blob: 27e951ce01ee03952434a59dc767ee0ac29ba39b [file] [log] [blame]
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type parameter inference.
package types2
import (
"cmd/compile/internal/syntax"
. "internal/types/errors"
)
const useNewTypeInference = false
// infer2 attempts to infer the complete set of type arguments for generic function instantiation/call
// based on the given type parameters tparams, type arguments targs, function parameters params, and
// function arguments args, if any. There must be at least one type parameter, no more type arguments
// than type parameters, and params and args must match in number (incl. zero).
// If successful, infer returns the complete list of given and inferred type arguments, one for each
// type parameter. Otherwise the result is nil and appropriate errors will be reported.
func (check *Checker) infer2(pos syntax.Pos, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) (inferred []Type) {
if debug {
defer func() {
assert(inferred == nil || len(inferred) == len(tparams))
for _, targ := range inferred {
assert(targ != nil)
}
}()
}
if traceInference {
check.dump("-- infer2 %s%s ➞ %s", tparams, params, targs)
defer func() {
check.dump("=> %s ➞ %s\n", tparams, inferred)
}()
}
// There must be at least one type parameter, and no more type arguments than type parameters.
n := len(tparams)
assert(n > 0 && len(targs) <= n)
// Function parameters and arguments must match in number.
assert(params.Len() == len(args))
// If we already have all type arguments, we're done.
if len(targs) == n {
return targs
}
// len(targs) < n
// Rename type parameters to avoid conflicts in recursive instantiation scenarios.
tparams, params = check.renameTParams(pos, tparams, params)
// If we have more than 2 arguments, we may have arguments with named and unnamed types.
// If that is the case, permutate params and args such that the arguments with named
// types are first in the list. This doesn't affect type inference if all types are taken
// as is. But when we have inexact unification enabled (as is the case for function type
// inference), when a named type is unified with an unnamed type, unification proceeds
// with the underlying type of the named type because otherwise unification would fail
// right away. This leads to an asymmetry in type inference: in cases where arguments of
// named and unnamed types are passed to parameters with identical type, different types
// (named vs underlying) may be inferred depending on the order of the arguments.
// By ensuring that named types are seen first, order dependence is avoided and unification
// succeeds where it can (go.dev/issue/43056).
const enableArgSorting = true
if m := len(args); m >= 2 && enableArgSorting {
// Determine indices of arguments with named and unnamed types.
var named, unnamed []int
for i, arg := range args {
if hasName(arg.typ) {
named = append(named, i)
} else {
unnamed = append(unnamed, i)
}
}
// If we have named and unnamed types, move the arguments with
// named types first. Update the parameter list accordingly.
// Make copies so as not to clobber the incoming slices.
if len(named) != 0 && len(unnamed) != 0 {
params2 := make([]*Var, m)
args2 := make([]*operand, m)
i := 0
for _, j := range named {
params2[i] = params.At(j)
args2[i] = args[j]
i++
}
for _, j := range unnamed {
params2[i] = params.At(j)
args2[i] = args[j]
i++
}
params = NewTuple(params2...)
args = args2
}
}
// Make sure we have a "full" list of type arguments, some of which may
// be nil (unknown). Make a copy so as to not clobber the incoming slice.
if len(targs) < n {
targs2 := make([]Type, n)
copy(targs2, targs)
targs = targs2
}
// len(targs) == n
// Continue with the type arguments we have. Avoid matching generic
// parameters that already have type arguments against function arguments:
// It may fail because matching uses type identity while parameter passing
// uses assignment rules. Instantiate the parameter list with the type
// arguments we have, and continue with that parameter list.
// Substitute type arguments for their respective type parameters in params,
// if any. Note that nil targs entries are ignored by check.subst.
// TODO(gri) Can we avoid this (we're setting known type arguments below,
// but that doesn't impact the isParameterized check for now).
if params.Len() > 0 {
smap := makeSubstMap(tparams, targs)
params = check.subst(nopos, params, smap, nil, check.context()).(*Tuple)
}
// Unify parameter and argument types for generic parameters with typed arguments
// and collect the indices of generic parameters with untyped arguments.
// Terminology: generic parameter = function parameter with a type-parameterized type
u := newUnifier(tparams, targs)
errorf := func(kind string, tpar, targ Type, arg *operand) {
// provide a better error message if we can
targs, index := u.inferred()
if index == 0 {
// The first type parameter couldn't be inferred.
