| // Copyright 2017 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package rsa |
| |
| import ( |
| "crypto/internal/boring" |
| "math/big" |
| "sync/atomic" |
| "unsafe" |
| ) |
| |
| // Cached conversions from Go PublicKey/PrivateKey to BoringCrypto. |
| // |
| // A new 'boring atomic.Value' field in both PublicKey and PrivateKey |
| // serves as a cache for the most recent conversion. The cache is an |
| // atomic.Value because code might reasonably set up a key and then |
| // (thinking it immutable) use it from multiple goroutines simultaneously. |
| // The first operation initializes the cache; if there are multiple simultaneous |
| // first operations, they will do redundant work but not step on each other. |
| // |
| // We could just assume that once used in a sign/verify/encrypt/decrypt operation, |
| // a particular key is never again modified, but that has not been a |
| // stated assumption before. Just in case there is any existing code that |
| // does modify the key between operations, we save the original values |
| // alongside the cached BoringCrypto key and check that the real key |
| // still matches before using the cached key. The theory is that the real |
| // operations are significantly more expensive than the comparison. |
| |
| type boringPub struct { |
| key *boring.PublicKeyRSA |
| orig PublicKey |
| } |
| |
| func boringPublicKey(pub *PublicKey) (*boring.PublicKeyRSA, error) { |
| b := (*boringPub)(atomic.LoadPointer(&pub.boring)) |
| if b != nil && publicKeyEqual(&b.orig, pub) { |
| return b.key, nil |
| } |
| |
| b = new(boringPub) |
| b.orig = copyPublicKey(pub) |
| key, err := boring.NewPublicKeyRSA(b.orig.N, big.NewInt(int64(b.orig.E))) |
| if err != nil { |
| return nil, err |
| } |
| b.key = key |
| atomic.StorePointer(&pub.boring, unsafe.Pointer(b)) |
| return key, nil |
| } |
| |
| type boringPriv struct { |
| key *boring.PrivateKeyRSA |
| orig PrivateKey |
| } |
| |
| func boringPrivateKey(priv *PrivateKey) (*boring.PrivateKeyRSA, error) { |
| b := (*boringPriv)(atomic.LoadPointer(&priv.boring)) |
| if b != nil && privateKeyEqual(&b.orig, priv) { |
| return b.key, nil |
| } |
| |
| b = new(boringPriv) |
| b.orig = copyPrivateKey(priv) |
| |
| var N, E, D, P, Q, Dp, Dq, Qinv *big.Int |
| N = b.orig.N |
| E = big.NewInt(int64(b.orig.E)) |
| D = b.orig.D |
| if len(b.orig.Primes) == 2 { |
| P = b.orig.Primes[0] |
| Q = b.orig.Primes[1] |
| Dp = b.orig.Precomputed.Dp |
| Dq = b.orig.Precomputed.Dq |
| Qinv = b.orig.Precomputed.Qinv |
| } |
| key, err := boring.NewPrivateKeyRSA(N, E, D, P, Q, Dp, Dq, Qinv) |
| if err != nil { |
| return nil, err |
| } |
| b.key = key |
| atomic.StorePointer(&priv.boring, unsafe.Pointer(b)) |
| return key, nil |
| } |
| |
| func publicKeyEqual(k1, k2 *PublicKey) bool { |
| return k1.N != nil && |
| k1.N.Cmp(k2.N) == 0 && |
| k1.E == k2.E |
| } |
| |
| func copyPublicKey(k *PublicKey) PublicKey { |
| return PublicKey{ |
| N: new(big.Int).Set(k.N), |
| E: k.E, |
| } |
| } |
| |
| func privateKeyEqual(k1, k2 *PrivateKey) bool { |
| return publicKeyEqual(&k1.PublicKey, &k2.PublicKey) && |
| k1.D.Cmp(k2.D) == 0 |
| } |
| |
| func copyPrivateKey(k *PrivateKey) PrivateKey { |
| dst := PrivateKey{ |
| PublicKey: copyPublicKey(&k.PublicKey), |
| D: new(big.Int).Set(k.D), |
| } |
| dst.Primes = make([]*big.Int, len(k.Primes)) |
| for i, p := range k.Primes { |
| dst.Primes[i] = new(big.Int).Set(p) |
| } |
| if x := k.Precomputed.Dp; x != nil { |
| dst.Precomputed.Dp = new(big.Int).Set(x) |
| } |
| if x := k.Precomputed.Dq; x != nil { |
| dst.Precomputed.Dq = new(big.Int).Set(x) |
| } |
| if x := k.Precomputed.Qinv; x != nil { |
| dst.Precomputed.Qinv = new(big.Int).Set(x) |
| } |
| return dst |
| } |