blob: bdfa0563c3d269c659ccb628944883c5486361e7 [file] [log] [blame]
// Inferno utils/8l/asm.c
// http://code.google.com/p/inferno-os/source/browse/utils/8l/asm.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package ld
import (
"bufio"
"bytes"
"cmd/internal/obj"
"crypto/sha1"
"debug/elf"
"encoding/binary"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"os/exec"
"path/filepath"
"runtime"
"strings"
"sync"
)
// Data layout and relocation.
// Derived from Inferno utils/6l/l.h
// http://code.google.com/p/inferno-os/source/browse/utils/6l/l.h
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
type Arch struct {
Thechar int
Ptrsize int
Intsize int
Regsize int
Funcalign int
Maxalign int
Minlc int
Dwarfregsp int
Dwarfreglr int
Linuxdynld string
Freebsddynld string
Netbsddynld string
Openbsddynld string
Dragonflydynld string
Solarisdynld string
Adddynrel func(*LSym, *Reloc)
Archinit func()
Archreloc func(*Reloc, *LSym, *int64) int
Archrelocvariant func(*Reloc, *LSym, int64) int64
Asmb func()
Elfreloc1 func(*Reloc, int64) int
Elfsetupplt func()
Gentext func()
Machoreloc1 func(*Reloc, int64) int
PEreloc1 func(*Reloc, int64) bool
Lput func(uint32)
Wput func(uint16)
Vput func(uint64)
}
type Rpath struct {
set bool
val string
}
func (r *Rpath) Set(val string) error {
r.set = true
r.val = val
return nil
}
func (r *Rpath) String() string {
return r.val
}
var (
Thearch Arch
datap *LSym
Debug [128]int
Lcsize int32
rpath Rpath
Spsize int32
Symsize int32
)
// Terrible but standard terminology.
// A segment describes a block of file to load into memory.
// A section further describes the pieces of that block for
// use in debuggers and such.
const (
MINFUNC = 16 // minimum size for a function
)
type Segment struct {
Rwx uint8 // permission as usual unix bits (5 = r-x etc)
Vaddr uint64 // virtual address
Length uint64 // length in memory
Fileoff uint64 // file offset
Filelen uint64 // length on disk
Sect *Section
}
type Section struct {
Rwx uint8
Extnum int16
Align int32
Name string
Vaddr uint64
Length uint64
Next *Section
Seg *Segment
Elfsect *ElfShdr
Reloff uint64
Rellen uint64
}
// DynlinkingGo returns whether we are producing Go code that can live
// in separate shared libraries linked together at runtime.
func DynlinkingGo() bool {
return Buildmode == BuildmodeShared || Linkshared
}
// UseRelro returns whether to make use of "read only relocations" aka
// relro.
func UseRelro() bool {
switch Buildmode {
case BuildmodeCShared, BuildmodeShared, BuildmodePIE:
return Iself
default:
return false
}
}
var (
Thestring string
Thelinkarch *LinkArch
outfile string
dynexp []*LSym
dynlib []string
ldflag []string
havedynamic int
Funcalign int
iscgo bool
elfglobalsymndx int
flag_installsuffix string
flag_race int
flag_msan int
Buildmode BuildMode
Linkshared bool
tracksym string
interpreter string
tmpdir string
extld string
extldflags string
extar string
libgccfile string
debug_s int // backup old value of debug['s']
Ctxt *Link
HEADR int32
HEADTYPE int32
INITRND int32
INITTEXT int64
INITDAT int64
INITENTRY string /* entry point */
nerrors int
Linkmode int
liveness int64
)
// for dynexport field of LSym
const (
CgoExportDynamic = 1 << 0
CgoExportStatic = 1 << 1
)
var (
Segtext Segment
Segrodata Segment
Segdata Segment
Segdwarf Segment
)
/* set by call to mywhatsys() */
/* whence for ldpkg */
const (
FileObj = 0 + iota
ArchiveObj
Pkgdef
)
var (
headstring string
// buffered output
Bso obj.Biobuf
)
var coutbuf struct {
*bufio.Writer
f *os.File
}
const (
symname = "__.GOSYMDEF"
pkgname = "__.PKGDEF"
)
var (
// Set if we see an object compiled by the host compiler that is not
// from a package that is known to support internal linking mode.
externalobj = false
goroot string
goarch string
goos string
theline string
)
func Lflag(arg string) {
Ctxt.Libdir = append(Ctxt.Libdir, arg)
}
// A BuildMode indicates the sort of object we are building:
// "exe": build a main package and everything it imports into an executable.
// "c-shared": build a main package, plus all packages that it imports, into a
// single C shared library. The only callable symbols will be those functions
// marked as exported.
// "shared": combine all packages passed on the command line, and their
// dependencies, into a single shared library that will be used when
// building with the -linkshared option.
type BuildMode uint8
const (
BuildmodeUnset BuildMode = iota
BuildmodeExe
BuildmodePIE
BuildmodeCArchive
BuildmodeCShared
BuildmodeShared
)
func (mode *BuildMode) Set(s string) error {
goos := obj.Getgoos()
goarch := obj.Getgoarch()
badmode := func() error {
return fmt.Errorf("buildmode %s not supported on %s/%s", s, goos, goarch)
}
switch s {
default:
return fmt.Errorf("invalid buildmode: %q", s)
case "exe":
*mode = BuildmodeExe
case "pie":
switch goos {
case "android", "linux":
default:
return badmode()
}
*mode = BuildmodePIE
case "c-archive":
switch goos {
case "darwin", "linux":
default:
return badmode()
}
*mode = BuildmodeCArchive
case "c-shared":
switch goarch {
case "386", "amd64", "arm", "arm64":
default:
return badmode()
}
*mode = BuildmodeCShared
case "shared":
switch goos {
case "linux":
switch goarch {
case "386", "amd64", "arm", "arm64", "ppc64le":
default:
return badmode()
}
default:
return badmode()
}
*mode = BuildmodeShared
}
return nil
}
func (mode *BuildMode) String() string {
switch *mode {
case BuildmodeUnset:
return "" // avoid showing a default in usage message
case BuildmodeExe:
return "exe"
case BuildmodePIE:
return "pie"
case BuildmodeCArchive:
return "c-archive"
case BuildmodeCShared:
return "c-shared"
case BuildmodeShared:
return "shared"
}
return fmt.Sprintf("BuildMode(%d)", uint8(*mode))
}
/*
* Unix doesn't like it when we write to a running (or, sometimes,
* recently run) binary, so remove the output file before writing it.
* On Windows 7, remove() can force a subsequent create() to fail.
* S_ISREG() does not exist on Plan 9.
