| // Copyright (c) 2017 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package field |
| |
| import "math/bits" |
| |
| // uint128 holds a 128-bit number as two 64-bit limbs, for use with the |
| // bits.Mul64 and bits.Add64 intrinsics. |
| type uint128 struct { |
| lo, hi uint64 |
| } |
| |
| // mul64 returns a * b. |
| func mul64(a, b uint64) uint128 { |
| hi, lo := bits.Mul64(a, b) |
| return uint128{lo, hi} |
| } |
| |
| // addMul64 returns v + a * b. |
| func addMul64(v uint128, a, b uint64) uint128 { |
| hi, lo := bits.Mul64(a, b) |
| lo, c := bits.Add64(lo, v.lo, 0) |
| hi, _ = bits.Add64(hi, v.hi, c) |
| return uint128{lo, hi} |
| } |
| |
| // shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits. |
| func shiftRightBy51(a uint128) uint64 { |
| return (a.hi << (64 - 51)) | (a.lo >> 51) |
| } |
| |
| func feMulGeneric(v, a, b *Element) { |
| a0 := a.l0 |
| a1 := a.l1 |
| a2 := a.l2 |
| a3 := a.l3 |
| a4 := a.l4 |
| |
| b0 := b.l0 |
| b1 := b.l1 |
| b2 := b.l2 |
| b3 := b.l3 |
| b4 := b.l4 |
| |
| // Limb multiplication works like pen-and-paper columnar multiplication, but |
| // with 51-bit limbs instead of digits. |
| // |
| // a4 a3 a2 a1 a0 x |
| // b4 b3 b2 b1 b0 = |
| // ------------------------ |
| // a4b0 a3b0 a2b0 a1b0 a0b0 + |
| // a4b1 a3b1 a2b1 a1b1 a0b1 + |
| // a4b2 a3b2 a2b2 a1b2 a0b2 + |
| // a4b3 a3b3 a2b3 a1b3 a0b3 + |
| // a4b4 a3b4 a2b4 a1b4 a0b4 = |
| // ---------------------------------------------- |
| // r8 r7 r6 r5 r4 r3 r2 r1 r0 |
| // |
| // We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to |
| // reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5, |
| // r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc. |
| // |
| // Reduction can be carried out simultaneously to multiplication. For |
| // example, we do not compute r5: whenever the result of a multiplication |
| // belongs to r5, like a1b4, we multiply it by 19 and add the result to r0. |
| // |
| // a4b0 a3b0 a2b0 a1b0 a0b0 + |
| // a3b1 a2b1 a1b1 a0b1 19×a4b1 + |
| // a2b2 a1b2 a0b2 19×a4b2 19×a3b2 + |
| // a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 + |
| // a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 = |
| // -------------------------------------- |
| // r4 r3 r2 r1 r0 |
| // |
| // Finally we add up the columns into wide, overlapping limbs. |
| |
| a1_19 := a1 * 19 |
| a2_19 := a2 * 19 |
| a3_19 := a3 * 19 |
| a4_19 := a4 * 19 |
| |
| // r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1) |
| r0 := mul64(a0, b0) |
| r0 = addMul64(r0, a1_19, b4) |
| r0 = addMul64(r0, a2_19, b3) |
| r0 = addMul64(r0, a3_19, b2) |
| r0 = addMul64(r0, a4_19, b1) |
| |
| // r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2) |
| r1 := mul64(a0, b1) |
| r1 = addMul64(r1, a1, b0) |
| r1 = addMul64(r1, a2_19, b4) |
| r1 = addMul64(r1, a3_19, b3) |
| r1 = addMul64(r1, a4_19, b2) |
| |
| // r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3) |
| r2 := mul64(a0, b2) |
| r2 = addMul64(r2, a1, b1) |
| r2 = addMul64(r2, a2, b0) |
| r2 = addMul64(r2, a3_19, b4) |
| r2 = addMul64(r2, a4_19, b3) |
| |
| // r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4 |
| r3 := mul64(a0, b3) |
| r3 = addMul64(r3, a1, b2) |
| r3 = addMul64(r3, a2, b1) |
| r3 = addMul64(r3, a3, b0) |
| r3 = addMul64(r3, a4_19, b4) |
| |
| // r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0 |
| r4 := mul64(a0, b4) |
| r4 = addMul64(r4, a1, b3) |
| r4 = addMul64(r4, a2, b2) |
| r4 = addMul64(r4, a3, b1) |
| r4 = addMul64(r4, a4, b0) |
| |
| // After the multiplication, we need to reduce (carry) the five coefficients |
| // to obtain a result with limbs that are at most slightly larger than 2⁵¹, |
| // to respect the Element invariant. |
| // |
| // Overall, the reduction works the same as carryPropagate, except with |
| // wider inputs: we take the carry for each coefficient by shifting it right |
| // by 51, and add it to the limb above it. The top carry is multiplied by 19 |
| // according to the reduction identity and added to the lowest limb. |
| // |
| // The largest coefficient (r0) will be at most 111 bits, which guarantees |
| // that all carries are at most 111 - 51 = 60 bits, which fits in a uint64. |
| // |
