| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gob |
| |
| // TODO(rsc): When garbage collector changes, revisit |
| // the allocations in this file that use unsafe.Pointer. |
| |
| import ( |
| "bytes" |
| "errors" |
| "io" |
| "math" |
| "reflect" |
| "unsafe" |
| ) |
| |
| var ( |
| errBadUint = errors.New("gob: encoded unsigned integer out of range") |
| errBadType = errors.New("gob: unknown type id or corrupted data") |
| errRange = errors.New("gob: bad data: field numbers out of bounds") |
| ) |
| |
| // decoderState is the execution state of an instance of the decoder. A new state |
| // is created for nested objects. |
| type decoderState struct { |
| dec *Decoder |
| // The buffer is stored with an extra indirection because it may be replaced |
| // if we load a type during decode (when reading an interface value). |
| b *bytes.Buffer |
| fieldnum int // the last field number read. |
| buf []byte |
| next *decoderState // for free list |
| } |
| |
| // We pass the bytes.Buffer separately for easier testing of the infrastructure |
| // without requiring a full Decoder. |
| func (dec *Decoder) newDecoderState(buf *bytes.Buffer) *decoderState { |
| d := dec.freeList |
| if d == nil { |
| d = new(decoderState) |
| d.dec = dec |
| d.buf = make([]byte, uint64Size) |
| } else { |
| dec.freeList = d.next |
| } |
| d.b = buf |
| return d |
| } |
| |
| func (dec *Decoder) freeDecoderState(d *decoderState) { |
| d.next = dec.freeList |
| dec.freeList = d |
| } |
| |
| func overflow(name string) error { |
| return errors.New(`value for "` + name + `" out of range`) |
| } |
| |
| // decodeUintReader reads an encoded unsigned integer from an io.Reader. |
| // Used only by the Decoder to read the message length. |
| func decodeUintReader(r io.Reader, buf []byte) (x uint64, width int, err error) { |
| width = 1 |
| _, err = r.Read(buf[0:width]) |
| if err != nil { |
| return |
| } |
| b := buf[0] |
| if b <= 0x7f { |
| return uint64(b), width, nil |
| } |
| n := -int(int8(b)) |
| if n > uint64Size { |
| err = errBadUint |
| return |
| } |
| width, err = io.ReadFull(r, buf[0:n]) |
| if err != nil { |
| if err == io.EOF { |
| err = io.ErrUnexpectedEOF |
| } |
| return |
| } |
| // Could check that the high byte is zero but it's not worth it. |
| for _, b := range buf[0:width] { |
| x = x<<8 | uint64(b) |
| } |
| width++ // +1 for length byte |
| return |
| } |
| |
| // decodeUint reads an encoded unsigned integer from state.r. |
| // Does not check for overflow. |
| func (state *decoderState) decodeUint() (x uint64) { |
| b, err := state.b.ReadByte() |
| if err != nil { |
| error_(err) |
| } |
| if b <= 0x7f { |
| return uint64(b) |
| } |
| n := -int(int8(b)) |
| if n > uint64Size { |
| error_(errBadUint) |
| } |
| width, err := state.b.Read(state.buf[0:n]) |
| if err != nil { |
| error_(err) |
| } |
| // Don't need to check error; it's safe to loop regardless. |
| // Could check that the high byte is zero but it's not worth it. |
| for _, b := range state.buf[0:width] { |
| x = x<<8 | uint64(b) |
| } |
| return x |
| } |
| |
| // decodeInt reads an encoded signed integer from state.r. |
| // Does not check for overflow. |
| func (state *decoderState) decodeInt() int64 { |
| x := state.decodeUint() |
| if x&1 != 0 { |
| return ^int64(x >> 1) |
| } |
| return int64(x >> 1) |
| } |
| |
| // decOp is the signature of a decoding operator for a given type. |
| type decOp func(i *decInstr, state *decoderState, p unsafe.Pointer) |
| |
| // The 'instructions' of the decoding machine |
| type decInstr struct { |
| op decOp |
| field int // field number of the wire type |
| indir int // how many pointer indirections to reach the value in the struct |
| offset uintptr // offset in the structure of the field to encode |
| ovfl error // error message for overflow/underflow (for arrays, of the elements) |
| } |
| |
| // Since the encoder writes no zeros, if we arrive at a decoder we have |
| // a value to extract and store. The field number has already been read |
| // (it's how we knew to call this decoder). |
| // Each decoder is responsible for handling any indirections associated |
| // with the data structure. If any pointer so reached is nil, allocation must |
| // be done. |
| |
| // Walk the pointer hierarchy, allocating if we find a nil. Stop one before the end. |
| func decIndirect(p unsafe.Pointer, indir int) unsafe.Pointer { |
| for ; indir > 1; indir-- { |
| if *(*unsafe.Pointer)(p) == nil { |
| // Allocation required |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(unsafe.Pointer)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| return p |
| } |
| |
| // ignoreUint discards a uint value with no destination. |
| func ignoreUint(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.decodeUint() |
| } |
| |
| // ignoreTwoUints discards a uint value with no destination. It's used to skip |
| // complex values. |
| func ignoreTwoUints(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.decodeUint() |
| state.decodeUint() |
| } |
| |
| // decBool decodes a uint and stores it as a boolean through p. |
| func decBool(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(bool)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| *(*bool)(p) = state.decodeUint() != 0 |
| } |
| |
| // decInt8 decodes an integer and stores it as an int8 through p. |