// If none of them could be inferred, don't try
// to provide the inferred type in the error msg.
allFailed := true
for _, targ := range targs {
if targ != nil {
allFailed = false
break
}
}
if allFailed {
check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match %s (cannot infer %s)", kind, targ, arg.expr, tpar, typeParamsString(tparams))
return
}
}
smap := makeSubstMap(tparams, targs)
// TODO(gri): pass a poser here, rather than arg.Pos().
inferred := check.subst(arg.Pos(), tpar, smap, nil, check.context())
// CannotInferTypeArgs indicates a failure of inference, though the actual
// error may be better attributed to a user-provided type argument (hence
// InvalidTypeArg). We can't differentiate these cases, so fall back on
// the more general CannotInferTypeArgs.
if inferred != tpar {
check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match inferred type %s for %s", kind, targ, arg.expr, inferred, tpar)
} else {
check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match %s", kind, targ, arg.expr, tpar)
}
}
// indices of generic parameters with untyped arguments, for later use
var untyped []int
// --- 1 ---
// use information from function arguments
if traceInference {
u.tracef("parameters: %s", params)
u.tracef("arguments : %s", args)
}
for i, arg := range args {
par := params.At(i)
// If we permit bidirectional unification, this conditional code needs to be
// executed even if par.typ is not parameterized since the argument may be a
// generic function (for which we want to infer its type arguments).
if isParameterized(tparams, par.typ) {
if arg.mode == invalid {
// An error was reported earlier. Ignore this targ
// and continue, we may still be able to infer all
// targs resulting in fewer follow-on errors.
continue
}
if isTyped(arg.typ) {
if !u.unify(par.typ, arg.typ) {
errorf("type", par.typ, arg.typ, arg)
return nil
}
} else if _, ok := par.typ.(*TypeParam); ok {
// Since default types are all basic (i.e., non-composite) types, an
// untyped argument will never match a composite parameter type; the
// only parameter type it can possibly match against is a *TypeParam.
// Thus, for untyped arguments we only need to look at parameter types
// that are single type parameters.
untyped = append(untyped, i)
}
}
}
if traceInference {
inferred, _ := u.inferred()
u.tracef("=> %s ➞ %s\n", tparams, inferred)
}
// --- 2 ---
// use information from type parameter constraints
if traceInference {
u.tracef("type parameters: %s", tparams)
}
// Repeatedly apply constraint type inference as long as
// progress is being made.
//
// This is an O(n^2) algorithm where n is the number of
// type parameters: if there is progress, at least one
// type argument is inferred per iteration and we have
// a doubly nested loop.
//
// In practice this is not a problem because the number
// of type parameters tends to be very small (< 5 or so).
// (It should be possible for unification to efficiently
// signal newly inferred type arguments; then the loops
// here could handle the respective type parameters only,
// but that will come at a cost of extra complexity which
// may not be worth it.)
for {
nn := u.unknowns()
for _, tpar := range tparams {
// If there is a core term (i.e., a core type with tilde information)
// unify the type parameter with the core type.
if core, single := coreTerm(tpar); core != nil {
if traceInference {
u.tracef("core(%s) = %s (single = %v)", tpar, core, single)
}
// A type parameter can be unified with its core type in two cases.
tx := u.at(tpar)
switch {
case tx != nil:
// The corresponding type argument tx is known.
// In this case, if the core type has a tilde, the type argument's underlying
// type must match the core type, otherwise the type argument and the core type
// must match.
// If tx is an external type parameter, don't consider its underlying type
// (which is an interface). Core type unification will attempt to unify against
// core.typ.
// Note also that even with inexact unification we cannot leave away the under
// call here because it's possible that both tx and core.typ are named types,
// with under(tx) being a (named) basic type matching core.typ. Such cases do
// not match with inexact unification.
if core.tilde && !isTypeParam(tx) {
tx = under(tx)
}
// Unification may fail because it operates with limited information (core type),
// even if a given type argument satisfies the corresponding type constraint.
// For instance, given [P T1|T2, ...] where the type argument for P is (named
// type) T1, and T1 and T2 have the same built-in (named) type T0 as underlying
// type, the core type will be the named type T0, which doesn't match T1.
// Yet the instantiation of P with T1 is clearly valid (see go.dev/issue/53650).
// Reporting an error if unification fails would be incorrect in this case.
// On the other hand, it is safe to ignore failing unification during constraint
// type inference because if the failure is true, an error will be reported when
// checking instantiation.
// TODO(gri) we should be able to report an error here and fix the issue in
// unification
u.unify(tx, core.typ)
case single && !core.tilde:
// The corresponding type argument tx is unknown and there's a single
// specific type and no tilde.
