| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "cmd/compile/internal/ssa" |
| "cmd/internal/dwarf" |
| "cmd/internal/obj" |
| "cmd/internal/src" |
| "cmd/internal/sys" |
| "fmt" |
| "sort" |
| ) |
| |
| // "Portable" code generation. |
| |
| var makefuncdatasym_nsym int |
| |
| func makefuncdatasym(pp *Progs, nameprefix string, funcdatakind int64) *Sym { |
| sym := lookupN(nameprefix, makefuncdatasym_nsym) |
| makefuncdatasym_nsym++ |
| p := pp.Prog(obj.AFUNCDATA) |
| Addrconst(&p.From, funcdatakind) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = Linksym(sym) |
| return sym |
| } |
| |
| // TODO(mdempsky): Update to reference OpVar{Def,Kill,Live} instead |
| // and move to plive.go. |
| |
| // VARDEF is an annotation for the liveness analysis, marking a place |
| // where a complete initialization (definition) of a variable begins. |
| // Since the liveness analysis can see initialization of single-word |
| // variables quite easy, gvardef is usually only called for multi-word |
| // or 'fat' variables, those satisfying isfat(n->type). |
| // However, gvardef is also called when a non-fat variable is initialized |
| // via a block move; the only time this happens is when you have |
| // return f() |
| // for a function with multiple return values exactly matching the return |
| // types of the current function. |
| // |
| // A 'VARDEF x' annotation in the instruction stream tells the liveness |
| // analysis to behave as though the variable x is being initialized at that |
| // point in the instruction stream. The VARDEF must appear before the |
| // actual (multi-instruction) initialization, and it must also appear after |
| // any uses of the previous value, if any. For example, if compiling: |
| // |
| // x = x[1:] |
| // |
| // it is important to generate code like: |
| // |
| // base, len, cap = pieces of x[1:] |
| // VARDEF x |
| // x = {base, len, cap} |
| // |
| // If instead the generated code looked like: |
| // |
| // VARDEF x |
| // base, len, cap = pieces of x[1:] |
| // x = {base, len, cap} |
| // |
| // then the liveness analysis would decide the previous value of x was |
| // unnecessary even though it is about to be used by the x[1:] computation. |
| // Similarly, if the generated code looked like: |
| // |
| // base, len, cap = pieces of x[1:] |
| // x = {base, len, cap} |
| // VARDEF x |
| // |
| // then the liveness analysis will not preserve the new value of x, because |
| // the VARDEF appears to have "overwritten" it. |
| // |
| // VARDEF is a bit of a kludge to work around the fact that the instruction |
| // stream is working on single-word values but the liveness analysis |
| // wants to work on individual variables, which might be multi-word |
| // aggregates. It might make sense at some point to look into letting |
| // the liveness analysis work on single-word values as well, although |
| // there are complications around interface values, slices, and strings, |
| // all of which cannot be treated as individual words. |
| // |
| // VARKILL is the opposite of VARDEF: it marks a value as no longer needed, |
| // even if its address has been taken. That is, a VARKILL annotation asserts |
| // that its argument is certainly dead, for use when the liveness analysis |
| // would not otherwise be able to deduce that fact. |
| |
| func emitptrargsmap() { |
| if Curfn.Func.Nname.Sym.Name == "_" { |
| return |
| } |
| sym := lookup(fmt.Sprintf("%s.args_stackmap", Curfn.Func.Nname.Sym.Name)) |
| |
| nptr := int(Curfn.Type.ArgWidth() / int64(Widthptr)) |
| bv := bvalloc(int32(nptr) * 2) |
| nbitmap := 1 |
| if Curfn.Type.Results().NumFields() > 0 { |
| nbitmap = 2 |
| } |
| off := duint32(sym, 0, uint32(nbitmap)) |