*/
func mayberemoveoutfile() {
if fi, err := os.Lstat(outfile); err == nil && !fi.Mode().IsRegular() {
return
}
os.Remove(outfile)
}
func libinit() {
Funcalign = Thearch.Funcalign
mywhatsys() // get goroot, goarch, goos
// add goroot to the end of the libdir list.
suffix := ""
suffixsep := ""
if flag_installsuffix != "" {
suffixsep = "_"
suffix = flag_installsuffix
} else if flag_race != 0 {
suffixsep = "_"
suffix = "race"
} else if flag_msan != 0 {
suffixsep = "_"
suffix = "msan"
}
Lflag(fmt.Sprintf("%s/pkg/%s_%s%s%s", goroot, goos, goarch, suffixsep, suffix))
mayberemoveoutfile()
f, err := os.OpenFile(outfile, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0775)
if err != nil {
Exitf("cannot create %s: %v", outfile, err)
}
coutbuf.Writer = bufio.NewWriter(f)
coutbuf.f = f
if INITENTRY == "" {
switch Buildmode {
case BuildmodeCShared, BuildmodeCArchive:
INITENTRY = fmt.Sprintf("_rt0_%s_%s_lib", goarch, goos)
case BuildmodeExe, BuildmodePIE:
INITENTRY = fmt.Sprintf("_rt0_%s_%s", goarch, goos)
case BuildmodeShared:
// No INITENTRY for -buildmode=shared
default:
Diag("unknown INITENTRY for buildmode %v", Buildmode)
}
}
if !DynlinkingGo() {
Linklookup(Ctxt, INITENTRY, 0).Type = obj.SXREF
}
}
func Exitf(format string, a ...interface{}) {
fmt.Fprintf(os.Stderr, os.Args[0]+": "+format+"\n", a...)
if coutbuf.f != nil {
coutbuf.f.Close()
mayberemoveoutfile()
}
Exit(2)
}
func errorexit() {
if coutbuf.f != nil {
if nerrors != 0 {
Cflush()
}
// For rmtemp run at atexit time on Windows.
if err := coutbuf.f.Close(); err != nil {
Exitf("close: %v", err)
}
}
if nerrors != 0 {
if coutbuf.f != nil {
mayberemoveoutfile()
}
Exit(2)
}
Exit(0)
}
func loadinternal(name string) {
found := 0
for i := 0; i < len(Ctxt.Libdir); i++ {
if Linkshared {
shlibname := fmt.Sprintf("%s/%s.shlibname", Ctxt.Libdir[i], name)
if Debug['v'] != 0 {
fmt.Fprintf(&Bso, "searching for %s.a in %s\n", name, shlibname)
}
if _, err := os.Stat(shlibname); err == nil {
addlibpath(Ctxt, "internal", "internal", "", name, shlibname)
found = 1
break
}
}
pname := fmt.Sprintf("%s/%s.a", Ctxt.Libdir[i], name)
if Debug['v'] != 0 {
fmt.Fprintf(&Bso, "searching for %s.a in %s\n", name, pname)
}
if _, err := os.Stat(pname); err == nil {
addlibpath(Ctxt, "internal", "internal", pname, name, "")
found = 1
break
}
}
if found == 0 {
fmt.Fprintf(&Bso, "warning: unable to find %s.a\n", name)
}
}
func loadlib() {
switch Buildmode {
case BuildmodeCShared:
s := Linklookup(Ctxt, "runtime.islibrary", 0)
s.Dupok = 1
Adduint8(Ctxt, s, 1)
case BuildmodeCArchive:
s := Linklookup(Ctxt, "runtime.isarchive", 0)
s.Dupok = 1
Adduint8(Ctxt, s, 1)
}
loadinternal("runtime")
if Thearch.Thechar == '5' {
loadinternal("math")
}
if flag_race != 0 {
loadinternal("runtime/race")
}
if flag_msan != 0 {
loadinternal("runtime/msan")
}
var i int
for i = 0; i < len(Ctxt.Library); i++ {
iscgo = iscgo || Ctxt.Library[i].Pkg == "runtime/cgo"
if Ctxt.Library[i].Shlib == "" {
if Debug['v'] > 1 {
fmt.Fprintf(&Bso, "%5.2f autolib: %s (from %s)\n", obj.Cputime(), Ctxt.Library[i].File, Ctxt.Library[i].Objref)
}
objfile(Ctxt.Library[i])
}
}
for i = 0; i < len(Ctxt.Library); i++ {
if Ctxt.Library[i].Shlib != "" {
if Debug['v'] > 1 {
fmt.Fprintf(&Bso, "%5.2f autolib: %s (from %s)\n", obj.Cputime(), Ctxt.Library[i].Shlib, Ctxt.Library[i].Objref)
}
ldshlibsyms(Ctxt.Library[i].Shlib)
}
}
if Linkmode == LinkAuto {
if iscgo && externalobj {
Linkmode = LinkExternal
} else {
Linkmode = LinkInternal
}
// Force external linking for android.
if goos == "android" {
Linkmode = LinkExternal
}
// Force external linking for PIE executables, as
// internal linking does not support TLS_IE.
if Buildmode == BuildmodePIE {
Linkmode = LinkExternal
}
// cgo on Darwin must use external linking
// we can always use external linking, but then there will be circular
// dependency problems when compiling natively (external linking requires
// runtime/cgo, runtime/cgo requires cmd/cgo, but cmd/cgo needs to be
// compiled using external linking.)
if (Thearch.Thechar == '5' || Thearch.Thechar == '7') && HEADTYPE == obj.Hdarwin && iscgo {
Linkmode = LinkExternal
}
// Force external linking for msan.
if flag_msan != 0 {
Linkmode = LinkExternal
}
}
// cmd/7l doesn't support cgo internal linking
// This is https://golang.org/issue/10373.
if iscgo && goarch == "arm64" {
Linkmode = LinkExternal
}
if Linkmode == LinkExternal && !iscgo {
// This indicates a user requested -linkmode=external.
// The startup code uses an import of runtime/cgo to decide
// whether to initialize the TLS. So give it one. This could
// be handled differently but it's an unusual case.
loadinternal("runtime/cgo")
if i < len(Ctxt.Library) {
if Ctxt.Library[i].Shlib != "" {
ldshlibsyms(Ctxt.Library[i].Shlib)
} else {
if DynlinkingGo() {
Exitf("cannot implicitly include runtime/cgo in a shared library")
}
objfile(Ctxt.Library[i])
}
}
}
if Linkmode == LinkInternal {
// Drop all the cgo_import_static declarations.
// Turns out we won't be needing them.
for s := Ctxt.Allsym; s != nil; s = s.Allsym {
if s.Type == obj.SHOSTOBJ {
// If a symbol was marked both
// cgo_import_static and cgo_import_dynamic,
// then we want to make it cgo_import_dynamic
// now.
if s.Extname != "" && s.Dynimplib != "" && s.Cgoexport == 0 {
s.Type = obj.SDYNIMPORT
} else {
s.Type = 0
}
}
}
}
tlsg := Linklookup(Ctxt, "runtime.tlsg", 0)
// runtime.tlsg is used for external linking on platforms that do not define
// a variable to hold g in assembly (currently only intel).
if tlsg.Type == 0 {
tlsg.Type = obj.STLSBSS
tlsg.Size = int64(Thearch.Ptrsize)
} else if tlsg.Type != obj.SDYNIMPORT {
Diag("internal error: runtime declared tlsg variable %d", tlsg.Type)
}
tlsg.Reachable = true
Ctxt.Tlsg = tlsg
moduledata := Linklookup(Ctxt, "runtime.firstmoduledata", 0)
if moduledata.Type != 0 && moduledata.Type != obj.SDYNIMPORT {
// If the module (toolchain-speak for "executable or shared
// library") we are linking contains the runtime package, it
// will define the runtime.firstmoduledata symbol and we
// truncate it back to 0 bytes so we can define its entire
// contents in symtab.go:symtab().
moduledata.Size = 0
// In addition, on ARM, the runtime depends on the linker
// recording the value of GOARM.
if Thearch.Thechar == '5' {
s := Linklookup(Ctxt, "runtime.goarm", 0)
s.Type = obj.SRODATA
s.Size = 0
Adduint8(Ctxt, s, uint8(Ctxt.Goarm))
}
} else {
// If OTOH the module does not contain the runtime package,
// create a local symbol for the moduledata.