| func decInt8(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int8)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| v := state.decodeInt() |
| if v < math.MinInt8 || math.MaxInt8 < v { |
| error_(i.ovfl) |
| } else { |
| *(*int8)(p) = int8(v) |
| } |
| } |
| |
| // decUint8 decodes an unsigned integer and stores it as a uint8 through p. |
| func decUint8(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint8)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| v := state.decodeUint() |
| if math.MaxUint8 < v { |
| error_(i.ovfl) |
| } else { |
| *(*uint8)(p) = uint8(v) |
| } |
| } |
| |
| // decInt16 decodes an integer and stores it as an int16 through p. |
| func decInt16(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int16)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| v := state.decodeInt() |
| if v < math.MinInt16 || math.MaxInt16 < v { |
| error_(i.ovfl) |
| } else { |
| *(*int16)(p) = int16(v) |
| } |
| } |
| |
| // decUint16 decodes an unsigned integer and stores it as a uint16 through p. |
| func decUint16(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint16)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| v := state.decodeUint() |
| if math.MaxUint16 < v { |
| error_(i.ovfl) |
| } else { |
| *(*uint16)(p) = uint16(v) |
| } |
| } |
| |
| // decInt32 decodes an integer and stores it as an int32 through p. |
| func decInt32(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int32)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| v := state.decodeInt() |
| if v < math.MinInt32 || math.MaxInt32 < v { |
| error_(i.ovfl) |
| } else { |
| *(*int32)(p) = int32(v) |
| } |
| } |
| |
| // decUint32 decodes an unsigned integer and stores it as a uint32 through p. |
| func decUint32(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint32)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| v := state.decodeUint() |
| if math.MaxUint32 < v { |
| error_(i.ovfl) |
| } else { |
| *(*uint32)(p) = uint32(v) |
| } |
| } |
| |
| // decInt64 decodes an integer and stores it as an int64 through p. |
| func decInt64(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int64)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| *(*int64)(p) = int64(state.decodeInt()) |
| } |
| |
| // decUint64 decodes an unsigned integer and stores it as a uint64 through p. |
| func decUint64(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint64)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| *(*uint64)(p) = uint64(state.decodeUint()) |
| } |
| |
| // Floating-point numbers are transmitted as uint64s holding the bits |
| // of the underlying representation. They are sent byte-reversed, with |
| // the exponent end coming out first, so integer floating point numbers |
| // (for example) transmit more compactly. This routine does the |
| // unswizzling. |
| func floatFromBits(u uint64) float64 { |
| var v uint64 |
| for i := 0; i < 8; i++ { |
| v <<= 8 |
| v |= u & 0xFF |
| u >>= 8 |
| } |
| return math.Float64frombits(v) |
| } |
| |
| // storeFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point |
| // number, and stores it through p. It's a helper function for float32 and complex64. |
| func storeFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| v := floatFromBits(state.decodeUint()) |
| av := v |
| if av < 0 { |
| av = -av |
| } |
| // +Inf is OK in both 32- and 64-bit floats. Underflow is always OK. |
| if math.MaxFloat32 < av && av <= math.MaxFloat64 { |
| error_(i.ovfl) |
| } else { |
| *(*float32)(p) = float32(v) |
| } |
| } |
| |
| // decFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point |
| // number, and stores it through p. |
| func decFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(float32)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| storeFloat32(i, state, p) |
| } |
| |
| // decFloat64 decodes an unsigned integer, treats it as a 64-bit floating-point |
| // number, and stores it through p. |
| func decFloat64(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(float64)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| *(*float64)(p) = floatFromBits(uint64(state.decodeUint())) |
| } |
| |
| // decComplex64 decodes a pair of unsigned integers, treats them as a |
| // pair of floating point numbers, and stores them as a complex64 through p. |
| // The real part comes first. |
| func decComplex64(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex64)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| storeFloat32(i, state, p) |
| storeFloat32(i, state, unsafe.Pointer(uintptr(p)+unsafe.Sizeof(float32(0)))) |
| } |
| |
| // decComplex128 decodes a pair of unsigned integers, treats them as a |
| // pair of floating point numbers, and stores them as a complex128 through p. |
| // The real part comes first. |
| func decComplex128(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex128)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| real := floatFromBits(uint64(state.decodeUint())) |
| imag := floatFromBits(uint64(state.decodeUint())) |
| *(*complex128)(p) = complex(real, imag) |
| } |
| |
| // decUint8Slice decodes a byte slice and stores through p a slice header |
| // describing the data. |
| // uint8 slices are encoded as an unsigned count followed by the raw bytes. |
