ADD|SUB|MUL|DIV)SS x l:(MOVSSload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SSload x [off] {sym} ptr mem)
(MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) => ((ADD|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
(MOVLstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)L l:(MOVLload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y, l) =>
((ADD|SUB|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
(MOVQstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Qload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) => ((ADD|AND|OR|XOR)Qmodify [off] {sym} ptr x mem)
(MOVQstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)Q l:(MOVQload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y, l) =>
((ADD|SUB|AND|OR|XOR)Qmodify [off] {sym} ptr x mem)
// Merge ADDQconst and LEAQ into atomic loads.
(MOV(Q|L|B)atomicload [off1] {sym} (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
(MOV(Q|L|B)atomicload [off1+off2] {sym} ptr mem)
(MOV(Q|L|B)atomicload [off1] {sym1} (LEAQ [off2] {sym2} ptr) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
(MOV(Q|L|B)atomicload [off1+off2] {mergeSym(sym1, sym2)} ptr mem)
// Merge ADDQconst and LEAQ into atomic stores.
(XCHGQ [off1] {sym} val (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
(XCHGQ [off1+off2] {sym} val ptr mem)
(XCHGQ [off1] {sym1} val (LEAQ [off2] {sym2} ptr) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && ptr.Op != OpSB =>
(XCHGQ [off1+off2] {mergeSym(sym1,sym2)} val ptr mem)
(XCHGL [off1] {sym} val (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
(XCHGL [off1+off2] {sym} val ptr mem)
(XCHGL [off1] {sym1} val (LEAQ [off2] {sym2} ptr) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && ptr.Op != OpSB =>
(XCHGL [off1+off2] {mergeSym(sym1,sym2)} val ptr mem)
// Merge ADDQconst into atomic adds.
// TODO: merging LEAQ doesn't work, assembler doesn't like the resulting instructions.
(XADDQlock [off1] {sym} val (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
(XADDQlock [off1+off2] {sym} val ptr mem)
(XADDLlock [off1] {sym} val (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
(XADDLlock [off1+off2] {sym} val ptr mem)
// Merge ADDQconst into atomic compare and swaps.
// TODO: merging LEAQ doesn't work, assembler doesn't like the resulting instructions.
(CMPXCHGQlock [off1] {sym} (ADDQconst [off2] ptr) old new_ mem) && is32Bit(int64(off1)+int64(off2)) =>
(CMPXCHGQlock [off1+off2] {sym} ptr old new_ mem)
(CMPXCHGLlock [off1] {sym} (ADDQconst [off2] ptr) old new_ mem) && is32Bit(int64(off1)+int64(off2)) =>
(CMPXCHGLlock [off1+off2] {sym} ptr old new_ mem)
// We don't need the conditional move if we know the arg of BSF is not zero.
(CMOVQEQ x _ (Select1 (BSFQ (ORQconst [c] _)))) && c != 0 => x
// Extension is unnecessary for trailing zeros.
(BSFQ (ORQconst <t> [1<<8] (MOVBQZX x))) => (BSFQ (ORQconst <t> [1<<8] x))
(BSFQ (ORQconst <t> [1<<16] (MOVWQZX x))) => (BSFQ (ORQconst <t> [1<<16] x))
// Redundant sign/zero extensions
// Note: see issue 21963. We have to make sure we use the right type on
// the resulting extension (the outer type, not the inner type).