moduledata = Linklookup(Ctxt, "local.moduledata", 0)
moduledata.Local = true
}
// In all cases way we mark the moduledata as noptrdata to hide it from
// the GC.
moduledata.Type = obj.SNOPTRDATA
moduledata.Reachable = true
Ctxt.Moduledata = moduledata
// Now that we know the link mode, trim the dynexp list.
x := CgoExportDynamic
if Linkmode == LinkExternal {
x = CgoExportStatic
}
w := 0
for i := 0; i < len(dynexp); i++ {
if int(dynexp[i].Cgoexport)&x != 0 {
dynexp[w] = dynexp[i]
w++
}
}
dynexp = dynexp[:w]
// In internal link mode, read the host object files.
if Linkmode == LinkInternal {
hostobjs()
// If we have any undefined symbols in external
// objects, try to read them from the libgcc file.
any := false
for s := Ctxt.Allsym; s != nil; s = s.Allsym {
for _, r := range s.R {
if r.Sym != nil && r.Sym.Type&obj.SMASK == obj.SXREF && r.Sym.Name != ".got" {
any = true
break
}
}
}
if any {
if libgccfile == "" {
if extld == "" {
extld = "gcc"
}
args := hostlinkArchArgs()
args = append(args, "--print-libgcc-file-name")
if Debug['v'] != 0 {
fmt.Fprintf(&Bso, "%s %v\n", extld, args)
}
out, err := exec.Command(extld, args...).Output()
if err != nil {
if Debug['v'] != 0 {
fmt.Fprintln(&Bso, "not using a libgcc file because compiler failed")
fmt.Fprintf(&Bso, "%v\n%s\n", err, out)
}
libgccfile = "none"
} else {
libgccfile = strings.TrimSpace(string(out))
}
}
if libgccfile != "none" {
hostArchive(libgccfile)
}
}
} else {
hostlinksetup()
}
// We've loaded all the code now.
// If there are no dynamic libraries needed, gcc disables dynamic linking.
// Because of this, glibc's dynamic ELF loader occasionally (like in version 2.13)
// assumes that a dynamic binary always refers to at least one dynamic library.
// Rather than be a source of test cases for glibc, disable dynamic linking
// the same way that gcc would.
//
// Exception: on OS X, programs such as Shark only work with dynamic
// binaries, so leave it enabled on OS X (Mach-O) binaries.
// Also leave it enabled on Solaris which doesn't support
// statically linked binaries.
switch Buildmode {
case BuildmodeExe, BuildmodePIE:
if havedynamic == 0 && HEADTYPE != obj.Hdarwin && HEADTYPE != obj.Hsolaris {
Debug['d'] = 1
}
}
importcycles()
}
/*
* look for the next file in an archive.
* adapted from libmach.
*/
func nextar(bp *obj.Biobuf, off int64, a *ArHdr) int64 {
if off&1 != 0 {
off++
}
obj.Bseek(bp, off, 0)
buf := make([]byte, SAR_HDR)
if n := obj.Bread(bp, buf); n < len(buf) {
if n >= 0 {
return 0
}
return -1
}
a.name = artrim(buf[0:16])
a.date = artrim(buf[16:28])
a.uid = artrim(buf[28:34])
a.gid = artrim(buf[34:40])
a.mode = artrim(buf[40:48])
a.size = artrim(buf[48:58])
a.fmag = artrim(buf[58:60])
arsize := atolwhex(a.size)
if arsize&1 != 0 {
arsize++
}
return int64(arsize) + SAR_HDR
}
func objfile(lib *Library) {
pkg := pathtoprefix(lib.Pkg)
if Debug['v'] > 1 {
fmt.Fprintf(&Bso, "%5.2f ldobj: %s (%s)\n", obj.Cputime(), lib.File, pkg)
}
Bso.Flush()
var err error
var f *obj.Biobuf
f, err = obj.Bopenr(lib.File)
if err != nil {
Exitf("cannot open file %s: %v", lib.File, err)
}
magbuf := make([]byte, len(ARMAG))
if obj.Bread(f, magbuf) != len(magbuf) || !strings.HasPrefix(string(magbuf), ARMAG) {
/* load it as a regular file */
l := obj.Bseek(f, 0, 2)
obj.Bseek(f, 0, 0)
ldobj(f, pkg, l, lib.File, lib.File, FileObj)
obj.Bterm(f)
return
}
/* skip over optional __.GOSYMDEF and process __.PKGDEF */
off := obj.Boffset(f)
var arhdr ArHdr
l := nextar(f, off, &arhdr)
var pname string
if l <= 0 {
Diag("%s: short read on archive file symbol header", lib.File)
goto out
}
if strings.HasPrefix(arhdr.name, symname) {
off += l
l = nextar(f, off, &arhdr)
if l <= 0 {
Diag("%s: short read on archive file symbol header", lib.File)
goto out
}
}
if !strings.HasPrefix(arhdr.name, pkgname) {
Diag("%s: cannot find package header", lib.File)
goto out
}
if Buildmode == BuildmodeShared {
before := obj.Boffset(f)
pkgdefBytes := make([]byte, atolwhex(arhdr.size))
obj.Bread(f, pkgdefBytes)
hash := sha1.Sum(pkgdefBytes)
lib.hash = hash[:]
obj.Bseek(f, before, 0)
}
off += l
ldpkg(f, pkg, atolwhex(arhdr.size), lib.File, Pkgdef)
/*
* load all the object files from the archive now.
* this gives us sequential file access and keeps us
* from needing to come back later to pick up more
* objects. it breaks the usual C archive model, but
* this is Go, not C. the common case in Go is that
* we need to load all the objects, and then we throw away
* the individual symbols that are unused.
*
* loading every object will also make it possible to
* load foreign objects not referenced by __.GOSYMDEF.
*/
for {
l = nextar(f, off, &arhdr)
if l == 0 {
break
}
if l < 0 {
Exitf("%s: malformed archive", lib.File)
}
off += l
pname = fmt.Sprintf("%s(%s)", lib.File, arhdr.name)
l = atolwhex(arhdr.size)
ldobj(f, pkg, l, pname, lib.File, ArchiveObj)
}
out:
obj.Bterm(f)
}
type Hostobj struct {
ld func(*obj.Biobuf, string, int64, string)
pkg string
pn string
file string
off int64
length int64
}
var hostobj []Hostobj
// These packages can use internal linking mode.
