| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements binary search. |
| |
| package sort |
| |
| // Search uses binary search to find and return the smallest index i |
| // in [0, n) at which f(i) is true, assuming that on the range [0, n), |
| // f(i) == true implies f(i+1) == true. That is, Search requires that |
| // f is false for some (possibly empty) prefix of the input range [0, n) |
| // and then true for the (possibly empty) remainder; Search returns |
| // the first true index. If there is no such index, Search returns n. |
| // (Note that the "not found" return value is not -1 as in, for instance, |
| // strings.Index.) |
| // Search calls f(i) only for i in the range [0, n). |
| // |
| // A common use of Search is to find the index i for a value x in |
| // a sorted, indexable data structure such as an array or slice. |
| // In this case, the argument f, typically a closure, captures the value |
| // to be searched for, and how the data structure is indexed and |
| // ordered. |
| // |
| // For instance, given a slice data sorted in ascending order, |
| // the call Search(len(data), func(i int) bool { return data[i] >= 23 }) |
| // returns the smallest index i such that data[i] >= 23. If the caller |
| // wants to find whether 23 is in the slice, it must test data[i] == 23 |
| // separately. |
| // |
| // Searching data sorted in descending order would use the <= |
| // operator instead of the >= operator. |
| // |
| // To complete the example above, the following code tries to find the value |
| // x in an integer slice data sorted in ascending order: |
| // |
| // x := 23 |
| // i := sort.Search(len(data), func(i int) bool { return data[i] >= x }) |
| // if i < len(data) && data[i] == x { |
| // // x is present at data[i] |
| // } else { |
| // // x is not present in data, |
| // // but i is the index where it would be inserted. |
| // } |
| // |
| // As a more whimsical example, this program guesses your number: |
| // |
| // func GuessingGame() { |
| // var s string |
| // fmt.Printf("Pick an integer from 0 to 100.\n") |
| // answer := sort.Search(100, func(i int) bool { |
| // fmt.Printf("Is your number <= %d? ", i) |
| // fmt.Scanf("%s", &s) |
| // return s != "" && s[0] == 'y' |
| // }) |
| // fmt.Printf("Your number is %d.\n", answer) |
| // } |
| func Search(n int, f func(int) bool) int { |
| // Define f(-1) == false and f(n) == true. |
| // Invariant: f(i-1) == false, f(j) == true. |
| i, j := 0, n |
| for i < j { |
| h := int(uint(i+j) >> 1) // avoid overflow when computing h |
| // i ≤ h < j |
| if !f(h) { |
| i = h + 1 // preserves f(i-1) == false |
| } else { |
| j = h // preserves f(j) == true |
| } |
| } |
| // i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i. |
| return i |
| } |
| |
| // Find uses binary search to find and return the smallest index i in [0, n) |
| // at which cmp(i) <= 0. If there is no such index i, Find returns i = n. |
| // The found result is true if i < n and cmp(i) == 0. |
| // Find calls cmp(i) only for i in the range [0, n). |
| // |
| // To permit binary search, Find requires that cmp(i) > 0 for a leading |
| // prefix of the range, cmp(i) == 0 in the middle, and cmp(i) < 0 for |
| // the final suffix of the range. (Each subrange could be empty.) |
| // The usual way to establish this condition is to interpret cmp(i) |
| // as a comparison of a desired target value t against entry i in an |
| // underlying indexed data structure x, returning <0, 0, and >0 |
| // when t < x[i], t == x[i], and t > x[i], respectively. |
| // |
| // For example, to look for a particular string in a sorted, random-access |
| // list of strings: |
| // i, found := sort.Find(x.Len(), func(i int) int { |
| // return strings.Compare(target, x.At(i)) |
| // }) |
| // if found { |
| // fmt.Printf("found %s at entry %d\n", target, i) |
| // } else { |
| // fmt.Printf("%s not found, would insert at %d", target, i) |
| // } |
| func Find(n int, cmp func(int) int) (i int, found bool) { |
| // The invariants here are similar to the ones in Search. |
| // Define cmp(-1) > 0 and cmp(n) <= 0 |
| // Invariant: cmp(i-1) > 0, cmp(j) <= 0 |
| i, j := 0, n |
| for i < j { |
| h := int(uint(i+j) >> 1) // avoid overflow when computing h |
| // i ≤ h < j |
| if cmp(h) > 0 { |
| i = h + 1 // preserves cmp(i-1) > 0 |
| } else { |
| j = h // preserves cmp(j) <= 0 |
| } |
| } |
| // i == j, cmp(i-1) > 0 and cmp(j) <= 0 |
| return i, i < n && cmp(i) == 0 |
| } |
| |
| // Convenience wrappers for common cases. |
| |
| // SearchInts searches for x in a sorted slice of ints and returns the index |
| // as specified by Search. The return value is the index to insert x if x is |
| // not present (it could be len(a)). |
| // The slice must be sorted in ascending order. |
| func SearchInts(a []int, x int) int { |
| return Search(len(a), func(i int) bool { return a[i] >= x }) |
| } |
| |
| // SearchFloat64s searches for x in a sorted slice of float64s and returns the index |
| // as specified by Search. The return value is the index to insert x if x is not |
| // present (it could be len(a)). |
| // The slice must be sorted in ascending order. |
| func SearchFloat64s(a []float64, x float64) int { |
| return Search(len(a), func(i int) bool { return a[i] >= x }) |
| } |
| |
| // SearchStrings searches for x in a sorted slice of strings and returns the index |
| // as specified by Search. The return value is the index to insert x if x is not |
| // present (it could be len(a)). |
| // The slice must be sorted in ascending order. |
| func SearchStrings(a []string, x string) int { |
| return Search(len(a), func(i int) bool { return a[i] >= x }) |
| } |
| |
| // Search returns the result of applying SearchInts to the receiver and x. |
| func (p IntSlice) Search(x int) int { return SearchInts(p, x) } |
| |
| // Search returns the result of applying SearchFloat64s to the receiver and x. |
| func (p Float64Slice) Search(x float64) int { return SearchFloat64s(p, x) } |
| |
| // Search returns the result of applying SearchStrings to the receiver and x. |
| func (p StringSlice) Search(x string) int { return SearchStrings(p, x) } |