(MOVLQSX (MOVLQSX x)) => (MOVLQSX x)
(MOVLQSX (MOVWQSX x)) => (MOVWQSX x)
(MOVLQSX (MOVBQSX x)) => (MOVBQSX x)
(MOVWQSX (MOVWQSX x)) => (MOVWQSX x)
(MOVWQSX (MOVBQSX x)) => (MOVBQSX x)
(MOVBQSX (MOVBQSX x)) => (MOVBQSX x)
(MOVLQZX (MOVLQZX x)) => (MOVLQZX x)
(MOVLQZX (MOVWQZX x)) => (MOVWQZX x)
(MOVLQZX (MOVBQZX x)) => (MOVBQZX x)
(MOVWQZX (MOVWQZX x)) => (MOVWQZX x)
(MOVWQZX (MOVBQZX x)) => (MOVBQZX x)
(MOVBQZX (MOVBQZX x)) => (MOVBQZX x)
(MOVQstore [off] {sym} ptr a:((ADD|AND|OR|XOR)Qconst [c] l:(MOVQload [off] {sym} ptr2 mem)) mem)
&& isSamePtr(ptr, ptr2) && a.Uses == 1 && l.Uses == 1 && clobber(l, a) =>
((ADD|AND|OR|XOR)Qconstmodify {sym} [makeValAndOff(int32(c),off)] ptr mem)
(MOVLstore [off] {sym} ptr a:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLload [off] {sym} ptr2 mem)) mem)
&& isSamePtr(ptr, ptr2) && a.Uses == 1 && l.Uses == 1 && clobber(l, a) =>
((ADD|AND|OR|XOR)Lconstmodify {sym} [makeValAndOff(int32(c),off)] ptr mem)
// float <-> int register moves, with no conversion.
// These come up when compiling math.{Float{32,64}bits,Float{32,64}frombits}.
(MOVQload [off] {sym} ptr (MOVSDstore [off] {sym} ptr val _)) => (MOVQf2i val)
(MOVLload [off] {sym} ptr (MOVSSstore [off] {sym} ptr val _)) => (MOVLf2i val)
(MOVSDload [off] {sym} ptr (MOVQstore [off] {sym} ptr val _)) => (MOVQi2f val)
(MOVSSload [off] {sym} ptr (MOVLstore [off] {sym} ptr val _)) => (MOVLi2f val)
// Other load-like ops.
(ADDQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => (ADDQ x (MOVQf2i y))
(ADDLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => (ADDL x (MOVLf2i y))
(SUBQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => (SUBQ x (MOVQf2i y))
(SUBLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => (SUBL x (MOVLf2i y))
(ANDQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => (ANDQ x (MOVQf2i y))
(ANDLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => (ANDL x (MOVLf2i y))
( ORQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => ( ORQ x (MOVQf2i y))
( ORLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => ( ORL x (MOVLf2i y))
(XORQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => (XORQ x (MOVQf2i y))
(XORLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => (XORL x (MOVLf2i y))
(ADDSDload x [off] {sym} ptr (MOVQstore [off] {sym} ptr y _)) => (ADDSD x (MOVQi2f y))
(ADDSSload x [off] {sym} ptr (MOVLstore [off] {sym} ptr y _)) => (ADDSS x (MOVLi2f y))
(SUBSDload x [off] {sym} ptr (MOVQstore [off] {sym} ptr y _)) => (SUBSD x (MOVQi2f y))
(SUBSSload x [off] {sym} ptr (MOVLstore [off] {sym} ptr y _)) => (SUBSS x (MOVLi2f y))
(MULSDload x [off] {sym} ptr (MOVQstore [off] {sym} ptr y _)) => (MULSD x (MOVQi2f y))
(MULSSload x [off] {sym} ptr (MOVLstore [off] {sym} ptr y _)) => (MULSS x (MOVLi2f y))
// Redirect stores to use the other register set.
(MOVQstore [off] {sym} ptr (MOVQf2i val) mem) => (MOVSDstore [off] {sym} ptr val mem)
(MOVLstore [off] {sym} ptr (MOVLf2i val) mem) => (MOVSSstore [off] {sym} ptr val mem)
(MOVSDstore [off] {sym} ptr (MOVQi2f val) mem) => (MOVQstore [off] {sym} ptr val mem)
(MOVSSstore [off] {sym} ptr (MOVLi2f val) mem) => (MOVLstore [off] {sym} ptr val mem)
// Load args directly into the register class where it will be used.
// We do this by just modifying the type of the Arg.