| func decUint8Slice(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new([]uint8)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| n := int(state.decodeUint()) |
| if n < 0 { |
| errorf("negative length decoding []byte") |
| } |
| slice := (*[]uint8)(p) |
| if cap(*slice) < n { |
| *slice = make([]uint8, n) |
| } else { |
| *slice = (*slice)[0:n] |
| } |
| if _, err := state.b.Read(*slice); err != nil { |
| errorf("error decoding []byte: %s", err) |
| } |
| } |
| |
| // decString decodes byte array and stores through p a string header |
| // describing the data. |
| // Strings are encoded as an unsigned count followed by the raw bytes. |
| func decString(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(new(string)) |
| } |
| p = *(*unsafe.Pointer)(p) |
| } |
| b := make([]byte, state.decodeUint()) |
| state.b.Read(b) |
| // It would be a shame to do the obvious thing here, |
| // *(*string)(p) = string(b) |
| // because we've already allocated the storage and this would |
| // allocate again and copy. So we do this ugly hack, which is even |
| // even more unsafe than it looks as it depends the memory |
| // representation of a string matching the beginning of the memory |
| // representation of a byte slice (a byte slice is longer). |
| *(*string)(p) = *(*string)(unsafe.Pointer(&b)) |
| } |
| |
| // ignoreUint8Array skips over the data for a byte slice value with no destination. |
| func ignoreUint8Array(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| b := make([]byte, state.decodeUint()) |
| state.b.Read(b) |
| } |
| |
| // Execution engine |
| |
| // The encoder engine is an array of instructions indexed by field number of the incoming |
| // decoder. It is executed with random access according to field number. |
| type decEngine struct { |
| instr []decInstr |
| numInstr int // the number of active instructions |
| } |
| |
| // allocate makes sure storage is available for an object of underlying type rtyp |
| // that is indir levels of indirection through p. |
| func allocate(rtyp reflect.Type, p uintptr, indir int) uintptr { |
| if indir == 0 { |
| return p |
| } |
| up := unsafe.Pointer(p) |
| if indir > 1 { |
| up = decIndirect(up, indir) |
| } |
| if *(*unsafe.Pointer)(up) == nil { |
| // Allocate object. |
| *(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.New(rtyp).Pointer()) |
| } |
| return *(*uintptr)(up) |
| } |
| |
| // decodeSingle decodes a top-level value that is not a struct and stores it through p. |
| // Such values are preceded by a zero, making them have the memory layout of a |
| // struct field (although with an illegal field number). |
| func (dec *Decoder) decodeSingle(engine *decEngine, ut *userTypeInfo, basep uintptr) (err error) { |
| state := dec.newDecoderState(&dec.buf) |
| state.fieldnum = singletonField |
| delta := int(state.decodeUint()) |
| if delta != 0 { |
| errorf("decode: corrupted data: non-zero delta for singleton") |
| } |
| instr := &engine.instr[singletonField] |
| if instr.indir != ut.indir { |
| return errors.New("gob: internal error: inconsistent indirection") |
| } |
| ptr := unsafe.Pointer(basep) // offset will be zero |
| if instr.indir > 1 { |
| ptr = decIndirect(ptr, instr.indir) |
| } |
| instr.op(instr, state, ptr) |
| dec.freeDecoderState(state) |
| return nil |
| } |
| |
| // decodeSingle decodes a top-level struct and stores it through p. |
| // Indir is for the value, not the type. At the time of the call it may |
| // differ from ut.indir, which was computed when the engine was built. |
| // This state cannot arise for decodeSingle, which is called directly |
| // from the user's value, not from the innards of an engine. |
| func (dec *Decoder) decodeStruct(engine *decEngine, ut *userTypeInfo, p uintptr, indir int) { |
| p = allocate(ut.base, p, indir) |
| state := dec.newDecoderState(&dec.buf) |
| state.fieldnum = -1 |
| basep := p |
| for state.b.Len() > 0 { |
| delta := int(state.decodeUint()) |
| if delta < 0 { |
| errorf("decode: corrupted data: negative delta") |
| } |
| if delta == 0 { // struct terminator is zero delta fieldnum |
| break |
| } |
| fieldnum := state.fieldnum + delta |
| if fieldnum >= len(engine.instr) { |
| error_(errRange) |
| break |
| } |
| instr := &engine.instr[fieldnum] |
| p := unsafe.Pointer(basep + instr.offset) |
| if instr.indir > 1 { |
| p = decIndirect(p, instr.indir) |
| } |
| instr.op(instr, state, p) |
| state.fieldnum = fieldnum |
| } |
| dec.freeDecoderState(state) |
| } |
| |
| // ignoreStruct discards the data for a struct with no destination. |
| func (dec *Decoder) ignoreStruct(engine *decEngine) { |
| state := dec.newDecoderState(&dec.buf) |
| state.fieldnum = -1 |
| for state.b.Len() > 0 { |
| delta := int(state.decodeUint()) |
| if delta < 0 { |
| errorf("ignore decode: corrupted data: negative delta") |
| } |
| if delta == 0 { // struct terminator is zero delta fieldnum |
| break |
| } |
| fieldnum := state.fieldnum + delta |
| if fieldnum >= len(engine.instr) { |
| error_(errRange) |
| } |
| instr := &engine.instr[fieldnum] |
| instr.op(instr, state, unsafe.Pointer(nil)) |
| state.fieldnum = fieldnum |
| } |
| dec.freeDecoderState(state) |
| } |
| |
| // ignoreSingle discards the data for a top-level non-struct value with no |
| // destination. It's used when calling Decode with a nil value. |
| func (dec *Decoder) ignoreSingle(engine *decEngine) { |
| state := dec.newDecoderState(&dec.buf) |