| // r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1) |
| // r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²) |
| // r0 < (1 + 19 × 4) × 2⁵² × 2⁵² |
| // r0 < 2⁷ × 2⁵² × 2⁵² |
| // r0 < 2¹¹¹ |
| // |
| // Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most |
| // 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and |
| // allows us to easily apply the reduction identity. |
| // |
| // r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0 |
| // r4 < 5 × 2⁵² × 2⁵² |
| // r4 < 2¹⁰⁷ |
| // |
| |
| c0 := shiftRightBy51(r0) |
| c1 := shiftRightBy51(r1) |
| c2 := shiftRightBy51(r2) |
| c3 := shiftRightBy51(r3) |
| c4 := shiftRightBy51(r4) |
| |
| rr0 := r0.lo&maskLow51Bits + c4*19 |
| rr1 := r1.lo&maskLow51Bits + c0 |
| rr2 := r2.lo&maskLow51Bits + c1 |
| rr3 := r3.lo&maskLow51Bits + c2 |
| rr4 := r4.lo&maskLow51Bits + c3 |
| |
| // Now all coefficients fit into 64-bit registers but are still too large to |
| // be passed around as a Element. We therefore do one last carry chain, |
| // where the carries will be small enough to fit in the wiggle room above 2⁵¹. |
| *v = Element{rr0, rr1, rr2, rr3, rr4} |
| v.carryPropagate() |
| } |
| |
| func feSquareGeneric(v, a *Element) { |
| l0 := a.l0 |
| l1 := a.l1 |
| l2 := a.l2 |
| l3 := a.l3 |
| l4 := a.l4 |
| |
| // Squaring works precisely like multiplication above, but thanks to its |
| // symmetry we get to group a few terms together. |
| // |
| // l4 l3 l2 l1 l0 x |
| // l4 l3 l2 l1 l0 = |
| // ------------------------ |
| // l4l0 l3l0 l2l0 l1l0 l0l0 + |
| // l4l1 l3l1 l2l1 l1l1 l0l1 + |
| // l4l2 l3l2 l2l2 l1l2 l0l2 + |
| // l4l3 l3l3 l2l3 l1l3 l0l3 + |
| // l4l4 l3l4 l2l4 l1l4 l0l4 = |
| // ---------------------------------------------- |
| // r8 r7 r6 r5 r4 r3 r2 r1 r0 |
| // |
| // l4l0 l3l0 l2l0 l1l0 l0l0 + |
| // l3l1 l2l1 l1l1 l0l1 19×l4l1 + |
| // l2l2 l1l2 l0l2 19×l4l2 19×l3l2 + |
| // l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 + |
| // l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 = |
| // -------------------------------------- |
| // r4 r3 r2 r1 r0 |
| // |
| // With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with |
| // only three Mul64 and four Add64, instead of five and eight. |
| |
| l0_2 := l0 * 2 |
| l1_2 := l1 * 2 |
| |
| l1_38 := l1 * 38 |
| l2_38 := l2 * 38 |
| l3_38 := l3 * 38 |
| |
| l3_19 := l3 * 19 |
| l4_19 := l4 * 19 |
| |
| // r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3) |
| r0 := mul64(l0, l0) |
| r0 = addMul64(r0, l1_38, l4) |
| r0 = addMul64(r0, l2_38, l3) |
| |
| // r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3 |
| r1 := mul64(l0_2, l1) |
| r1 = addMul64(r1, l2_38, l4) |
| r1 = addMul64(r1, l3_19, l3) |
| |
| // r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4 |
| r2 := mul64(l0_2, l2) |
| r2 = addMul64(r2, l1, l1) |
| r2 = addMul64(r2, l3_38, l4) |
| |
| // r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4 |
| r3 := mul64(l0_2, l3) |
| r3 = addMul64(r3, l1_2, l2) |
| r3 = addMul64(r3, l4_19, l4) |
| |
| // r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2 |
| r4 := mul64(l0_2, l4) |
| r4 = addMul64(r4, l1_2, l3) |
| r4 = addMul64(r4, l2, l2) |
| |
| c0 := shiftRightBy51(r0) |
| c1 := shiftRightBy51(r1) |
| c2 := shiftRightBy51(r2) |
| c3 := shiftRightBy51(r3) |
| c4 := shiftRightBy51(r4) |
| |
| rr0 := r0.lo&maskLow51Bits + c4*19 |
| rr1 := r1.lo&maskLow51Bits + c0 |
| rr2 := r2.lo&maskLow51Bits + c1 |
| rr3 := r3.lo&maskLow51Bits + c2 |
| rr4 := r4.lo&maskLow51Bits + c3 |
| |
| *v = Element{rr0, rr1, rr2, rr3, rr4} |
| v.carryPropagate() |
| } |
| |
| // carryPropagate brings the limbs below 52 bits by applying the reduction |
| // identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry. |
| func (v *Element) carryPropagateGeneric() *Element { |
| c0 := v.l0 >> 51 |
| c1 := v.l1 >> 51 |
| c2 := v.l2 >> 51 |
| c3 := v.l3 >> 51 |
| c4 := v.l4 >> 51 |
| |
| // c4 is at most 64 - 51 = 13 bits, so c4*19 is at most 18 bits, and |
| // the final l0 will be at most 52 bits. Similarly for the rest. |
| v.l0 = v.l0&maskLow51Bits + c4*19 |
| v.l1 = v.l1&maskLow51Bits + c0 |
| v.l2 = v.l2&maskLow51Bits + c1 |
| v.l3 = v.l3&maskLow51Bits + c2 |
| v.l4 = v.l4&maskLow51Bits + c3 |
| |
| return v |
| } |