// Others trigger external mode.
var internalpkg = []string{
"crypto/x509",
"net",
"os/user",
"runtime/cgo",
"runtime/race",
"runtime/msan",
}
func ldhostobj(ld func(*obj.Biobuf, string, int64, string), f *obj.Biobuf, pkg string, length int64, pn string, file string) *Hostobj {
isinternal := false
for i := 0; i < len(internalpkg); i++ {
if pkg == internalpkg[i] {
isinternal = true
break
}
}
// DragonFly declares errno with __thread, which results in a symbol
// type of R_386_TLS_GD or R_X86_64_TLSGD. The Go linker does not
// currently know how to handle TLS relocations, hence we have to
// force external linking for any libraries that link in code that
// uses errno. This can be removed if the Go linker ever supports
// these relocation types.
if HEADTYPE == obj.Hdragonfly {
if pkg == "net" || pkg == "os/user" {
isinternal = false
}
}
if !isinternal {
externalobj = true
}
hostobj = append(hostobj, Hostobj{})
h := &hostobj[len(hostobj)-1]
h.ld = ld
h.pkg = pkg
h.pn = pn
h.file = file
h.off = obj.Boffset(f)
h.length = length
return h
}
func hostobjs() {
var f *obj.Biobuf
var h *Hostobj
for i := 0; i < len(hostobj); i++ {
h = &hostobj[i]
var err error
f, err = obj.Bopenr(h.file)
if f == nil {
Exitf("cannot reopen %s: %v", h.pn, err)
}
obj.Bseek(f, h.off, 0)
h.ld(f, h.pkg, h.length, h.pn)
obj.Bterm(f)
}
}
// provided by lib9
func rmtemp() {
os.RemoveAll(tmpdir)
}
func hostlinksetup() {
if Linkmode != LinkExternal {
return
}
// For external link, record that we need to tell the external linker -s,
// and turn off -s internally: the external linker needs the symbol
// information for its final link.
debug_s = Debug['s']
Debug['s'] = 0
// create temporary directory and arrange cleanup
if tmpdir == "" {
dir, err := ioutil.TempDir("", "go-link-")
if err != nil {
log.Fatal(err)
}
tmpdir = dir
AtExit(rmtemp)
}
// change our output to temporary object file
coutbuf.f.Close()
mayberemoveoutfile()
p := fmt.Sprintf("%s/go.o", tmpdir)
var err error
f, err := os.OpenFile(p, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0775)
if err != nil {
Exitf("cannot create %s: %v", p, err)
}
coutbuf.Writer = bufio.NewWriter(f)
coutbuf.f = f
}
// hostobjCopy creates a copy of the object files in hostobj in a
// temporary directory.
func hostobjCopy() (paths []string) {
var wg sync.WaitGroup
sema := make(chan struct{}, runtime.NumCPU()) // limit open file descriptors
for i, h := range hostobj {
h := h
dst := fmt.Sprintf("%s/%06d.o", tmpdir, i)
paths = append(paths, dst)
wg.Add(1)
go func() {
sema <- struct{}{}
defer func() {
<-sema
wg.Done()
}()
f, err := os.Open(h.file)
if err != nil {
Exitf("cannot reopen %s: %v", h.pn, err)
}
if _, err := f.Seek(h.off, 0); err != nil {
Exitf("cannot seek %s: %v", h.pn, err)
}
w, err := os.Create(dst)
if err != nil {
Exitf("cannot create %s: %v", dst, err)
}
if _, err := io.CopyN(w, f, h.length); err != nil {
Exitf("cannot write %s: %v", dst, err)
}
if err := w.Close(); err != nil {
Exitf("cannot close %s: %v", dst, err)
}
}()
}
wg.Wait()
return paths
}
// archive builds a .a archive from the hostobj object files.
func archive() {
if Buildmode != BuildmodeCArchive {
return
}
if extar == "" {
extar = "ar"
}
mayberemoveoutfile()
argv := []string{extar, "-q", "-c", "-s", outfile}
argv = append(argv, fmt.Sprintf("%s/go.o", tmpdir))
argv = append(argv, hostobjCopy()...)
if Debug['v'] != 0 {
fmt.Fprintf(&Bso, "archive: %s\n", strings.Join(argv, " "))
Bso.Flush()
}
if out, err := exec.Command(argv[0], argv[1:]...).CombinedOutput(); err != nil {
Exitf("running %s failed: %v\n%s", argv[0], err, out)
}
}
func hostlink() {
if Linkmode != LinkExternal || nerrors > 0 {
return
}
if Buildmode == BuildmodeCArchive {
return
}
if extld == "" {
extld = "gcc"
}
var argv []string
argv = append(argv, extld)
argv = append(argv, hostlinkArchArgs()...)
if Debug['s'] == 0 && debug_s == 0 {
argv = append(argv, "-gdwarf-2")
} else {
argv = append(argv, "-s")
}
if HEADTYPE == obj.Hdarwin {
argv = append(argv, "-Wl,-no_pie,-headerpad,1144")
}
if HEADTYPE == obj.Hopenbsd {
argv = append(argv, "-Wl,-nopie")
}
if HEADTYPE == obj.Hwindows {
if headstring == "windowsgui" {
argv = append(argv, "-mwindows")
} else {
argv = append(argv, "-mconsole")
}
}
switch Buildmode {
case BuildmodeExe:
if HEADTYPE == obj.Hdarwin {
argv = append(argv, "-Wl,-pagezero_size,4000000")
}
case BuildmodePIE:
argv = append(argv, "-pie")
case BuildmodeCShared:
if HEADTYPE == obj.Hdarwin {
argv = append(argv, "-dynamiclib", "-Wl,-read_only_relocs,suppress")
} else {
// ELF.
argv = append(argv, "-Wl,-Bsymbolic")
if UseRelro() {
argv = append(argv, "-Wl,-z,relro")
}
// Pass -z nodelete to mark the shared library as
// non-closeable: a dlclose will do nothing.
argv = append(argv, "-shared", "-Wl,-z,nodelete")
}
case BuildmodeShared:
if UseRelro() {
argv = append(argv, "-Wl,-z,relro")
}
argv = append(argv, "-shared")
}
if Iself && DynlinkingGo() {
// We force all symbol resolution to be done at program startup
// because lazy PLT resolution can use large amounts of stack at
// times we cannot allow it to do so.
argv = append(argv, "-Wl,-znow")
}
if Iself && len(buildinfo) > 0 {
argv = append(argv, fmt.Sprintf("-Wl,--build-id=0x%x", buildinfo))
}
// On Windows, given -o foo, GCC will append ".exe" to produce
// "foo.exe". We have decided that we want to honor the -o
// option. To make this work, we append a '.' so that GCC
// will decide that the file already has an extension. We
// only want to do this when producing a Windows output file
// on a Windows host.
outopt := outfile
if goos == "windows" && runtime.GOOS == "windows" && filepath.Ext(outopt) == "" {
outopt += "."
}
argv = append(argv, "-o")
argv = append(argv, outopt)
if rpath.val != "" {
argv = append(argv, fmt.Sprintf("-Wl,-rpath,%s", rpath.val))
}
// Force global symbols to be exported for dlopen, etc.
if Iself {
argv = append(argv, "-rdynamic")
}
if strings.Contains(argv[0], "clang") {
argv = append(argv, "-Qunused-arguments")
}
argv = append(argv, fmt.Sprintf("%s/go.o", tmpdir))
argv = append(argv, hostobjCopy()...)
if Linkshared {
seenDirs := make(map[string]bool)
seenLibs := make(map[string]bool)
addshlib := func(path string) {
dir, base := filepath.Split(path)
if !seenDirs[dir] {
argv = append(argv, "-L"+dir)
if !rpath.set {
argv = append(argv, "-Wl,-rpath="+dir)
}
seenDirs[dir] = true
}
base = strings.TrimSuffix(base, ".so")
base = strings.TrimPrefix(base, "lib")
if !seenLibs[base] {
argv = append(argv, "-l"+base)
seenLibs[base] = true
}
}
for _, shlib := range Ctxt.Shlibs {
addshlib(shlib.Path)
for _, dep := range shlib.Deps {
if dep == "" {
continue
}
libpath := findshlib(dep)
if libpath != "" {
addshlib(libpath)
}
}
}
}
argv = append(argv, ldflag...)
for _, p := range strings.Fields(extldflags) {
argv = append(argv, p)
// clang, unlike GCC, passes -rdynamic to the linker
// even when linking with -static, causing a linker
// error when using GNU ld. So take out -rdynamic if
// we added it. We do it in this order, rather than
// only adding -rdynamic later, so that -extldflags
// can override -rdynamic without using -static.
if Iself && p == "-static" {
for i := range argv {
if argv[i] == "-rdynamic" {
argv[i] = "-static"
}
}
}
}
if HEADTYPE == obj.Hwindows {
argv = append(argv, peimporteddlls()...)