| state.fieldnum = singletonField |
| delta := int(state.decodeUint()) |
| if delta != 0 { |
| errorf("decode: corrupted data: non-zero delta for singleton") |
| } |
| instr := &engine.instr[singletonField] |
| instr.op(instr, state, unsafe.Pointer(nil)) |
| dec.freeDecoderState(state) |
| } |
| |
| // decodeArrayHelper does the work for decoding arrays and slices. |
| func (dec *Decoder) decodeArrayHelper(state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, length, elemIndir int, ovfl error) { |
| instr := &decInstr{elemOp, 0, elemIndir, 0, ovfl} |
| for i := 0; i < length; i++ { |
| up := unsafe.Pointer(p) |
| if elemIndir > 1 { |
| up = decIndirect(up, elemIndir) |
| } |
| elemOp(instr, state, up) |
| p += uintptr(elemWid) |
| } |
| } |
| |
| // decodeArray decodes an array and stores it through p, that is, p points to the zeroth element. |
| // The length is an unsigned integer preceding the elements. Even though the length is redundant |
| // (it's part of the type), it's a useful check and is included in the encoding. |
| func (dec *Decoder) decodeArray(atyp reflect.Type, state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, length, indir, elemIndir int, ovfl error) { |
| if indir > 0 { |
| p = allocate(atyp, p, 1) // All but the last level has been allocated by dec.Indirect |
| } |
| if n := state.decodeUint(); n != uint64(length) { |
| errorf("length mismatch in decodeArray") |
| } |
| dec.decodeArrayHelper(state, p, elemOp, elemWid, length, elemIndir, ovfl) |
| } |
| |
| // decodeIntoValue is a helper for map decoding. Since maps are decoded using reflection, |
| // unlike the other items we can't use a pointer directly. |
| func decodeIntoValue(state *decoderState, op decOp, indir int, v reflect.Value, ovfl error) reflect.Value { |
| instr := &decInstr{op, 0, indir, 0, ovfl} |
| up := unsafe.Pointer(unsafeAddr(v)) |
| if indir > 1 { |
| up = decIndirect(up, indir) |
| } |
| op(instr, state, up) |
| return v |
| } |
| |
| // decodeMap decodes a map and stores its header through p. |
| // Maps are encoded as a length followed by key:value pairs. |
| // Because the internals of maps are not visible to us, we must |
| // use reflection rather than pointer magic. |
| func (dec *Decoder) decodeMap(mtyp reflect.Type, state *decoderState, p uintptr, keyOp, elemOp decOp, indir, keyIndir, elemIndir int, ovfl error) { |
| if indir > 0 { |
| p = allocate(mtyp, p, 1) // All but the last level has been allocated by dec.Indirect |
| } |
| up := unsafe.Pointer(p) |
| if *(*unsafe.Pointer)(up) == nil { // maps are represented as a pointer in the runtime |
| // Allocate map. |
| *(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.MakeMap(mtyp).Pointer()) |
| } |
| // Maps cannot be accessed by moving addresses around the way |
| // that slices etc. can. We must recover a full reflection value for |
| // the iteration. |
| v := reflect.NewAt(mtyp, unsafe.Pointer(p)).Elem() |
| n := int(state.decodeUint()) |
| for i := 0; i < n; i++ { |
| key := decodeIntoValue(state, keyOp, keyIndir, allocValue(mtyp.Key()), ovfl) |
| elem := decodeIntoValue(state, elemOp, elemIndir, allocValue(mtyp.Elem()), ovfl) |
| v.SetMapIndex(key, elem) |
| } |
| } |
| |
| // ignoreArrayHelper does the work for discarding arrays and slices. |
| func (dec *Decoder) ignoreArrayHelper(state *decoderState, elemOp decOp, length int) { |
| instr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")} |
| for i := 0; i < length; i++ { |
| elemOp(instr, state, nil) |
| } |
| } |
| |
| // ignoreArray discards the data for an array value with no destination. |
| func (dec *Decoder) ignoreArray(state *decoderState, elemOp decOp, length int) { |
| if n := state.decodeUint(); n != uint64(length) { |
| errorf("length mismatch in ignoreArray") |
| } |
| dec.ignoreArrayHelper(state, elemOp, length) |
| } |
| |
| // ignoreMap discards the data for a map value with no destination. |
| func (dec *Decoder) ignoreMap(state *decoderState, keyOp, elemOp decOp) { |
| n := int(state.decodeUint()) |
| keyInstr := &decInstr{keyOp, 0, 0, 0, errors.New("no error")} |
| elemInstr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")} |
| for i := 0; i < n; i++ { |
| keyOp(keyInstr, state, nil) |
| elemOp(elemInstr, state, nil) |
| } |
| } |
| |
| // decodeSlice decodes a slice and stores the slice header through p. |
| // Slices are encoded as an unsigned length followed by the elements. |
| func (dec *Decoder) decodeSlice(atyp reflect.Type, state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, indir, elemIndir int, ovfl error) { |
| n := int(uintptr(state.decodeUint())) |
| if indir > 0 { |
| up := unsafe.Pointer(p) |
| if *(*unsafe.Pointer)(up) == nil { |
| // Allocate the slice header. |
| *(*unsafe.Pointer)(up) = unsafe.Pointer(new([]unsafe.Pointer)) |
| } |
| p = *(*uintptr)(up) |
| } |
| // Allocate storage for the slice elements, that is, the underlying array, |
| // if the existing slice does not have the capacity. |
| // Always write a header at p. |
| hdrp := (*reflect.SliceHeader)(unsafe.Pointer(p)) |
| if hdrp.Cap < n { |
| hdrp.Data = reflect.MakeSlice(atyp, n, n).Pointer() |
| hdrp.Cap = n |
| } |
| hdrp.Len = n |
| dec.decodeArrayHelper(state, hdrp.Data, elemOp, elemWid, n, elemIndir, ovfl) |
| } |
| |
| // ignoreSlice skips over the data for a slice value with no destination. |