(MOVQf2i <t> (Arg <u> [off] {sym})) && t.Size() == u.Size() => @b.Func.Entry (Arg <t> [off] {sym})
(MOVLf2i <t> (Arg <u> [off] {sym})) && t.Size() == u.Size() => @b.Func.Entry (Arg <t> [off] {sym})
(MOVQi2f <t> (Arg <u> [off] {sym})) && t.Size() == u.Size() => @b.Func.Entry (Arg <t> [off] {sym})
(MOVLi2f <t> (Arg <u> [off] {sym})) && t.Size() == u.Size() => @b.Func.Entry (Arg <t> [off] {sym})
// LEAQ is rematerializeable, so this helps to avoid register spill.
// See issue 22947 for details
(ADD(Q|L)const [off] x:(SP)) => (LEA(Q|L) [off] x)
// HMULx is commutative, but its first argument must go in AX.
// If possible, put a rematerializeable value in the first argument slot,
// to reduce the odds that another value will be have to spilled
// specifically to free up AX.
(HMUL(Q|L) x y) && !x.rematerializeable() && y.rematerializeable() => (HMUL(Q|L) y x)
(HMUL(Q|L)U x y) && !x.rematerializeable() && y.rematerializeable() => (HMUL(Q|L)U y x)
// Fold loads into compares
// Note: these may be undone by the flagalloc pass.
(CMP(Q|L|W|B) l:(MOV(Q|L|W|B)load {sym} [off] ptr mem) x) && canMergeLoad(v, l) && clobber(l) => (CMP(Q|L|W|B)load {sym} [off] ptr x mem)
(CMP(Q|L|W|B) x l:(MOV(Q|L|W|B)load {sym} [off] ptr mem)) && canMergeLoad(v, l) && clobber(l) => (InvertFlags (CMP(Q|L|W|B)load {sym} [off] ptr x mem))
(CMP(Q|L)const l:(MOV(Q|L)load {sym} [off] ptr mem) [c])
&& l.Uses == 1
&& clobber(l) =>
@l.Block (CMP(Q|L)constload {sym} [makeValAndOff(c,off)] ptr mem)
(CMP(W|B)const l:(MOV(W|B)load {sym} [off] ptr mem) [c])
&& l.Uses == 1
&& clobber(l) =>
@l.Block (CMP(W|B)constload {sym} [makeValAndOff(int32(c),off)] ptr mem)
(CMPQload {sym} [off] ptr (MOVQconst [c]) mem) && validVal(c) => (CMPQconstload {sym} [makeValAndOff(int32(c),off)] ptr mem)
(CMPLload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPLconstload {sym} [makeValAndOff(c,off)] ptr mem)
(CMPWload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPWconstload {sym} [makeValAndOff(int32(int16(c)),off)] ptr mem)
(CMPBload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPBconstload {sym} [makeValAndOff(int32(int8(c)),off)] ptr mem)
(TEST(Q|L|W|B) l:(MOV(Q|L|W|B)load {sym} [off] ptr mem) l2)
&& l == l2
&& l.Uses == 2
&& clobber(l) =>
@l.Block (CMP(Q|L|W|B)constload {sym} [makeValAndOff(0, off)] ptr mem)
// Convert ANDload to MOVload when we can do the AND in a containing TEST op.
// Only do when it's within the same block, so we don't have flags live across basic block boundaries.
// See issue 44228.