| off = duint32(sym, off, uint32(bv.n)) |
| var xoffset int64 |
| if Curfn.IsMethod() { |
| xoffset = 0 |
| onebitwalktype1(Curfn.Type.Recvs(), &xoffset, bv) |
| } |
| |
| if Curfn.Type.Params().NumFields() > 0 { |
| xoffset = 0 |
| onebitwalktype1(Curfn.Type.Params(), &xoffset, bv) |
| } |
| |
| off = dbvec(sym, off, bv) |
| if Curfn.Type.Results().NumFields() > 0 { |
| xoffset = 0 |
| onebitwalktype1(Curfn.Type.Results(), &xoffset, bv) |
| off = dbvec(sym, off, bv) |
| } |
| |
| ggloblsym(sym, int32(off), obj.RODATA|obj.LOCAL) |
| } |
| |
| // cmpstackvarlt reports whether the stack variable a sorts before b. |
| // |
| // Sort the list of stack variables. Autos after anything else, |
| // within autos, unused after used, within used, things with |
| // pointers first, zeroed things first, and then decreasing size. |
| // Because autos are laid out in decreasing addresses |
| // on the stack, pointers first, zeroed things first and decreasing size |
| // really means, in memory, things with pointers needing zeroing at |
| // the top of the stack and increasing in size. |
| // Non-autos sort on offset. |
| func cmpstackvarlt(a, b *Node) bool { |
| if (a.Class == PAUTO) != (b.Class == PAUTO) { |
| return b.Class == PAUTO |
| } |
| |
| if a.Class != PAUTO { |
| return a.Xoffset < b.Xoffset |
| } |
| |
| if a.Used() != b.Used() { |
| return a.Used() |
| } |
| |
| ap := haspointers(a.Type) |
| bp := haspointers(b.Type) |
| if ap != bp { |
| return ap |
| } |
| |
| ap = a.Name.Needzero() |
| bp = b.Name.Needzero() |
| if ap != bp { |
| return ap |
| } |
| |
| if a.Type.Width != b.Type.Width { |
| return a.Type.Width > b.Type.Width |
| } |
| |
| return a.Sym.Name < b.Sym.Name |
| } |
| |
| // byStackvar implements sort.Interface for []*Node using cmpstackvarlt. |
| type byStackVar []*Node |
| |
| func (s byStackVar) Len() int { return len(s) } |
| func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) } |
| func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] } |
| |
| var scratchFpMem *Node |
| |
| func (s *ssafn) AllocFrame(f *ssa.Func) { |
| s.stksize = 0 |
| s.stkptrsize = 0 |
| fn := s.curfn.Func |
| |
| // Mark the PAUTO's unused. |
| for _, ln := range fn.Dcl { |
| if ln.Class == PAUTO { |
| ln.SetUsed(false) |
| } |
| } |
| |
| for _, l := range f.RegAlloc { |
| if ls, ok := l.(ssa.LocalSlot); ok { |
| ls.N.(*Node).SetUsed(true) |
| } |
| |
| } |
| |
| scratchUsed := false |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| switch a := v.Aux.(type) { |
| case *ssa.ArgSymbol: |
| a.Node.(*Node).SetUsed(true) |
| case *ssa.AutoSymbol: |
| a.Node.(*Node).SetUsed(true) |
| } |
| |
| if !scratchUsed { |
| scratchUsed = v.Op.UsesScratch() |
| } |
| } |
| } |
| |
| if f.Config.NeedsFpScratch { |
| scratchFpMem = tempAt(src.NoXPos, s.curfn, Types[TUINT64]) |
| scratchFpMem.SetUsed(scratchUsed) |
| } |
| |
| sort.Sort(byStackVar(fn.Dcl)) |
| |
| // Reassign stack offsets of the locals that are used. |
| for i, n := range fn.Dcl { |
| if n.Op != ONAME || n.Class != PAUTO { |
| continue |
| } |
| if !n.Used() { |
| fn.Dcl = fn.Dcl[:i] |
| break |
| } |
| |
| dowidth(n.Type) |
| w := n.Type.Width |
| if w >= thearch.MAXWIDTH || w < 0 { |
| Fatalf("bad width") |
| } |
| s.stksize += w |
| s.stksize = Rnd(s.stksize, int64(n.Type.Align)) |
| if haspointers(n.Type) { |
| s.stkptrsize = s.stksize |
| } |
| if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) { |
| s.stksize = Rnd(s.stksize, int64(Widthptr)) |
| } |
| if s.stksize >= 1<<31 { |
| yyerrorl(s.curfn.Pos, "stack frame too large (>2GB)") |
| } |
| |
| n.Xoffset = -s.stksize |
| } |
| |
| s.stksize = Rnd(s.stksize, int64(Widthreg)) |
| s.stkptrsize = Rnd(s.stkptrsize, int64(Widthreg)) |
| } |