}
if Debug['v'] != 0 {
fmt.Fprintf(&Bso, "host link:")
for _, v := range argv {
fmt.Fprintf(&Bso, " %q", v)
}
fmt.Fprintf(&Bso, "\n")
Bso.Flush()
}
if out, err := exec.Command(argv[0], argv[1:]...).CombinedOutput(); err != nil {
Exitf("running %s failed: %v\n%s", argv[0], err, out)
} else if Debug['v'] != 0 && len(out) > 0 {
fmt.Fprintf(&Bso, "%s", out)
Bso.Flush()
}
if Debug['s'] == 0 && debug_s == 0 && HEADTYPE == obj.Hdarwin {
// Skip combining dwarf on arm.
if Thearch.Thechar != '5' && Thearch.Thechar != '7' {
dsym := fmt.Sprintf("%s/go.dwarf", tmpdir)
if out, err := exec.Command("dsymutil", "-f", outfile, "-o", dsym).CombinedOutput(); err != nil {
Ctxt.Cursym = nil
Exitf("%s: running dsymutil failed: %v\n%s", os.Args[0], err, out)
}
// Skip combining if `dsymutil` didn't generate a file. See #11994.
if _, err := os.Stat(dsym); os.IsNotExist(err) {
return
}
// For os.Rename to work reliably, must be in same directory as outfile.
combinedOutput := outfile + "~"
if err := machoCombineDwarf(outfile, dsym, combinedOutput); err != nil {
Ctxt.Cursym = nil
Exitf("%s: combining dwarf failed: %v", os.Args[0], err)
}
os.Remove(outfile)
if err := os.Rename(combinedOutput, outfile); err != nil {
Ctxt.Cursym = nil
Exitf("%s: %v", os.Args[0], err)
}
}
}
}
// hostlinkArchArgs returns arguments to pass to the external linker
// based on the architecture.
func hostlinkArchArgs() []string {
switch Thearch.Thechar {
case '8':
return []string{"-m32"}
case '6', '9':
return []string{"-m64"}
case '5':
return []string{"-marm"}
case '7':
// nothing needed
}
return nil
}
// ldobj loads an input object. If it is a host object (an object
// compiled by a non-Go compiler) it returns the Hostobj pointer. If
// it is a Go object, it returns nil.
func ldobj(f *obj.Biobuf, pkg string, length int64, pn string, file string, whence int) *Hostobj {
eof := obj.Boffset(f) + length
start := obj.Boffset(f)
c1 := obj.Bgetc(f)
c2 := obj.Bgetc(f)
c3 := obj.Bgetc(f)
c4 := obj.Bgetc(f)
obj.Bseek(f, start, 0)
magic := uint32(c1)<<24 | uint32(c2)<<16 | uint32(c3)<<8 | uint32(c4)
if magic == 0x7f454c46 { // \x7F E L F
return ldhostobj(ldelf, f, pkg, length, pn, file)
}
if magic&^1 == 0xfeedface || magic&^0x01000000 == 0xcefaedfe {
return ldhostobj(ldmacho, f, pkg, length, pn, file)
}
if c1 == 0x4c && c2 == 0x01 || c1 == 0x64 && c2 == 0x86 {
return ldhostobj(ldpe, f, pkg, length, pn, file)
}
/* check the header */
line := obj.Brdline(f, '\n')
if line == "" {
if obj.Blinelen(f) > 0 {
Diag("%s: not an object file", pn)
return nil
}
Diag("truncated object file: %s", pn)
return nil
}
if !strings.HasPrefix(line, "go object ") {
if strings.HasSuffix(pn, ".go") {
Exitf("%cl: input %s is not .%c file (use %cg to compile .go files)", Thearch.Thechar, pn, Thearch.Thechar, Thearch.Thechar)
}
if line == Thestring {
// old header format: just $GOOS
Diag("%s: stale object file", pn)
return nil
}
Diag("%s: not an object file", pn)
return nil
}
// First, check that the basic goos, goarch, and version match.
t := fmt.Sprintf("%s %s %s ", goos, obj.Getgoarch(), obj.Getgoversion())
line = strings.TrimRight(line, "\n")
if !strings.HasPrefix(line[10:]+" ", t) && Debug['f'] == 0 {
Diag("%s: object is [%s] expected [%s]", pn, line[10:], t)
return nil
}
// Second, check that longer lines match each other exactly,
// so that the Go compiler and write additional information
// that must be the same from run to run.
if len(line) >= len(t)+10 {
if theline == "" {
theline = line[10:]
} else if theline != line[10:] {
Diag("%s: object is [%s] expected [%s]", pn, line[10:], theline)
return nil
}
}
/* skip over exports and other info -- ends with \n!\n */
import0 := obj.Boffset(f)
c1 = '\n' // the last line ended in \n
c2 = obj.Bgetc(f)
c3 = obj.Bgetc(f)
for c1 != '\n' || c2 != '!' || c3 != '\n' {
c1 = c2
c2 = c3
c3 = obj.Bgetc(f)
if c3 == obj.Beof {
Diag("truncated object file: %s", pn)
return nil
}
}
import1 := obj.Boffset(f)
obj.Bseek(f, import0, 0)
ldpkg(f, pkg, import1-import0-2, pn, whence) // -2 for !\n
obj.Bseek(f, import1, 0)
ldobjfile(Ctxt, f, pkg, eof-obj.Boffset(f), pn)
return nil
}
func readelfsymboldata(f *elf.File, sym *elf.Symbol) []byte {
data := make([]byte, sym.Size)
sect := f.Sections[sym.Section]
if sect.Type != elf.SHT_PROGBITS && sect.Type != elf.SHT_NOTE {
Diag("reading %s from non-data section", sym.Name)
}
n, err := sect.ReadAt(data, int64(sym.Value-sect.Addr))
if uint64(n) != sym.Size {
Diag("reading contents of %s: %v", sym.Name, err)
}
return data
}
func readwithpad(r io.Reader, sz int32) ([]byte, error) {
data := make([]byte, Rnd(int64(sz), 4))
_, err := io.ReadFull(r, data)
if err != nil {
return nil, err
}
data = data[:sz]
return data, nil
}
func readnote(f *elf.File, name []byte, typ int32) ([]byte, error) {
for _, sect := range f.Sections {
if sect.Type != elf.SHT_NOTE {
continue
}
r := sect.Open()
for {
var namesize, descsize, noteType int32
err := binary.Read(r, f.ByteOrder, &namesize)
if err != nil {
if err == io.EOF {
break
}
return nil, fmt.Errorf("read namesize failed: %v", err)
}
err = binary.Read(r, f.ByteOrder, &descsize)
if err != nil {
return nil, fmt.Errorf("read descsize failed: %v", err)
}
err = binary.Read(r, f.ByteOrder, &noteType)
if err != nil {
return nil, fmt.Errorf("read type failed: %v", err)
}
noteName, err := readwithpad(r, namesize)
if err != nil {
return nil, fmt.Errorf("read name failed: %v", err)
}
desc, err := readwithpad(r, descsize)
if err != nil {
return nil, fmt.Errorf("read desc failed: %v", err)
}
if string(name) == string(noteName) && typ == noteType {
return desc, nil
}
}
}
return nil, nil
}
func findshlib(shlib string) string {