| func (dec *Decoder) ignoreSlice(state *decoderState, elemOp decOp) { |
| dec.ignoreArrayHelper(state, elemOp, int(state.decodeUint())) |
| } |
| |
| // setInterfaceValue sets an interface value to a concrete value, |
| // but first it checks that the assignment will succeed. |
| func setInterfaceValue(ivalue reflect.Value, value reflect.Value) { |
| if !value.Type().AssignableTo(ivalue.Type()) { |
| errorf("cannot assign value of type %s to %s", value.Type(), ivalue.Type()) |
| } |
| ivalue.Set(value) |
| } |
| |
| // decodeInterface decodes an interface value and stores it through p. |
| // Interfaces are encoded as the name of a concrete type followed by a value. |
| // If the name is empty, the value is nil and no value is sent. |
| func (dec *Decoder) decodeInterface(ityp reflect.Type, state *decoderState, p uintptr, indir int) { |
| // Create a writable interface reflect.Value. We need one even for the nil case. |
| ivalue := allocValue(ityp) |
| // Read the name of the concrete type. |
| nr := state.decodeUint() |
| if nr < 0 || nr > 1<<31 { // zero is permissible for anonymous types |
| errorf("invalid type name length %d", nr) |
| } |
| b := make([]byte, nr) |
| state.b.Read(b) |
| name := string(b) |
| if name == "" { |
| // Copy the representation of the nil interface value to the target. |
| // This is horribly unsafe and special. |
| *(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData() |
| return |
| } |
| // The concrete type must be registered. |
| typ, ok := nameToConcreteType[name] |
| if !ok { |
| errorf("name not registered for interface: %q", name) |
| } |
| // Read the type id of the concrete value. |
| concreteId := dec.decodeTypeSequence(true) |
| if concreteId < 0 { |
| error_(dec.err) |
| } |
| // Byte count of value is next; we don't care what it is (it's there |
| // in case we want to ignore the value by skipping it completely). |
| state.decodeUint() |
| // Read the concrete value. |
| value := allocValue(typ) |
| dec.decodeValue(concreteId, value) |
| if dec.err != nil { |
| error_(dec.err) |
| } |
| // Allocate the destination interface value. |
| if indir > 0 { |
| p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect |
| } |
| // Assign the concrete value to the interface. |
| // Tread carefully; it might not satisfy the interface. |
| setInterfaceValue(ivalue, value) |
| // Copy the representation of the interface value to the target. |
| // This is horribly unsafe and special. |
| *(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData() |
| } |
| |
| // ignoreInterface discards the data for an interface value with no destination. |
| func (dec *Decoder) ignoreInterface(state *decoderState) { |
| // Read the name of the concrete type. |
| b := make([]byte, state.decodeUint()) |
| _, err := state.b.Read(b) |
| if err != nil { |
| error_(err) |
| } |
| id := dec.decodeTypeSequence(true) |
| if id < 0 { |
| error_(dec.err) |
| } |
| // At this point, the decoder buffer contains a delimited value. Just toss it. |
| state.b.Next(int(state.decodeUint())) |
| } |
| |
| // decodeGobDecoder decodes something implementing the GobDecoder interface. |
| // The data is encoded as a byte slice. |
| func (dec *Decoder) decodeGobDecoder(state *decoderState, v reflect.Value) { |
| // Read the bytes for the value. |
| b := make([]byte, state.decodeUint()) |
| _, err := state.b.Read(b) |
| if err != nil { |
| error_(err) |
| } |
| // We know it's a GobDecoder, so just call the method directly. |
| err = v.Interface().(GobDecoder).GobDecode(b) |
| if err != nil { |
| error_(err) |
| } |
| } |
| |
| // ignoreGobDecoder discards the data for a GobDecoder value with no destination. |
| func (dec *Decoder) ignoreGobDecoder(state *decoderState) { |
| // Read the bytes for the value. |
| b := make([]byte, state.decodeUint()) |
| _, err := state.b.Read(b) |
| if err != nil { |
| error_(err) |
| } |
| } |
| |
| // Index by Go types. |
| var decOpTable = [...]decOp{ |
| reflect.Bool: decBool, |
| reflect.Int8: decInt8, |
| reflect.Int16: decInt16, |
| reflect.Int32: decInt32, |
| reflect.Int64: decInt64, |
| reflect.Uint8: decUint8, |
| reflect.Uint16: decUint16, |
| reflect.Uint32: decUint32, |
| reflect.Uint64: decUint64, |
| reflect.Float32: decFloat32, |
| reflect.Float64: decFloat64, |
| reflect.Complex64: decComplex64, |
| reflect.Complex128: decComplex128, |
| reflect.String: decString, |
| } |
| |
| // Indexed by gob types. tComplex will be added during type.init(). |
| var decIgnoreOpMap = map[typeId]decOp{ |
| tBool: ignoreUint, |
| tInt: ignoreUint, |
| tUint: ignoreUint, |
| tFloat: ignoreUint, |
| tBytes: ignoreUint8Array, |
| tString: ignoreUint8Array, |
| tComplex: ignoreTwoUints, |
| } |
| |
| // decOpFor returns the decoding op for the base type under rt and |
| // the indirection count to reach it. |
| func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string, inProgress map[reflect.Type]*decOp) (*decOp, int) { |
| ut := userType(rt) |
| // If the type implements GobEncoder, we handle it without further processing. |
| if ut.isGobDecoder { |
| return dec.gobDecodeOpFor(ut) |
| } |
| // If this type is already in progress, it's a recursive type (e.g. map[string]*T). |
| // Return the pointer to the op we're already building. |
| if opPtr := inProgress[rt]; opPtr != nil { |
