blob: 8866bdaaa9474c280c2fd06bb7703eccd74b2a1d [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"big"
"crypto/dsa"
"crypto/openpgp/error"
"crypto/rsa"
"crypto/sha1"
"encoding/binary"
"hash"
"io"
"os"
)
// PublicKey represents an OpenPGP public key. See RFC 4880, section 5.5.2.
type PublicKey struct {
CreationTime uint32 // seconds since the epoch
PubKeyAlgo PublicKeyAlgorithm
PublicKey interface{} // Either a *rsa.PublicKey or *dsa.PublicKey
Fingerprint [20]byte
KeyId uint64
IsSubkey bool
n, e, p, q, g, y parsedMPI
}
func (pk *PublicKey) parse(r io.Reader) (err os.Error) {
// RFC 4880, section 5.5.2
var buf [6]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
if buf[0] != 4 {
return error.UnsupportedError("public key version")
}
pk.CreationTime = uint32(buf[1])<<24 | uint32(buf[2])<<16 | uint32(buf[3])<<8 | uint32(buf[4])
pk.PubKeyAlgo = PublicKeyAlgorithm(buf[5])
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
err = pk.parseRSA(r)
case PubKeyAlgoDSA:
err = pk.parseDSA(r)
default:
err = error.UnsupportedError("public key type")
}
if err != nil {
return
}
// RFC 4880, section 12.2
fingerPrint := sha1.New()
pk.SerializeSignaturePrefix(fingerPrint)
pk.Serialize(fingerPrint)
copy(pk.Fingerprint[:], fingerPrint.Sum())
pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20])
return
}
// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseRSA(r io.Reader) (err os.Error) {
pk.n.bytes, pk.n.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.e.bytes, pk.e.bitLength, err = readMPI(r)
if err != nil {
return
}
if len(pk.e.bytes) > 3 {
err = error.UnsupportedError("large public exponent")
return
}
rsa := &rsa.PublicKey{
N: new(big.Int).SetBytes(pk.n.bytes),
E: 0,
}
for i := 0; i < len(pk.e.bytes); i++ {
rsa.E <<= 8
rsa.E |= int(pk.e.bytes[i])
}
pk.PublicKey = rsa
return
}
// parseRSA parses DSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseDSA(r io.Reader) (err os.Error) {
pk.p.bytes, pk.p.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.q.bytes, pk.q.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.g.bytes, pk.g.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.y.bytes, pk.y.bitLength, err = readMPI(r)
if err != nil {
return
}
dsa := new(dsa.PublicKey)
dsa.P = new(big.Int).SetBytes(pk.p.bytes)
dsa.Q = new(big.Int).SetBytes(pk.q.bytes)
dsa.G = new(big.Int).SetBytes(pk.g.bytes)
dsa.Y = new(big.Int).SetBytes(pk.y.bytes)
pk.PublicKey = dsa
return
}
// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
// The prefix is used when calculating a signature over this public key. See
// RFC 4880, section 5.2.4.
func (pk *PublicKey) SerializeSignaturePrefix(h hash.Hash) {
var pLength uint16
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
pLength += 2 + uint16(len(pk.n.bytes))
pLength += 2 + uint16(len(pk.e.bytes))
case PubKeyAlgoDSA:
pLength += 2 + uint16(len(pk.p.bytes))
pLength += 2 + uint16(len(pk.q.bytes))
pLength += 2 + uint16(len(pk.g.bytes))
pLength += 2 + uint16(len(pk.y.bytes))
default:
panic("unknown public key algorithm")
}
pLength += 6
h.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)})
return
}
// Serialize marshals the PublicKey to w in the form of an OpenPGP public key
// packet, not including the packet header.
func (pk *PublicKey) Serialize(w io.Writer) (err os.Error) {
var buf [6]byte
buf[0] = 4
buf[1] = byte(pk.CreationTime >> 24)
buf[2] = byte(pk.CreationTime >> 16)
buf[3] = byte(pk.CreationTime >> 8)
buf[4] = byte(pk.CreationTime)
buf[5] = byte(pk.PubKeyAlgo)
_, err = w.Write(buf[:])
if err != nil {
return
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
return writeMPIs(w, pk.n, pk.e)
case PubKeyAlgoDSA:
return writeMPIs(w, pk.p, pk.q, pk.g, pk.y)
}
return error.InvalidArgumentError("bad public-key algorithm")
}
// CanSign returns true iff this public key can generate signatures
func (pk *PublicKey) CanSign() bool {
return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly && pk.PubKeyAlgo != PubKeyAlgoElgamal
}
// VerifySignature returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err os.Error) {
if !pk.CanSign() {
return error.InvalidArgumentError("public key cannot generate signatures")
}
rsaPublicKey, ok := pk.PublicKey.(*rsa.PublicKey)
if !ok {
// TODO(agl): support DSA and ECDSA keys.
return error.UnsupportedError("non-RSA public key")
}
signed.Write(sig.HashSuffix)
hashBytes := signed.Sum()
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
return error.SignatureError("hash tag doesn't match")
}
err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.Signature)
if err != nil {
return error.SignatureError("RSA verification failure")
}
return nil
}
// VerifyKeySignature returns nil iff sig is a valid signature, make by this
// public key, of the public key in signed.
func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) (err os.Error) {
h := sig.Hash.New()
if h == nil {
return error.UnsupportedError("hash function")
}
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.Serialize(h)
signed.SerializeSignaturePrefix(h)
signed.Serialize(h)
return pk.VerifySignature(h, sig)
}
// VerifyUserIdSignature returns nil iff sig is a valid signature, make by this
// public key, of the given user id.
func (pk *PublicKey) VerifyUserIdSignature(id string, sig *Signature) (err os.Error) {
h := sig.Hash.New()
if h == nil {
return error.UnsupportedError("hash function")
}
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.Serialize(h)
var buf [5]byte
buf[0] = 0xb4
buf[1] = byte(len(id) >> 24)
buf[2] = byte(len(id) >> 16)
buf[3] = byte(len(id) >> 8)
buf[4] = byte(len(id))
h.Write(buf[:])
h.Write([]byte(id))
return pk.VerifySignature(h, sig)
}
// A parsedMPI is used to store the contents of a big integer, along with the
// bit length that was specified in the original input. This allows the MPI to
// be reserialised exactly.
type parsedMPI struct {
bytes []byte
bitLength uint16
}
// writeMPIs is a utility function for serialising several big integers to the
// given Writer.
func writeMPIs(w io.Writer, mpis ...parsedMPI) (err os.Error) {
for _, mpi := range mpis {
err = writeMPI(w, mpi.bitLength, mpi.bytes)
if err != nil {
return
}
}
return
}