for _, libdir := range Ctxt.Libdir {
libpath := filepath.Join(libdir, shlib)
if _, err := os.Stat(libpath); err == nil {
return libpath
}
}
Diag("cannot find shared library: %s", shlib)
return ""
}
func ldshlibsyms(shlib string) {
libpath := findshlib(shlib)
if libpath == "" {
return
}
for _, processedlib := range Ctxt.Shlibs {
if processedlib.Path == libpath {
return
}
}
if Ctxt.Debugvlog > 1 && Ctxt.Bso != nil {
fmt.Fprintf(Ctxt.Bso, "%5.2f ldshlibsyms: found library with name %s at %s\n", obj.Cputime(), shlib, libpath)
Ctxt.Bso.Flush()
}
f, err := elf.Open(libpath)
if err != nil {
Diag("cannot open shared library: %s", libpath)
return
}
hash, err := readnote(f, ELF_NOTE_GO_NAME, ELF_NOTE_GOABIHASH_TAG)
if err != nil {
Diag("cannot read ABI hash from shared library %s: %v", libpath, err)
return
}
depsbytes, err := readnote(f, ELF_NOTE_GO_NAME, ELF_NOTE_GODEPS_TAG)
if err != nil {
Diag("cannot read dep list from shared library %s: %v", libpath, err)
return
}
deps := strings.Split(string(depsbytes), "\n")
syms, err := f.DynamicSymbols()
if err != nil {
Diag("cannot read symbols from shared library: %s", libpath)
return
}
gcdata_locations := make(map[uint64]*LSym)
for _, elfsym := range syms {
if elf.ST_TYPE(elfsym.Info) == elf.STT_NOTYPE || elf.ST_TYPE(elfsym.Info) == elf.STT_SECTION {
continue
}
lsym := Linklookup(Ctxt, elfsym.Name, 0)
// Because loadlib above loads all .a files before loading any shared
// libraries, any symbols we find that duplicate symbols already
// loaded should be ignored (the symbols from the .a files "win").
if lsym.Type != 0 {
continue
}
lsym.Type = obj.SDYNIMPORT
lsym.ElfType = elf.ST_TYPE(elfsym.Info)
lsym.Size = int64(elfsym.Size)
if elfsym.Section != elf.SHN_UNDEF {
// Set .File for the library that actually defines the symbol.
lsym.File = libpath
// The decodetype_* functions in decodetype.go need access to
// the type data.
if strings.HasPrefix(lsym.Name, "type.") && !strings.HasPrefix(lsym.Name, "type..") {
lsym.P = readelfsymboldata(f, &elfsym)
gcdata_locations[elfsym.Value+2*uint64(Thearch.Ptrsize)+8+1*uint64(Thearch.Ptrsize)] = lsym
}
}
}
gcdata_addresses := make(map[*LSym]uint64)
if Thearch.Thechar == '7' {
for _, sect := range f.Sections {
if sect.Type == elf.SHT_RELA {
var rela elf.Rela64
rdr := sect.Open()
for {
err := binary.Read(rdr, f.ByteOrder, &rela)
if err == io.EOF {
break
} else if err != nil {
Diag("reading relocation failed %v", err)
return
}
t := elf.R_AARCH64(rela.Info & 0xffff)
if t != elf.R_AARCH64_RELATIVE {
continue
}
if lsym, ok := gcdata_locations[rela.Off]; ok {
gcdata_addresses[lsym] = uint64(rela.Addend)
}
}
}
}
}
// We might have overwritten some functions above (this tends to happen for the
// autogenerated type equality/hashing functions) and we don't want to generated
// pcln table entries for these any more so unstitch them from the Textp linked
// list.
var last *LSym
for s := Ctxt.Textp; s != nil; s = s.Next {
if s.Type == obj.SDYNIMPORT {
continue
}
if last == nil {
Ctxt.Textp = s
} else {
last.Next = s
}
last = s
}
if last == nil {
Ctxt.Textp = nil
Ctxt.Etextp = nil
} else {
last.Next = nil
Ctxt.Etextp = last
}
Ctxt.Shlibs = append(Ctxt.Shlibs, Shlib{Path: libpath, Hash: hash, Deps: deps, File: f, gcdata_addresses: gcdata_addresses})
}
func mywhatsys() {
goroot = obj.Getgoroot()
goos = obj.Getgoos()
goarch = obj.Getgoarch()
if !strings.HasPrefix(goarch, Thestring) {
log.Fatalf("cannot use %cc with GOARCH=%s", Thearch.Thechar, goarch)
}
}
// Copied from ../gc/subr.c:/^pathtoprefix; must stay in sync.
/*
* Convert raw string to the prefix that will be used in the symbol table.
* Invalid bytes turn into %xx. Right now the only bytes that need
* escaping are %, ., and ", but we escape all control characters too.
*
* If you edit this, edit ../gc/subr.c:/^pathtoprefix too.
* If you edit this, edit ../../debug/goobj/read.go:/importPathToPrefix too.
*/
func pathtoprefix(s string) string {
slash := strings.LastIndex(s, "/")
for i := 0; i < len(s); i++ {
c := s[i]
if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
var buf bytes.Buffer
for i := 0; i < len(s); i++ {
c := s[i]
if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
fmt.Fprintf(&buf, "%%%02x", c)
continue
}
buf.WriteByte(c)
}
return buf.String()
}
}
return s
}
func addsection(seg *Segment, name string, rwx int) *Section {
var l **Section
for l = &seg.Sect; *l != nil; l = &(*l).Next {
}
sect := new(Section)
sect.Rwx = uint8(rwx)
sect.Name = name
sect.Seg = seg
sect.Align = int32(Thearch.Ptrsize) // everything is at least pointer-aligned
*l = sect
return sect
}
func Le16(b []byte) uint16 {
return uint16(b[0]) | uint16(b[1])<<8
}
func Le32(b []byte) uint32 {
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func Le64(b []byte) uint64 {
return uint64(Le32(b)) | uint64(Le32(b[4:]))<<32
}
func Be16(b []byte) uint16 {
return uint16(b[0])<<8 | uint16(b[1])
}
func Be32(b []byte) uint32 {
return uint32(b[0])<<24 | uint32(b[1])<<16 | uint32(b[2])<<8 | uint32(b[3])
}
type Chain struct {
sym *LSym
up *Chain
limit int // limit on entry to sym
}
var morestack *LSym
// TODO: Record enough information in new object files to
// allow stack checks here.
func haslinkregister() bool {
return Ctxt.FixedFrameSize() != 0
}
func callsize() int {
if haslinkregister() {
return 0
}
return Thearch.Regsize
}
func dostkcheck() {
var ch Chain
morestack = Linklookup(Ctxt, "runtime.morestack", 0)
// Every splitting function ensures that there are at least StackLimit
// bytes available below SP when the splitting prologue finishes.
// If the splitting function calls F, then F begins execution with
// at least StackLimit - callsize() bytes available.