| return opPtr, ut.indir |
| } |
| typ := ut.base |
| indir := ut.indir |
| var op decOp |
| k := typ.Kind() |
| if int(k) < len(decOpTable) { |
| op = decOpTable[k] |
| } |
| if op == nil { |
| inProgress[rt] = &op |
| // Special cases |
| switch t := typ; t.Kind() { |
| case reflect.Array: |
| name = "element of " + name |
| elemId := dec.wireType[wireId].ArrayT.Elem |
| elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress) |
| ovfl := overflow(name) |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.dec.decodeArray(t, state, uintptr(p), *elemOp, t.Elem().Size(), t.Len(), i.indir, elemIndir, ovfl) |
| } |
| |
| case reflect.Map: |
| name = "element of " + name |
| keyId := dec.wireType[wireId].MapT.Key |
| elemId := dec.wireType[wireId].MapT.Elem |
| keyOp, keyIndir := dec.decOpFor(keyId, t.Key(), name, inProgress) |
| elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress) |
| ovfl := overflow(name) |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| up := unsafe.Pointer(p) |
| state.dec.decodeMap(t, state, uintptr(up), *keyOp, *elemOp, i.indir, keyIndir, elemIndir, ovfl) |
| } |
| |
| case reflect.Slice: |
| name = "element of " + name |
| if t.Elem().Kind() == reflect.Uint8 { |
| op = decUint8Slice |
| break |
| } |
| var elemId typeId |
| if tt, ok := builtinIdToType[wireId]; ok { |
| elemId = tt.(*sliceType).Elem |
| } else { |
| elemId = dec.wireType[wireId].SliceT.Elem |
| } |
| elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress) |
| ovfl := overflow(name) |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.dec.decodeSlice(t, state, uintptr(p), *elemOp, t.Elem().Size(), i.indir, elemIndir, ovfl) |
| } |
| |
| case reflect.Struct: |
| // Generate a closure that calls out to the engine for the nested type. |
| enginePtr, err := dec.getDecEnginePtr(wireId, userType(typ)) |
| if err != nil { |
| error_(err) |
| } |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| // indirect through enginePtr to delay evaluation for recursive structs. |
| dec.decodeStruct(*enginePtr, userType(typ), uintptr(p), i.indir) |
| } |
| case reflect.Interface: |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.dec.decodeInterface(t, state, uintptr(p), i.indir) |
| } |
| } |
| } |
| if op == nil { |
| errorf("decode can't handle type %s", rt) |
| } |
| return &op, indir |
| } |
| |
| // decIgnoreOpFor returns the decoding op for a field that has no destination. |
| func (dec *Decoder) decIgnoreOpFor(wireId typeId) decOp { |
| op, ok := decIgnoreOpMap[wireId] |
| if !ok { |
| if wireId == tInterface { |
| // Special case because it's a method: the ignored item might |
| // define types and we need to record their state in the decoder. |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.dec.ignoreInterface(state) |
| } |
| return op |
| } |
| // Special cases |
| wire := dec.wireType[wireId] |
| switch { |
| case wire == nil: |
| errorf("bad data: undefined type %s", wireId.string()) |
| case wire.ArrayT != nil: |
| elemId := wire.ArrayT.Elem |
| elemOp := dec.decIgnoreOpFor(elemId) |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.dec.ignoreArray(state, elemOp, wire.ArrayT.Len) |
| } |
| |
| case wire.MapT != nil: |
| keyId := dec.wireType[wireId].MapT.Key |
| elemId := dec.wireType[wireId].MapT.Elem |
| keyOp := dec.decIgnoreOpFor(keyId) |
| elemOp := dec.decIgnoreOpFor(elemId) |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.dec.ignoreMap(state, keyOp, elemOp) |
| } |
| |
| case wire.SliceT != nil: |
| elemId := wire.SliceT.Elem |
| elemOp := dec.decIgnoreOpFor(elemId) |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.dec.ignoreSlice(state, elemOp) |
| } |
| |
| case wire.StructT != nil: |
| // Generate a closure that calls out to the engine for the nested type. |
| enginePtr, err := dec.getIgnoreEnginePtr(wireId) |
| if err != nil { |
| error_(err) |
| } |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| // indirect through enginePtr to delay evaluation for recursive structs |
| state.dec.ignoreStruct(*enginePtr) |
| } |
| |
| case wire.GobEncoderT != nil: |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| state.dec.ignoreGobDecoder(state) |
| } |
| } |
| } |
| if op == nil { |
| errorf("bad data: ignore can't handle type %s", wireId.string()) |
| } |
| return op |
| } |
| |
| // gobDecodeOpFor returns the op for a type that is known to implement |
| // GobDecoder. |
| func (dec *Decoder) gobDecodeOpFor(ut *userTypeInfo) (*decOp, int) { |
| rcvrType := ut.user |
| if ut.decIndir == -1 { |
| rcvrType = reflect.PtrTo(rcvrType) |
| } else if ut.decIndir > 0 { |
| for i := int8(0); i < ut.decIndir; i++ { |
| rcvrType = rcvrType.Elem() |
| } |
| } |
| var op decOp |
| op = func(i *decInstr, state *decoderState, p unsafe.Pointer) { |
| // Caller has gotten us to within one indirection of our value. |
| if i.indir > 0 { |
| if *(*unsafe.Pointer)(p) == nil { |
| *(*unsafe.Pointer)(p) = unsafe.Pointer(reflect.New(ut.base).Pointer()) |
| } |
| } |
| // Now p is a pointer to the base type. Do we need to climb out to |
| // get to the receiver type? |
| var v reflect.Value |
| if ut.decIndir == -1 { |
| v = reflect.NewAt(rcvrType, unsafe.Pointer(&p)).Elem() |
| } else { |
| v = reflect.NewAt(rcvrType, p).Elem() |
| } |
| state.dec.decodeGobDecoder(state, v) |
| } |
| return &op, int(ut.indir) |
| |
| } |
| |
