| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package elliptic |
| |
| import ( |
| "crypto/elliptic/internal/nistec" |
| "crypto/rand" |
| "math/big" |
| ) |
| |
| // p384Curve is a Curve implementation based on nistec.P384Point. |
| // |
| // It's a wrapper that exposes the big.Int-based Curve interface and encodes the |
| // legacy idiosyncrasies it requires, such as invalid and infinity point |
| // handling. |
| // |
| // To interact with the nistec package, points are encoded into and decoded from |
| // properly formatted byte slices. All big.Int use is limited to this package. |
| // Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, |
| // so the overhead is acceptable. |
| type p384Curve struct { |
| params *CurveParams |
| } |
| |
| var p384 p384Curve |
| var _ Curve = p384 |
| |
| func initP384() { |
| p384.params = &CurveParams{ |
| Name: "P-384", |
| BitSize: 384, |
| // FIPS 186-4, section D.1.2.4 |
| P: bigFromDecimal("394020061963944792122790401001436138050797392704654" + |
| "46667948293404245721771496870329047266088258938001861606973112319"), |
| N: bigFromDecimal("394020061963944792122790401001436138050797392704654" + |
| "46667946905279627659399113263569398956308152294913554433653942643"), |
| B: bigFromHex("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088" + |
| "f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"), |
| Gx: bigFromHex("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741" + |
| "e082542a385502f25dbf55296c3a545e3872760ab7"), |
| Gy: bigFromHex("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da31" + |
| "13b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"), |
| } |
| } |
| |
| func (curve p384Curve) Params() *CurveParams { |
| return curve.params |
| } |
| |
| func (curve p384Curve) IsOnCurve(x, y *big.Int) bool { |
| // IsOnCurve is documented to reject (0, 0), the conventional point at |
| // infinity, which however is accepted by p384PointFromAffine. |
| if x.Sign() == 0 && y.Sign() == 0 { |
| return false |
| } |
| _, ok := p384PointFromAffine(x, y) |
| return ok |
| } |
| |
| func p384PointFromAffine(x, y *big.Int) (p *nistec.P384Point, ok bool) { |
| // (0, 0) is by convention the point at infinity, which can't be represented |
| // in affine coordinates. Marshal incorrectly encodes it as an uncompressed |
| // point, which SetBytes would correctly reject. See Issue 37294. |
| if x.Sign() == 0 && y.Sign() == 0 { |
| return nistec.NewP384Point(), true |
| } |
| if x.Sign() < 0 || y.Sign() < 0 { |
| return nil, false |
| } |
| if x.BitLen() > 384 || y.BitLen() > 384 { |
| return nil, false |
| } |
| p, err := nistec.NewP384Point().SetBytes(Marshal(P384(), x, y)) |
| if err != nil { |
| return nil, false |
| } |
| return p, true |
| } |
| |
| func p384PointToAffine(p *nistec.P384Point) (x, y *big.Int) { |
| out := p.Bytes() |
| if len(out) == 1 && out[0] == 0 { |
| // This is the correct encoding of the point at infinity, which |
| // Unmarshal does not support. See Issue 37294. |
| return new(big.Int), new(big.Int) |
| } |
| x, y = Unmarshal(P384(), out) |
| if x == nil { |
| panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") |
| } |
| return x, y |
| } |
| |
| // p384RandomPoint returns a random point on the curve. It's used when Add, |
| // Double, or ScalarMult are fed a point not on the curve, which is undefined |
| // behavior. Originally, we used to do the math on it anyway (which allows |
| // invalid curve attacks) and relied on the caller and Unmarshal to avoid this |
| // happening in the first place. Now, we just can't construct a nistec.P384Point |
| // for an invalid pair of coordinates, because that API is safer. If we panic, |
| // we risk introducing a DoS. If we return nil, we risk a panic. If we return |
| // the input, ecdsa.Verify might fail open. The safest course seems to be to |
| // return a valid, random point, which hopefully won't help the attacker. |
| func p384RandomPoint() (x, y *big.Int) { |
| _, x, y, err := GenerateKey(P384(), rand.Reader) |
| if err != nil { |
| panic("crypto/elliptic: failed to generate random point") |
| } |
| return x, y |
| } |
| |
| func (p384Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { |
| p1, ok := p384PointFromAffine(x1, y1) |
| if !ok { |
| return p384RandomPoint() |
| } |
| p2, ok := p384PointFromAffine(x2, y2) |
| if !ok { |
| return p384RandomPoint() |
| } |
| return p384PointToAffine(p1.Add(p1, p2)) |
| } |
| |
| func (p384Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { |
| p, ok := p384PointFromAffine(x1, y1) |
| if !ok { |
| return p384RandomPoint() |
| } |
| return p384PointToAffine(p.Double(p)) |
| } |
| |
| func (p384Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { |
| p, ok := p384PointFromAffine(Bx, By) |
| if !ok { |
| return p384RandomPoint() |
| } |
| return p384PointToAffine(p.ScalarMult(p, scalar)) |
| } |
| |
| func (p384Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { |
| p := nistec.NewP384Generator() |
| return p384PointToAffine(p.ScalarMult(p, scalar)) |
| } |