// Check that every function behaves correctly with this amount
// of stack, following direct calls in order to piece together chains
// of non-splitting functions.
ch.up = nil
ch.limit = obj.StackLimit - callsize()
// Check every function, but do the nosplit functions in a first pass,
// to make the printed failure chains as short as possible.
for s := Ctxt.Textp; s != nil; s = s.Next {
// runtime.racesymbolizethunk is called from gcc-compiled C
// code running on the operating system thread stack.
// It uses more than the usual amount of stack but that's okay.
if s.Name == "runtime.racesymbolizethunk" {
continue
}
if s.Nosplit != 0 {
Ctxt.Cursym = s
ch.sym = s
stkcheck(&ch, 0)
}
}
for s := Ctxt.Textp; s != nil; s = s.Next {
if s.Nosplit == 0 {
Ctxt.Cursym = s
ch.sym = s
stkcheck(&ch, 0)
}
}
}
func stkcheck(up *Chain, depth int) int {
limit := up.limit
s := up.sym
// Don't duplicate work: only need to consider each
// function at top of safe zone once.
top := limit == obj.StackLimit-callsize()
if top {
if s.Stkcheck != 0 {
return 0
}
s.Stkcheck = 1
}
if depth > 100 {
Diag("nosplit stack check too deep")
stkbroke(up, 0)
return -1
}
if s.External != 0 || s.Pcln == nil {
// external function.
// should never be called directly.
// only diagnose the direct caller.
// TODO(mwhudson): actually think about this.
if depth == 1 && s.Type != obj.SXREF && !DynlinkingGo() &&
Buildmode != BuildmodePIE && Buildmode != BuildmodeCShared {
Diag("call to external function %s", s.Name)
}
return -1
}
if limit < 0 {
stkbroke(up, limit)
return -1
}
// morestack looks like it calls functions,
// but it switches the stack pointer first.
if s == morestack {
return 0
}
var ch Chain
ch.up = up
if s.Nosplit == 0 {
// Ensure we have enough stack to call morestack.
ch.limit = limit - callsize()
ch.sym = morestack
if stkcheck(&ch, depth+1) < 0 {
return -1
}
if !top {
return 0
}
// Raise limit to allow frame.
limit = int(obj.StackLimit+s.Locals) + int(Ctxt.FixedFrameSize())
}
// Walk through sp adjustments in function, consuming relocs.
ri := 0
endr := len(s.R)
var ch1 Chain
var pcsp Pciter
var r *Reloc
for pciterinit(Ctxt, &pcsp, &s.Pcln.Pcsp); pcsp.done == 0; pciternext(&pcsp) {
// pcsp.value is in effect for [pcsp.pc, pcsp.nextpc).
// Check stack size in effect for this span.
if int32(limit)-pcsp.value < 0 {
stkbroke(up, int(int32(limit)-pcsp.value))
return -1
}
// Process calls in this span.
for ; ri < endr && uint32(s.R[ri].Off) < pcsp.nextpc; ri++ {
r = &s.R[ri]
switch r.Type {
// Direct call.
case obj.R_CALL, obj.R_CALLARM, obj.R_CALLARM64, obj.R_CALLPOWER, obj.R_CALLMIPS:
ch.limit = int(int32(limit) - pcsp.value - int32(callsize()))
ch.sym = r.Sym
if stkcheck(&ch, depth+1) < 0 {
return -1
}
// Indirect call. Assume it is a call to a splitting function,
// so we have to make sure it can call morestack.
// Arrange the data structures to report both calls, so that
// if there is an error, stkprint shows all the steps involved.
case obj.R_CALLIND:
ch.limit = int(int32(limit) - pcsp.value - int32(callsize()))
ch.sym = nil
ch1.limit = ch.limit - callsize() // for morestack in called prologue
ch1.up = &ch
ch1.sym = morestack
if stkcheck(&ch1, depth+2) < 0 {
return -1
}
}
}
}
return 0
}
func stkbroke(ch *Chain, limit int) {
Diag("nosplit stack overflow")
stkprint(ch, limit)
}
func stkprint(ch *Chain, limit int) {
var name string
if ch.sym != nil {
name = ch.sym.Name
if ch.sym.Nosplit != 0 {
name += " (nosplit)"
}
} else {
name = "function pointer"
}
if ch.up == nil {
// top of chain. ch->sym != nil.
if ch.sym.Nosplit != 0 {
fmt.Printf("\t%d\tassumed on entry to %s\n", ch.limit, name)
} else {
fmt.Printf("\t%d\tguaranteed after split check in %s\n", ch.limit, name)
}
} else {
stkprint(ch.up, ch.limit+callsize())
if !haslinkregister() {
fmt.Printf("\t%d\ton entry to %s\n", ch.limit, name)
}
}
if ch.limit != limit {
fmt.Printf("\t%d\tafter %s uses %d\n", limit, name, ch.limit-limit)
}
}
func Cflush() {
if err := coutbuf.Writer.Flush(); err != nil {
Exitf("flushing %s: %v", coutbuf.f.Name(), err)
}
}
func Cpos() int64 {
off, err := coutbuf.f.Seek(0, 1)
if err != nil {
Exitf("seeking in output [0, 1]: %v", err)
}
return off + int64(coutbuf.Buffered())
}
func Cseek(p int64) {
Cflush()
if _, err := coutbuf.f.Seek(p, 0); err != nil {
Exitf("seeking in output [0, 1]: %v", err)
}
}
func Cwrite(p []byte) {
coutbuf.Write(p)
}
func Cput(c uint8) {
coutbuf.WriteByte(c)
}
func usage() {
fmt.Fprintf(os.Stderr, "usage: link [options] main.o\n")
obj.Flagprint(2)
Exit(2)
}
func setheadtype(s string) {
h := headtype(s)
if h < 0 {
Exitf("unknown header type -H %s", s)
}
headstring = s
HEADTYPE = int32(headtype(s))
}
func setinterp(s string) {
Debug['I'] = 1 // denote cmdline interpreter override
interpreter = s
}
func doversion() {
Exitf("version %s", obj.Getgoversion())
}
func genasmsym(put func(*LSym, string, int, int64, int64, int, *LSym)) {
// These symbols won't show up in the first loop below because we
// skip STEXT symbols. Normal STEXT symbols are emitted by walking textp.