| // compatibleType asks: Are these two gob Types compatible? |
| // Answers the question for basic types, arrays, maps and slices, plus |
| // GobEncoder/Decoder pairs. |
| // Structs are considered ok; fields will be checked later. |
| func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId, inProgress map[reflect.Type]typeId) bool { |
| if rhs, ok := inProgress[fr]; ok { |
| return rhs == fw |
| } |
| inProgress[fr] = fw |
| ut := userType(fr) |
| wire, ok := dec.wireType[fw] |
| // If fr is a GobDecoder, the wire type must be GobEncoder. |
| // And if fr is not a GobDecoder, the wire type must not be either. |
| if ut.isGobDecoder != (ok && wire.GobEncoderT != nil) { // the parentheses look odd but are correct. |
| return false |
| } |
| if ut.isGobDecoder { // This test trumps all others. |
| return true |
| } |
| switch t := ut.base; t.Kind() { |
| default: |
| // chan, etc: cannot handle. |
| return false |
| case reflect.Bool: |
| return fw == tBool |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| return fw == tInt |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| return fw == tUint |
| case reflect.Float32, reflect.Float64: |
| return fw == tFloat |
| case reflect.Complex64, reflect.Complex128: |
| return fw == tComplex |
| case reflect.String: |
| return fw == tString |
| case reflect.Interface: |
| return fw == tInterface |
| case reflect.Array: |
| if !ok || wire.ArrayT == nil { |
| return false |
| } |
| array := wire.ArrayT |
| return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem, inProgress) |
| case reflect.Map: |
| if !ok || wire.MapT == nil { |
| return false |
| } |
| MapType := wire.MapT |
| return dec.compatibleType(t.Key(), MapType.Key, inProgress) && dec.compatibleType(t.Elem(), MapType.Elem, inProgress) |
| case reflect.Slice: |
| // Is it an array of bytes? |
| if t.Elem().Kind() == reflect.Uint8 { |
| return fw == tBytes |
| } |
| // Extract and compare element types. |
| var sw *sliceType |
| if tt, ok := builtinIdToType[fw]; ok { |
| sw, _ = tt.(*sliceType) |
| } else if wire != nil { |
| sw = wire.SliceT |
| } |
| elem := userType(t.Elem()).base |
| return sw != nil && dec.compatibleType(elem, sw.Elem, inProgress) |
| case reflect.Struct: |
| return true |
| } |
| return true |
| } |
| |
| // typeString returns a human-readable description of the type identified by remoteId. |
| func (dec *Decoder) typeString(remoteId typeId) string { |
| if t := idToType[remoteId]; t != nil { |
| // globally known type. |
| return t.string() |
| } |
| return dec.wireType[remoteId].string() |
| } |
| |
| // compileSingle compiles the decoder engine for a non-struct top-level value, including |
| // GobDecoders. |
| func (dec *Decoder) compileSingle(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) { |
| rt := ut.user |
| engine = new(decEngine) |
| engine.instr = make([]decInstr, 1) // one item |
| name := rt.String() // best we can do |
| if !dec.compatibleType(rt, remoteId, make(map[reflect.Type]typeId)) { |
| remoteType := dec.typeString(remoteId) |
| // Common confusing case: local interface type, remote concrete type. |
| if ut.base.Kind() == reflect.Interface && remoteId != tInterface { |
| return nil, errors.New("gob: local interface type " + name + " can only be decoded from remote interface type; received concrete type " + remoteType) |
| } |
| return nil, errors.New("gob: decoding into local type " + name + ", received remote type " + remoteType) |
| } |
| op, indir := dec.decOpFor(remoteId, rt, name, make(map[reflect.Type]*decOp)) |
| ovfl := errors.New(`value for "` + name + `" out of range`) |
| engine.instr[singletonField] = decInstr{*op, singletonField, indir, 0, ovfl} |
| engine.numInstr = 1 |
| return |
| } |
| |
| // compileIgnoreSingle compiles the decoder engine for a non-struct top-level value that will be discarded. |
| func (dec *Decoder) compileIgnoreSingle(remoteId typeId) (engine *decEngine, err error) { |
| engine = new(decEngine) |
| engine.instr = make([]decInstr, 1) // one item |
| op := dec.decIgnoreOpFor(remoteId) |
| ovfl := overflow(dec.typeString(remoteId)) |
| engine.instr[0] = decInstr{op, 0, 0, 0, ovfl} |
| engine.numInstr = 1 |
| return |
| } |
| |
| // compileDec compiles the decoder engine for a value. If the value is not a struct, |
| // it calls out to compileSingle. |
| func (dec *Decoder) compileDec(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) { |
| rt := ut.base |
| srt := rt |
| if srt.Kind() != reflect.Struct || |
| ut.isGobDecoder { |
| return dec.compileSingle(remoteId, ut) |
| } |
| var wireStruct *structType |
| // Builtin types can come from global pool; the rest must be defined by the decoder. |
| // Also we know we're decoding a struct now, so the client must have sent one. |
| if t, ok := builtinIdToType[remoteId]; ok { |
| wireStruct, _ = t.(*structType) |
| } else { |
| wire := dec.wireType[remoteId] |
| if wire == nil { |
| error_(errBadType) |
| } |
| wireStruct = wire.StructT |
| } |
| if wireStruct == nil { |
| errorf("type mismatch in decoder: want struct type %s; got non-struct", rt) |
| } |
| engine = new(decEngine) |
| engine.instr = make([]decInstr, len(wireStruct.Field)) |
| seen := make(map[reflect.Type]*decOp) |
| // Loop over the fields of the wire type. |
| for fieldnum := 0; fieldnum < len(wireStruct.Field); fieldnum++ { |
