| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package obj |
| |
| import ( |
| "encoding/binary" |
| "log" |
| ) |
| |
| // funcpctab writes to dst a pc-value table mapping the code in func to the values |
| // returned by valfunc parameterized by arg. The invocation of valfunc to update the |
| // current value is, for each p, |
| // |
| // val = valfunc(func, val, p, 0, arg); |
| // record val as value at p->pc; |
| // val = valfunc(func, val, p, 1, arg); |
| // |
| // where func is the function, val is the current value, p is the instruction being |
| // considered, and arg can be used to further parameterize valfunc. |
| func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) { |
| dbg := desc == ctxt.Debugpcln |
| |
| dst.P = dst.P[:0] |
| |
| if dbg { |
| ctxt.Logf("funcpctab %s [valfunc=%s]\n", func_.Name, desc) |
| } |
| |
| val := int32(-1) |
| oldval := val |
| if func_.Func.Text == nil { |
| return |
| } |
| |
| pc := func_.Func.Text.Pc |
| |
| if dbg { |
| ctxt.Logf("%6x %6d %v\n", uint64(pc), val, func_.Func.Text) |
| } |
| |
| buf := make([]byte, binary.MaxVarintLen32) |
| started := false |
| for p := func_.Func.Text; p != nil; p = p.Link { |
| // Update val. If it's not changing, keep going. |
| val = valfunc(ctxt, func_, val, p, 0, arg) |
| |
| if val == oldval && started { |
| val = valfunc(ctxt, func_, val, p, 1, arg) |
| if dbg { |
| ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p) |
| } |
| continue |
| } |
| |
| // If the pc of the next instruction is the same as the |
| // pc of this instruction, this instruction is not a real |
| // instruction. Keep going, so that we only emit a delta |
| // for a true instruction boundary in the program. |
| if p.Link != nil && p.Link.Pc == p.Pc { |
| val = valfunc(ctxt, func_, val, p, 1, arg) |
| if dbg { |
| ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p) |
| } |
| continue |
| } |
| |
| // The table is a sequence of (value, pc) pairs, where each |
| // pair states that the given value is in effect from the current position |
| // up to the given pc, which becomes the new current position. |
| // To generate the table as we scan over the program instructions, |
| // we emit a "(value" when pc == func->value, and then |
| // each time we observe a change in value we emit ", pc) (value". |
| // When the scan is over, we emit the closing ", pc)". |
| // |
| // The table is delta-encoded. The value deltas are signed and |
| // transmitted in zig-zag form, where a complement bit is placed in bit 0, |
| // and the pc deltas are unsigned. Both kinds of deltas are sent |
| // as variable-length little-endian base-128 integers, |
| // where the 0x80 bit indicates that the integer continues. |
| |
| if dbg { |
| ctxt.Logf("%6x %6d %v\n", uint64(p.Pc), val, p) |
| } |
| |
| if started { |
| pcdelta := (p.Pc - pc) / int64(ctxt.Arch.MinLC) |
| n := binary.PutUvarint(buf, uint64(pcdelta)) |
| dst.P = append(dst.P, buf[:n]...) |
| pc = p.Pc |
| } |
| |
| delta := val - oldval |
| n := binary.PutVarint(buf, int64(delta)) |
| dst.P = append(dst.P, buf[:n]...) |
| oldval = val |
| started = true |
| val = valfunc(ctxt, func_, val, p, 1, arg) |
| } |
| |
| if started { |
| if dbg { |
| ctxt.Logf("%6x done\n", uint64(func_.Func.Text.Pc+func_.Size)) |
| } |
| v := (func_.Size - pc) / int64(ctxt.Arch.MinLC) |
| if v < 0 { |
| ctxt.Diag("negative pc offset: %v", v) |
| } |
| n := binary.PutUvarint(buf, uint64(v)) |
| dst.P = append(dst.P, buf[:n]...) |
| // add terminating varint-encoded 0, which is just 0 |
| dst.P = append(dst.P, 0) |
| } |
| |
| if dbg { |
| ctxt.Logf("wrote %d bytes to %p\n", len(dst.P), dst) |
| for _, p := range dst.P { |
| ctxt.Logf(" %02x", p) |
| } |
| ctxt.Logf("\n") |
| } |
| } |
| |
| // pctofileline computes either the file number (arg == 0) |
| // or the line number (arg == 1) to use at p. |
| // Because p.Pos applies to p, phase == 0 (before p) |
| // takes care of the update. |
| func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { |
| if p.As == ATEXT || p.As == ANOP || p.Pos.Line() == 0 || phase == 1 { |