s := Linklookup(Ctxt, "runtime.text", 0)
if s.Type == obj.STEXT {
put(s, s.Name, 'T', s.Value, s.Size, int(s.Version), nil)
}
s = Linklookup(Ctxt, "runtime.etext", 0)
if s.Type == obj.STEXT {
put(s, s.Name, 'T', s.Value, s.Size, int(s.Version), nil)
}
for s := Ctxt.Allsym; s != nil; s = s.Allsym {
if s.Hide != 0 || ((s.Name == "" || s.Name[0] == '.') && s.Version == 0 && s.Name != ".rathole" && s.Name != ".TOC.") {
continue
}
switch s.Type & obj.SMASK {
case obj.SCONST,
obj.SRODATA,
obj.SSYMTAB,
obj.SPCLNTAB,
obj.SINITARR,
obj.SDATA,
obj.SNOPTRDATA,
obj.SELFROSECT,
obj.SMACHOGOT,
obj.STYPE,
obj.SSTRING,
obj.SGOSTRING,
obj.SGOFUNC,
obj.SGCBITS,
obj.STYPERELRO,
obj.SSTRINGRELRO,
obj.SGOSTRINGRELRO,
obj.SGOFUNCRELRO,
obj.SGCBITSRELRO,
obj.SRODATARELRO,
obj.STYPELINK,
obj.SWINDOWS:
if !s.Reachable {
continue
}
put(s, s.Name, 'D', Symaddr(s), s.Size, int(s.Version), s.Gotype)
case obj.SBSS, obj.SNOPTRBSS:
if !s.Reachable {
continue
}
if len(s.P) > 0 {
Diag("%s should not be bss (size=%d type=%d special=%d)", s.Name, int(len(s.P)), s.Type, s.Special)
}
put(s, s.Name, 'B', Symaddr(s), s.Size, int(s.Version), s.Gotype)
case obj.SFILE:
put(nil, s.Name, 'f', s.Value, 0, int(s.Version), nil)
case obj.SHOSTOBJ:
if HEADTYPE == obj.Hwindows || Iself {
put(s, s.Name, 'U', s.Value, 0, int(s.Version), nil)
}
case obj.SDYNIMPORT:
if !s.Reachable {
continue
}
put(s, s.Extname, 'U', 0, 0, int(s.Version), nil)
case obj.STLSBSS:
if Linkmode == LinkExternal && HEADTYPE != obj.Hopenbsd {
put(s, s.Name, 't', Symaddr(s), s.Size, int(s.Version), s.Gotype)
}
}
}
var a *Auto
var off int32
for s := Ctxt.Textp; s != nil; s = s.Next {
put(s, s.Name, 'T', s.Value, s.Size, int(s.Version), s.Gotype)
// NOTE(ality): acid can't produce a stack trace without .frame symbols
put(nil, ".frame", 'm', int64(s.Locals)+int64(Thearch.Ptrsize), 0, 0, nil)
for a = s.Autom; a != nil; a = a.Link {
// Emit a or p according to actual offset, even if label is wrong.
// This avoids negative offsets, which cannot be encoded.
if a.Name != obj.A_AUTO && a.Name != obj.A_PARAM {
continue
}
// compute offset relative to FP
if a.Name == obj.A_PARAM {
off = a.Aoffset
} else {
off = a.Aoffset - int32(Thearch.Ptrsize)
}
// FP
if off >= 0 {
put(nil, a.Asym.Name, 'p', int64(off), 0, 0, a.Gotype)
continue
}
// SP
if off <= int32(-Thearch.Ptrsize) {
put(nil, a.Asym.Name, 'a', -(int64(off) + int64(Thearch.Ptrsize)), 0, 0, a.Gotype)
continue
}
}
}
// Otherwise, off is addressing the saved program counter.
// Something underhanded is going on. Say nothing.
if Debug['v'] != 0 || Debug['n'] != 0 {
fmt.Fprintf(&Bso, "%5.2f symsize = %d\n", obj.Cputime(), uint32(Symsize))
}
Bso.Flush()
}
func Symaddr(s *LSym) int64 {
if !s.Reachable {
Diag("unreachable symbol in symaddr - %s", s.Name)
}
return s.Value
}
func xdefine(p string, t int, v int64) {
s := Linklookup(Ctxt, p, 0)
s.Type = int16(t)
s.Value = v
s.Reachable = true
s.Special = 1
s.Local = true
}
func datoff(addr int64) int64 {
if uint64(addr) >= Segdata.Vaddr {
return int64(uint64(addr) - Segdata.Vaddr + Segdata.Fileoff)
}
if uint64(addr) >= Segtext.Vaddr {
return int64(uint64(addr) - Segtext.Vaddr + Segtext.Fileoff)
}
Diag("datoff %#x", addr)
return 0
}
func Entryvalue() int64 {
a := INITENTRY
if a[0] >= '0' && a[0] <= '9' {
return atolwhex(a)
}
s := Linklookup(Ctxt, a, 0)
if s.Type == 0 {
return INITTEXT
}
if s.Type != obj.STEXT {
Diag("entry not text: %s", s.Name)
}
return s.Value
}
func undefsym(s *LSym) {
var r *Reloc
Ctxt.Cursym = s
for i := 0; i < len(s.R); i++ {
r = &s.R[i]
if r.Sym == nil { // happens for some external ARM relocs
continue
}
if r.Sym.Type == obj.Sxxx || r.Sym.Type == obj.SXREF {
Diag("undefined: %s", r.Sym.Name)
}
if !r.Sym.Reachable {
Diag("use of unreachable symbol: %s", r.Sym.Name)
}
}
}
func undef() {
for s := Ctxt.Textp; s != nil; s = s.Next {
undefsym(s)
}
for s := datap; s != nil; s = s.Next {
undefsym(s)
}
if nerrors > 0 {
errorexit()
}
}
func callgraph() {
if Debug['c'] == 0 {
return
}
var i int
var r *Reloc
for s := Ctxt.Textp; s != nil; s = s.Next {
for i = 0; i < len(s.R); i++ {
r = &s.R[i]
if r.Sym == nil {
continue
}
if (r.Type == obj.R_CALL || r.Type == obj.R_CALLARM || r.Type == obj.R_CALLPOWER || r.Type == obj.R_CALLMIPS) && r.Sym.Type == obj.STEXT {
fmt.Fprintf(&Bso, "%s calls %s\n", s.Name, r.Sym.Name)
}
}
}
}
func Diag(format string, args ...interface{}) {
tn := ""
sep := ""
if Ctxt.Cursym != nil {
tn = Ctxt.Cursym.Name
sep = ": "
}
fmt.Printf("%s%s%s\n", tn, sep, fmt.Sprintf(format, args...))
nerrors++
if Debug['h'] != 0 {
panic("error")
}
if nerrors > 20 {
Exitf("too many errors")
}
}
func checkgo() {
if Debug['C'] == 0 {
return
}
// TODO(rsc,khr): Eventually we want to get to no Go-called C functions at all,
// which would simplify this logic quite a bit.
// Mark every Go-called C function with cfunc=2, recursively.
var changed int
var i int
var r *Reloc
var s *LSym
for {
changed = 0
for s = Ctxt.Textp; s != nil; s = s.Next {
if s.Cfunc == 0 || (s.Cfunc == 2 && s.Nosplit != 0) {
for i = 0; i < len(s.R); i++ {
r = &s.R[i]
if r.Sym == nil {
continue
}
if (r.Type == obj.R_CALL || r.Type == obj.R_CALLARM) && r.Sym.Type == obj.STEXT {
if r.Sym.Cfunc == 1 {
changed = 1
r.Sym.Cfunc = 2
}
}
}
}
}
if changed == 0 {
break
}
}
// Complain about Go-called C functions that can split the stack
// (that can be preempted for garbage collection or trigger a stack copy).
for s := Ctxt.Textp; s != nil; s = s.Next {
if s.Cfunc == 0 || (s.Cfunc == 2 && s.Nosplit != 0) {
for i = 0; i < len(s.R); i++ {
r = &s.R[i]
if r.Sym == nil {
continue
}
if (r.Type == obj.R_CALL || r.Type == obj.R_CALLARM) && r.Sym.Type == obj.STEXT {
if s.Cfunc == 0 && r.Sym.Cfunc == 2 && r.Sym.Nosplit == 0 {
fmt.Printf("Go %s calls C %s\n", s.Name, r.Sym.Name)
} else if s.Cfunc == 2 && s.Nosplit != 0 && r.Sym.Nosplit == 0 {
fmt.Printf("Go calls C %s calls %s\n", s.Name, r.Sym.Name)
}
}
}
}
}
}
func Rnd(v int64, r int64) int64 {
if r <= 0 {
return v
}
v += r - 1
c := v % r
if c < 0 {
c += r
}
v -= c
return v
}