| wireField := wireStruct.Field[fieldnum] |
| if wireField.Name == "" { |
| errorf("empty name for remote field of type %s", wireStruct.Name) |
| } |
| ovfl := overflow(wireField.Name) |
| // Find the field of the local type with the same name. |
| localField, present := srt.FieldByName(wireField.Name) |
| // TODO(r): anonymous names |
| if !present || !isExported(wireField.Name) { |
| op := dec.decIgnoreOpFor(wireField.Id) |
| engine.instr[fieldnum] = decInstr{op, fieldnum, 0, 0, ovfl} |
| continue |
| } |
| if !dec.compatibleType(localField.Type, wireField.Id, make(map[reflect.Type]typeId)) { |
| errorf("wrong type (%s) for received field %s.%s", localField.Type, wireStruct.Name, wireField.Name) |
| } |
| op, indir := dec.decOpFor(wireField.Id, localField.Type, localField.Name, seen) |
| engine.instr[fieldnum] = decInstr{*op, fieldnum, indir, uintptr(localField.Offset), ovfl} |
| engine.numInstr++ |
| } |
| return |
| } |
| |
| // getDecEnginePtr returns the engine for the specified type. |
| func (dec *Decoder) getDecEnginePtr(remoteId typeId, ut *userTypeInfo) (enginePtr **decEngine, err error) { |
| rt := ut.base |
| decoderMap, ok := dec.decoderCache[rt] |
| if !ok { |
| decoderMap = make(map[typeId]**decEngine) |
| dec.decoderCache[rt] = decoderMap |
| } |
| if enginePtr, ok = decoderMap[remoteId]; !ok { |
| // To handle recursive types, mark this engine as underway before compiling. |
| enginePtr = new(*decEngine) |
| decoderMap[remoteId] = enginePtr |
| *enginePtr, err = dec.compileDec(remoteId, ut) |
| if err != nil { |
| delete(decoderMap, remoteId) |
| } |
| } |
| return |
| } |
| |
| // emptyStruct is the type we compile into when ignoring a struct value. |
| type emptyStruct struct{} |
| |
| var emptyStructType = reflect.TypeOf(emptyStruct{}) |
| |
| // getDecEnginePtr returns the engine for the specified type when the value is to be discarded. |
| func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err error) { |
| var ok bool |
| if enginePtr, ok = dec.ignorerCache[wireId]; !ok { |
| // To handle recursive types, mark this engine as underway before compiling. |
| enginePtr = new(*decEngine) |
| dec.ignorerCache[wireId] = enginePtr |
| wire := dec.wireType[wireId] |
| if wire != nil && wire.StructT != nil { |
| *enginePtr, err = dec.compileDec(wireId, userType(emptyStructType)) |
| } else { |
| *enginePtr, err = dec.compileIgnoreSingle(wireId) |
| } |
| if err != nil { |
| delete(dec.ignorerCache, wireId) |
| } |
| } |
| return |
| } |
| |
| // decodeValue decodes the data stream representing a value and stores it in val. |
| func (dec *Decoder) decodeValue(wireId typeId, val reflect.Value) { |
| defer catchError(&dec.err) |
| // If the value is nil, it means we should just ignore this item. |
| if !val.IsValid() { |
| dec.decodeIgnoredValue(wireId) |
| return |
| } |
| // Dereference down to the underlying type. |
| ut := userType(val.Type()) |
| base := ut.base |
| var enginePtr **decEngine |
| enginePtr, dec.err = dec.getDecEnginePtr(wireId, ut) |
| if dec.err != nil { |
| return |
| } |
| engine := *enginePtr |
| if st := base; st.Kind() == reflect.Struct && !ut.isGobDecoder { |
| if engine.numInstr == 0 && st.NumField() > 0 && len(dec.wireType[wireId].StructT.Field) > 0 { |
| name := base.Name() |
| errorf("type mismatch: no fields matched compiling decoder for %s", name) |
| } |
| dec.decodeStruct(engine, ut, uintptr(unsafeAddr(val)), ut.indir) |
| } else { |
| dec.decodeSingle(engine, ut, uintptr(unsafeAddr(val))) |
| } |
| } |
| |
| // decodeIgnoredValue decodes the data stream representing a value of the specified type and discards it. |
| func (dec *Decoder) decodeIgnoredValue(wireId typeId) { |
| var enginePtr **decEngine |
| enginePtr, dec.err = dec.getIgnoreEnginePtr(wireId) |
| if dec.err != nil { |
| return |
| } |
| wire := dec.wireType[wireId] |
| if wire != nil && wire.StructT != nil { |
| dec.ignoreStruct(*enginePtr) |
| } else { |
| dec.ignoreSingle(*enginePtr) |
| } |
| } |
| |
| func init() { |
| var iop, uop decOp |
| switch reflect.TypeOf(int(0)).Bits() { |
| case 32: |
| iop = decInt32 |
| uop = decUint32 |
| case 64: |
| iop = decInt64 |
| uop = decUint64 |
| default: |
| panic("gob: unknown size of int/uint") |
| } |
| decOpTable[reflect.Int] = iop |
| decOpTable[reflect.Uint] = uop |
| |
| // Finally uintptr |
| switch reflect.TypeOf(uintptr(0)).Bits() { |
| case 32: |
| uop = decUint32 |
| case 64: |
| uop = decUint64 |
| default: |
| panic("gob: unknown size of uintptr") |
| } |
| decOpTable[reflect.Uintptr] = uop |
| } |
| |
| // Gob assumes it can call UnsafeAddr on any Value |
| // in order to get a pointer it can copy data from. |
| // Values that have just been created and do not point |
| // into existing structs or slices cannot be addressed, |
| // so simulate it by returning a pointer to a copy. |
| // Each call allocates once. |
| func unsafeAddr(v reflect.Value) uintptr { |
| if v.CanAddr() { |
| return v.UnsafeAddr() |
| } |
| x := reflect.New(v.Type()).Elem() |
| x.Set(v) |
| return x.UnsafeAddr() |
| } |
| |
| // Gob depends on being able to take the address |
| // of zeroed Values it creates, so use this wrapper instead |
| // of the standard reflect.Zero. |
| // Each call allocates once. |
| func allocValue(t reflect.Type) reflect.Value { |
| return reflect.New(t).Elem() |
| } |