blob: 2756cfd28d83172bcb3fbdbe220b00b0e4bc4946 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pprof
import (
"io"
"math"
"runtime"
"strings"
)
// writeHeapProto writes the current heap profile in protobuf format to w.
func writeHeapProto(w io.Writer, p []runtime.MemProfileRecord, rate int64) error {
b := newProfileBuilder(w)
b.pbValueType(tagProfile_PeriodType, "space", "bytes")
b.pb.int64Opt(tagProfile_Period, rate)
b.pbValueType(tagProfile_SampleType, "alloc_objects", "count")
b.pbValueType(tagProfile_SampleType, "alloc_space", "bytes")
b.pbValueType(tagProfile_SampleType, "inuse_objects", "count")
b.pbValueType(tagProfile_SampleType, "inuse_space", "bytes")
values := []int64{0, 0, 0, 0}
var locs []uint64
for _, r := range p {
locs = locs[:0]
hideRuntime := true
for tries := 0; tries < 2; tries++ {
for _, addr := range r.Stack() {
// For heap profiles, all stack
// addresses are return PCs, which is
// what locForPC expects.
if hideRuntime {
if f := runtime.FuncForPC(addr); f != nil && strings.HasPrefix(f.Name(), "runtime.") {
continue
}
// Found non-runtime. Show any runtime uses above it.
hideRuntime = false
}
l := b.locForPC(addr)
if l == 0 { // runtime.goexit
continue
}
locs = append(locs, l)
}
if len(locs) > 0 {
break
}
hideRuntime = false // try again, and show all frames
}
values[0], values[1] = scaleHeapSample(r.AllocObjects, r.AllocBytes, rate)
values[2], values[3] = scaleHeapSample(r.InUseObjects(), r.InUseBytes(), rate)
var blockSize int64
if values[0] > 0 {
blockSize = values[1] / values[0]
}
b.pbSample(values, locs, func() {
if blockSize != 0 {
b.pbLabel(tagSample_Label, "bytes", "", blockSize)
}
})
}
b.build()
return nil
}
// scaleHeapSample adjusts the data from a heap Sample to
// account for its probability of appearing in the collected
// data. heap profiles are a sampling of the memory allocations
// requests in a program. We estimate the unsampled value by dividing
// each collected sample by its probability of appearing in the
// profile. heap profiles rely on a poisson process to determine
// which samples to collect, based on the desired average collection
// rate R. The probability of a sample of size S to appear in that
// profile is 1-exp(-S/R).
func scaleHeapSample(count, size, rate int64) (int64, int64) {
if count == 0 || size == 0 {
return 0, 0
}
if rate <= 1 {
// if rate==1 all samples were collected so no adjustment is needed.
// if rate<1 treat as unknown and skip scaling.
return count, size
}
avgSize := float64(size) / float64(count)
scale := 1 / (1 - math.Exp(-avgSize/float64(rate)))
return int64(float64(count) * scale), int64(float64(size) * scale)
}