(TEST(Q|L) a:(AND(Q|L)load [off] {sym} x ptr mem) a) && a.Uses == 2 && a.Block == v.Block && clobber(a) => (TEST(Q|L) (MOV(Q|L)load <a.Type> [off] {sym} ptr mem) x)
(MOVBload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read8(sym, int64(off)))])
(MOVWload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read16(sym, int64(off), config.ctxt.Arch.ByteOrder))])
(MOVLload [off] {sym} (SB) _) && symIsRO(sym) => (MOVQconst [int64(read32(sym, int64(off), config.ctxt.Arch.ByteOrder))])
(MOVQload [off] {sym} (SB) _) && symIsRO(sym) => (MOVQconst [int64(read64(sym, int64(off), config.ctxt.Arch.ByteOrder))])
(MOVOstore [dstOff] {dstSym} ptr (MOVOload [srcOff] {srcSym} (SB) _) mem) && symIsRO(srcSym) =>
(MOVQstore [dstOff+8] {dstSym} ptr (MOVQconst [int64(read64(srcSym, int64(srcOff)+8, config.ctxt.Arch.ByteOrder))])
(MOVQstore [dstOff] {dstSym} ptr (MOVQconst [int64(read64(srcSym, int64(srcOff), config.ctxt.Arch.ByteOrder))]) mem))
// Arch-specific inlining for small or disjoint runtime.memmove
// Match post-lowering calls, memory version.
(SelectN [0] call:(CALLstatic {sym} s1:(MOVQstoreconst _ [sc] s2:(MOVQstore _ src s3:(MOVQstore _ dst mem)))))
&& sc.Val64() >= 0
&& isSameCall(sym, "runtime.memmove")
&& s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
&& isInlinableMemmove(dst, src, sc.Val64(), config)
&& clobber(s1, s2, s3, call)
=> (Move [sc.Val64()] dst src mem)
// Match post-lowering calls, register version.
(SelectN [0] call:(CALLstatic {sym} dst src (MOVQconst [sz]) mem))
&& sz >= 0
&& isSameCall(sym, "runtime.memmove")
&& call.Uses == 1
&& isInlinableMemmove(dst, src, sz, config)
&& clobber(call)
=> (Move [sz] dst src mem)
// Prefetch instructions
(PrefetchCache ...) => (PrefetchT0 ...)
(PrefetchCacheStreamed ...) => (PrefetchNTA ...)
// CPUID feature: BMI1.
(AND(Q|L) x (NOT(Q|L) y)) && buildcfg.GOAMD64 >= 3 => (ANDN(Q|L) x y)
(AND(Q|L) x (NEG(Q|L) x)) && buildcfg.GOAMD64 >= 3 => (BLSI(Q|L) x)
(XOR(Q|L) x (ADD(Q|L)const [-1] x)) && buildcfg.GOAMD64 >= 3 => (BLSMSK(Q|L) x)
(AND(Q|L) x (ADD(Q|L)const [-1] x)) && buildcfg.GOAMD64 >= 3 => (BLSR(Q|L) x)
(BSWAP(Q|L) (BSWAP(Q|L) p)) => p
// CPUID feature: MOVBE.
(MOV(Q|L)store [i] {s} p x:(BSWAP(Q|L) w) mem) && x.Uses == 1 && buildcfg.GOAMD64 >= 3 => (MOVBE(Q|L)store [i] {s} p w mem)
(BSWAP(Q|L) x:(MOV(Q|L)load [i] {s} p mem)) && x.Uses == 1 && buildcfg.GOAMD64 >= 3 => (MOVBE(Q|L)load [i] {s} p mem)
(BSWAP(Q|L) (MOVBE(Q|L)load [i] {s} p m)) => (MOV(Q|L)load [i] {s} p m)
(MOVBE(Q|L)store [i] {s} p (BSWAP(Q|L) x) m) => (MOV(Q|L)store [i] {s} p x m)
(ORQ x0:(MOVBELload [i0] {s} p mem)
sh:(SHLQconst [32] x1:(MOVBELload [i1] {s} p mem)))
&& i0 == i1+4
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (MOVBEQload [i1] {s} p mem)
(ORQ x0:(MOVBELload [i] {s} p0 mem)
sh:(SHLQconst [32] x1:(MOVBELload [i] {s} p1 mem)))
&& x0.Uses == 1
&& x1.Uses == 1
&& sh.Uses == 1
&& sequentialAddresses(p1, p0, 4)
&& mergePoint(b,x0,x1) != nil
&& clobber(x0, x1, sh)
=> @mergePoint(b,x0,x1) (MOVBEQload [i] {s} p1 mem)