| return oldval |
| } |
| f, l := linkgetlineFromPos(ctxt, p.Pos) |
| if arg == nil { |
| return l |
| } |
| pcln := arg.(*Pcln) |
| |
| if f == pcln.Lastfile { |
| return int32(pcln.Lastindex) |
| } |
| |
| for i, file := range pcln.File { |
| if file == f { |
| pcln.Lastfile = f |
| pcln.Lastindex = i |
| return int32(i) |
| } |
| } |
| i := len(pcln.File) |
| pcln.File = append(pcln.File, f) |
| pcln.Lastfile = f |
| pcln.Lastindex = i |
| return int32(i) |
| } |
| |
| // pcinlineState holds the state used to create a function's inlining |
| // tree and the PC-value table that maps PCs to nodes in that tree. |
| type pcinlineState struct { |
| globalToLocal map[int]int |
| localTree InlTree |
| } |
| |
| // addBranch adds a branch from the global inlining tree in ctxt to |
| // the function's local inlining tree, returning the index in the local tree. |
| func (s *pcinlineState) addBranch(ctxt *Link, globalIndex int) int { |
| if globalIndex < 0 { |
| return -1 |
| } |
| |
| localIndex, ok := s.globalToLocal[globalIndex] |
| if ok { |
| return localIndex |
| } |
| |
| // Since tracebacks don't include column information, we could |
| // use one node for multiple calls of the same function on the |
| // same line (e.g., f(x) + f(y)). For now, we use one node for |
| // each inlined call. |
| call := ctxt.InlTree.nodes[globalIndex] |
| call.Parent = s.addBranch(ctxt, call.Parent) |
| localIndex = len(s.localTree.nodes) |
| s.localTree.nodes = append(s.localTree.nodes, call) |
| s.globalToLocal[globalIndex] = localIndex |
| return localIndex |
| } |
| |
| func (s *pcinlineState) setParentPC(ctxt *Link, globalIndex int, pc int32) { |
| localIndex, ok := s.globalToLocal[globalIndex] |
| if !ok { |
| // We know where to unwind to when we need to unwind a body identified |
| // by globalIndex. But there may be no instructions generated by that |
| // body (it's empty, or its instructions were CSEd with other things, etc.). |
| // In that case, we don't need an unwind entry. |
| // TODO: is this really right? Seems to happen a whole lot... |
| return |
| } |
| s.localTree.setParentPC(localIndex, pc) |
| } |
| |
| // pctoinline computes the index into the local inlining tree to use at p. |
| // If p is not the result of inlining, pctoinline returns -1. Because p.Pos |
| // applies to p, phase == 0 (before p) takes care of the update. |
| func (s *pcinlineState) pctoinline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { |
| if phase == 1 { |
| return oldval |
| } |
| |
| posBase := ctxt.PosTable.Pos(p.Pos).Base() |
| if posBase == nil { |
| return -1 |
| } |
| |
| globalIndex := posBase.InliningIndex() |
| if globalIndex < 0 { |
| return -1 |
| } |
| |
| if s.globalToLocal == nil { |
| s.globalToLocal = make(map[int]int) |
| } |
| |
| return int32(s.addBranch(ctxt, globalIndex)) |
| } |
| |
| // pctospadj computes the sp adjustment in effect. |
| // It is oldval plus any adjustment made by p itself. |
| // The adjustment by p takes effect only after p, so we |
| // apply the change during phase == 1. |
| func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { |
| if oldval == -1 { // starting |
| oldval = 0 |
| } |
| if phase == 0 { |
| return oldval |
| } |
| if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 { |
| ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj) |
| ctxt.DiagFlush() |
| log.Fatalf("bad code") |
| } |
| |
| return oldval + p.Spadj |
| } |
| |
| // pctopcdata computes the pcdata value in effect at p. |
| // A PCDATA instruction sets the value in effect at future |
| // non-PCDATA instructions. |
| // Since PCDATA instructions have no width in the final code, |
| // it does not matter which phase we use for the update. |
| func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { |
| if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) { |
| return oldval |
| } |
| if int64(int32(p.To.Offset)) != p.To.Offset { |
| ctxt.Diag("overflow in PCDATA instruction: %v", p) |
| ctxt.DiagFlush() |
| log.Fatalf("bad code") |
| } |
| |
| return int32(p.To.Offset) |
| } |
| |
| func linkpcln(ctxt *Link, cursym *LSym) { |