| |
| func compile(fn *Node) { |
| if Newproc == nil { |
| Newproc = Sysfunc("newproc") |
| Deferproc = Sysfunc("deferproc") |
| Deferreturn = Sysfunc("deferreturn") |
| Duffcopy = Sysfunc("duffcopy") |
| Duffzero = Sysfunc("duffzero") |
| panicindex = Sysfunc("panicindex") |
| panicslice = Sysfunc("panicslice") |
| panicdivide = Sysfunc("panicdivide") |
| growslice = Sysfunc("growslice") |
| panicdottypeE = Sysfunc("panicdottypeE") |
| panicdottypeI = Sysfunc("panicdottypeI") |
| panicnildottype = Sysfunc("panicnildottype") |
| assertE2I = Sysfunc("assertE2I") |
| assertE2I2 = Sysfunc("assertE2I2") |
| assertI2I = Sysfunc("assertI2I") |
| assertI2I2 = Sysfunc("assertI2I2") |
| } |
| |
| Curfn = fn |
| dowidth(fn.Type) |
| |
| if fn.Nbody.Len() == 0 { |
| emitptrargsmap() |
| return |
| } |
| |
| saveerrors() |
| |
| order(fn) |
| if nerrors != 0 { |
| return |
| } |
| |
| walk(fn) |
| if nerrors != 0 { |
| return |
| } |
| checkcontrolflow(fn) |
| if nerrors != 0 { |
| return |
| } |
| if instrumenting { |
| instrument(fn) |
| } |
| if nerrors != 0 { |
| return |
| } |
| |
| // From this point, there should be no uses of Curfn. Enforce that. |
| Curfn = nil |
| |
| // Build an SSA backend function. |
| ssafn := buildssa(fn) |
| if nerrors != 0 { |
| return |
| } |
| |
| pp := newProgs(fn) |
| genssa(ssafn, pp) |
| fieldtrack(pp.Text.From.Sym, fn.Func.FieldTrack) |
| pp.Flush() |
| } |
| |
| func debuginfo(fnsym *obj.LSym, curfn interface{}) []*dwarf.Var { |
| fn := curfn.(*Node) |
| if expect := Linksym(fn.Func.Nname.Sym); fnsym != expect { |
| Fatalf("unexpected fnsym: %v != %v", fnsym, expect) |
| } |
| |
| var vars []*dwarf.Var |
| for _, n := range fn.Func.Dcl { |
| if n.Op != ONAME { // might be OTYPE or OLITERAL |
| continue |
| } |
| |
| var name obj.AddrName |
| var abbrev int |
| offs := n.Xoffset |
| |
| switch n.Class { |
| case PAUTO: |
| if !n.Used() { |
| continue |
| } |
| name = obj.NAME_AUTO |
| |
| abbrev = dwarf.DW_ABRV_AUTO |
| if Ctxt.FixedFrameSize() == 0 { |
| offs -= int64(Widthptr) |
| } |
| if obj.Framepointer_enabled(obj.GOOS, obj.GOARCH) { |
| offs -= int64(Widthptr) |
| } |
| |
| case PPARAM, PPARAMOUT: |
| name = obj.NAME_PARAM |
| |
| abbrev = dwarf.DW_ABRV_PARAM |
| offs += Ctxt.FixedFrameSize() |
| |
| default: |
| continue |
| } |
| |
| gotype := Linksym(ngotype(n)) |
| fnsym.Autom = append(fnsym.Autom, &obj.Auto{ |
| Asym: obj.Linklookup(Ctxt, n.Sym.Name, 0), |
| Aoffset: int32(n.Xoffset), |
| Name: name, |
| Gotype: gotype, |
| }) |
| |
| if n.IsAutoTmp() { |
| continue |
| } |
| |
| typename := dwarf.InfoPrefix + gotype.Name[len("type."):] |
| vars = append(vars, &dwarf.Var{ |
| Name: n.Sym.Name, |
| Abbrev: abbrev, |
| Offset: int32(offs), |
| Type: obj.Linklookup(Ctxt, typename, 0), |
| }) |
| } |
| |
| // Stable sort so that ties are broken with declaration order. |
| sort.Stable(dwarf.VarsByOffset(vars)) |
| |
| return vars |
| } |
| |
| // fieldtrack adds R_USEFIELD relocations to fnsym to record any |
| // struct fields that it used. |
| func fieldtrack(fnsym *obj.LSym, tracked map[*Sym]struct{}) { |
| if fnsym == nil { |
| return |
| } |
| if obj.Fieldtrack_enabled == 0 || len(tracked) == 0 { |
| return |
| } |
| |
| trackSyms := make([]*Sym, 0, len(tracked)) |
| for sym := range tracked { |
| trackSyms = append(trackSyms, sym) |
| } |
| sort.Sort(symByName(trackSyms)) |
| for _, sym := range trackSyms { |
| r := obj.Addrel(fnsym) |
| r.Sym = Linksym(sym) |
| r.Type = obj.R_USEFIELD |
| } |
| } |
| |
| type symByName []*Sym |
| |
| func (a symByName) Len() int { return len(a) } |
| func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name } |
| func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] } |