// In this case the type argument must be that single type; set it.
u.set(tpar, core.typ)
default:
// Unification is not possible and no progress was made.
continue
}
} else {
if traceInference {
u.tracef("core(%s) = nil", tpar)
}
}
}
if u.unknowns() == nn {
break // no progress
}
}
if traceInference {
inferred, _ := u.inferred()
u.tracef("=> %s ➞ %s\n", tparams, inferred)
}
// --- 3 ---
// use information from untyped contants
if traceInference {
u.tracef("untyped: %v", untyped)
}
// Some generic parameters with untyped arguments may have been given a type by now.
// Collect all remaining parameters that don't have a type yet and unify them with
// the default types of the untyped arguments.
// We need to collect them all before unifying them with their untyped arguments;
// otherwise a parameter type that appears multiple times will have a type after
// the first unification and will be skipped later on, leading to incorrect results.
j := 0
for _, i := range untyped {
tpar := params.At(i).typ.(*TypeParam) // is type parameter by construction of untyped
if u.at(tpar) == nil {
untyped[j] = i
j++
}
}
// untyped[:j] are the undices of parameters without a type yet
for _, i := range untyped[:j] {
tpar := params.At(i).typ.(*TypeParam)
arg := args[i]
typ := Default(arg.typ)
// The default type for an untyped nil is untyped nil which must
// not be inferred as type parameter type. Ignore them by making
// sure all default types are typed.
if isTyped(typ) && !u.unify(tpar, typ) {
errorf("default type", tpar, typ, arg)
return nil
}
}
// --- simplify ---
// u.inferred() now contains the incoming type arguments plus any additional type
// arguments which were inferred. The inferred non-nil entries may still contain
// references to other type parameters found in constraints.
// For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int
// was given, unification produced the type list [int, []C, *A]. We eliminate the
// remaining type parameters by substituting the type parameters in this type list
// until nothing changes anymore.
inferred, _ = u.inferred()
if debug {
for i, targ := range targs {
assert(targ == nil || inferred[i] == targ)
}
}
// The data structure of each (provided or inferred) type represents a graph, where
// each node corresponds to a type and each (directed) vertex points to a component
// type. The substitution process described above repeatedly replaces type parameter
// nodes in these graphs with the graphs of the types the type parameters stand for,
// which creates a new (possibly bigger) graph for each type.
// The substitution process will not stop if the replacement graph for a type parameter
// also contains that type parameter.
// For instance, for [A interface{ *A }], without any type argument provided for A,
// unification produces the type list [*A]. Substituting A in *A with the value for
// A will lead to infinite expansion by producing [**A], [****A], [********A], etc.,
// because the graph A -> *A has a cycle through A.
// Generally, cycles may occur across multiple type parameters and inferred types
// (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]).
// We eliminate cycles by walking the graphs for all type parameters. If a cycle
// through a type parameter is detected, cycleFinder nils out the respective type
// which kills the cycle; this also means that the respective type could not be
// inferred.
//
// TODO(gri) If useful, we could report the respective cycle as an error. We don't
// do this now because type inference will fail anyway, and furthermore,
// constraints with cycles of this kind cannot currently be satisfied by
// any user-supplied type. But should that change, reporting an error
// would be wrong.
w := cycleFinder{tparams, inferred, make(map[Type]bool)}
for _, t := range tparams {
w.typ(t) // t != nil
}
// dirty tracks the indices of all types that may still contain type parameters.
// We know that nil type entries and entries corresponding to provided (non-nil)
// type arguments are clean, so exclude them from the start.
var dirty []int
for i, typ := range inferred {
if typ != nil && (i >= len(targs) || targs[i] == nil) {
dirty = append(dirty, i)
}
}
for len(dirty) > 0 {
// TODO(gri) Instead of creating a new substMap for each iteration,
// provide an update operation for substMaps and only change when
// needed. Optimization.
smap := makeSubstMap(tparams, inferred)
n := 0
for _, index := range dirty {
t0 := inferred[index]
if t1 := check.subst(nopos, t0, smap, nil, check.context()); t1 != t0 {
inferred[index] = t1
dirty[n] = index
n++
}
}
dirty = dirty[:n]
}
// Once nothing changes anymore, we may still have type parameters left;
// e.g., a constraint with core type *P may match a type parameter Q but
// we don't have any type arguments to fill in for *P or Q (go.dev/issue/45548).
// Don't let such inferences escape; instead treat them as unresolved.
for i, typ := range inferred {
if typ == nil || isParameterized(tparams, typ) {
obj := tparams[i].obj
check.errorf(pos, CannotInferTypeArgs, "cannot infer %s (%s)", obj.name, obj.pos)
return nil
}
}
return
}
// dummy function using syntax.Pos to satisfy go/types generator for now
// TODO(gri) remove and adjust generator
func _(syntax.Pos) {}