| pcln := &cursym.Func.Pcln |
| |
| npcdata := 0 |
| nfuncdata := 0 |
| for p := cursym.Func.Text; p != nil; p = p.Link { |
| // Find the highest ID of any used PCDATA table. This ignores PCDATA table |
| // that consist entirely of "-1", since that's the assumed default value. |
| // From.Offset is table ID |
| // To.Offset is data |
| if p.As == APCDATA && p.From.Offset >= int64(npcdata) && p.To.Offset != -1 { // ignore -1 as we start at -1, if we only see -1, nothing changed |
| npcdata = int(p.From.Offset + 1) |
| } |
| // Find the highest ID of any FUNCDATA table. |
| // From.Offset is table ID |
| if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) { |
| nfuncdata = int(p.From.Offset + 1) |
| } |
| } |
| |
| pcln.Pcdata = make([]Pcdata, npcdata) |
| pcln.Pcdata = pcln.Pcdata[:npcdata] |
| pcln.Funcdata = make([]*LSym, nfuncdata) |
| pcln.Funcdataoff = make([]int64, nfuncdata) |
| pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata] |
| |
| funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil) |
| funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln) |
| funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil) |
| |
| pcinlineState := new(pcinlineState) |
| funcpctab(ctxt, &pcln.Pcinline, cursym, "pctoinline", pcinlineState.pctoinline, nil) |
| for _, inlMark := range cursym.Func.InlMarks { |
| pcinlineState.setParentPC(ctxt, int(inlMark.id), int32(inlMark.p.Pc)) |
| } |
| pcln.InlTree = pcinlineState.localTree |
| if ctxt.Debugpcln == "pctoinline" && len(pcln.InlTree.nodes) > 0 { |
| ctxt.Logf("-- inlining tree for %s:\n", cursym) |
| dumpInlTree(ctxt, pcln.InlTree) |
| ctxt.Logf("--\n") |
| } |
| |
| // tabulate which pc and func data we have. |
| havepc := make([]uint32, (npcdata+31)/32) |
| havefunc := make([]uint32, (nfuncdata+31)/32) |
| for p := cursym.Func.Text; p != nil; p = p.Link { |
| if p.As == AFUNCDATA { |
| if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 { |
| ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset) |
| } |
| havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) |
| } |
| |
| if p.As == APCDATA && p.To.Offset != -1 { |
| havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) |
| } |
| } |
| |
| // pcdata. |
| for i := 0; i < npcdata; i++ { |
| if (havepc[i/32]>>uint(i%32))&1 == 0 { |
| continue |
| } |
| funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i))) |
| } |
| |
| // funcdata |
| if nfuncdata > 0 { |
| for p := cursym.Func.Text; p != nil; p = p.Link { |
| if p.As != AFUNCDATA { |
| continue |
| } |
| i := int(p.From.Offset) |
| pcln.Funcdataoff[i] = p.To.Offset |
| if p.To.Type != TYPE_CONST { |
| // TODO: Dedup. |
| //funcdata_bytes += p->to.sym->size; |
| pcln.Funcdata[i] = p.To.Sym |
| } |
| } |
| } |
| } |
| |
| // PCIter iterates over encoded pcdata tables. |
| type PCIter struct { |
| p []byte |
| PC uint32 |
| NextPC uint32 |
| PCScale uint32 |
| Value int32 |
| start bool |
| Done bool |
| } |
| |
| // newPCIter creates a PCIter with a scale factor for the PC step size. |
| func NewPCIter(pcScale uint32) *PCIter { |
| it := new(PCIter) |
| it.PCScale = pcScale |
| return it |
| } |
| |
| // Next advances it to the Next pc. |
| func (it *PCIter) Next() { |
| it.PC = it.NextPC |
| if it.Done { |
| return |
| } |
| if len(it.p) == 0 { |
| it.Done = true |
| return |
| } |
| |
| // Value delta |
| val, n := binary.Varint(it.p) |
| if n <= 0 { |
| log.Fatalf("bad Value varint in pciterNext: read %v", n) |
| } |
| it.p = it.p[n:] |
| |
| if val == 0 && !it.start { |
| it.Done = true |
| return |
| } |
| |
| it.start = false |
| it.Value += int32(val) |
| |
| // pc delta |
| pc, n := binary.Uvarint(it.p) |
| if n <= 0 { |
| log.Fatalf("bad pc varint in pciterNext: read %v", n) |
| } |
| it.p = it.p[n:] |
| |
| it.NextPC = it.PC + uint32(pc)*it.PCScale |
| } |
| |
| // init prepares it to iterate over p, |
| // and advances it to the first pc. |
| func (it *PCIter) Init(p []byte) { |
| it.p = p |
| it.PC = 0 |
| it.NextPC = 0 |
| it.Value = -1 |
| it.start = true |
| it.Done = false |
| it.Next() |
| } |