| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "bytes" |
| "encoding/binary" |
| "fmt" |
| "html" |
| "os" |
| "sort" |
| |
| "cmd/compile/internal/ssa" |
| "cmd/internal/obj" |
| "cmd/internal/sys" |
| ) |
| |
| var ssaConfig *ssa.Config |
| var ssaExp ssaExport |
| |
| func initssa() *ssa.Config { |
| if ssaConfig == nil { |
| ssaConfig = ssa.NewConfig(Thearch.LinkArch.Name, &ssaExp, Ctxt, Debug['N'] == 0) |
| if Thearch.LinkArch.Name == "386" { |
| ssaConfig.Set387(Thearch.Use387) |
| } |
| } |
| ssaConfig.HTML = nil |
| return ssaConfig |
| } |
| |
| // buildssa builds an SSA function. |
| func buildssa(fn *Node) *ssa.Func { |
| name := fn.Func.Nname.Sym.Name |
| printssa := name == os.Getenv("GOSSAFUNC") |
| if printssa { |
| fmt.Println("generating SSA for", name) |
| dumplist("buildssa-enter", fn.Func.Enter) |
| dumplist("buildssa-body", fn.Nbody) |
| dumplist("buildssa-exit", fn.Func.Exit) |
| } |
| |
| var s state |
| s.pushLine(fn.Lineno) |
| defer s.popLine() |
| |
| if fn.Func.Pragma&CgoUnsafeArgs != 0 { |
| s.cgoUnsafeArgs = true |
| } |
| if fn.Func.Pragma&Nowritebarrier != 0 { |
| s.noWB = true |
| } |
| defer func() { |
| if s.WBLineno != 0 { |
| fn.Func.WBLineno = s.WBLineno |
| } |
| }() |
| // TODO(khr): build config just once at the start of the compiler binary |
| |
| ssaExp.log = printssa |
| |
| s.config = initssa() |
| s.f = s.config.NewFunc() |
| s.f.Name = name |
| if fn.Func.Pragma&Nosplit != 0 { |
| s.f.NoSplit = true |
| } |
| s.exitCode = fn.Func.Exit |
| s.panics = map[funcLine]*ssa.Block{} |
| s.config.DebugTest = s.config.DebugHashMatch("GOSSAHASH", name) |
| |
| if name == os.Getenv("GOSSAFUNC") { |
| // TODO: tempfile? it is handy to have the location |
| // of this file be stable, so you can just reload in the browser. |
| s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name) |
| // TODO: generate and print a mapping from nodes to values and blocks |
| } |
| |
| // Allocate starting block |
| s.f.Entry = s.f.NewBlock(ssa.BlockPlain) |
| |
| // Allocate starting values |
| s.labels = map[string]*ssaLabel{} |
| s.labeledNodes = map[*Node]*ssaLabel{} |
| s.fwdVars = map[*Node]*ssa.Value{} |
| s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem) |
| s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead |
| s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR]) |
| |
| s.startBlock(s.f.Entry) |
| s.vars[&memVar] = s.startmem |
| |
| s.varsyms = map[*Node]interface{}{} |
| |
| // Generate addresses of local declarations |
| s.decladdrs = map[*Node]*ssa.Value{} |
| for _, n := range fn.Func.Dcl { |
| switch n.Class { |
| case PPARAM, PPARAMOUT: |
| aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n}) |
| s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, ptrto(n.Type), aux, s.sp) |
| if n.Class == PPARAMOUT && s.canSSA(n) { |
| // Save ssa-able PPARAMOUT variables so we can |
| // store them back to the stack at the end of |
| // the function. |
| s.returns = append(s.returns, n) |
| } |
| case PAUTO: |
| // processed at each use, to prevent Addr coming |
| // before the decl. |
| case PAUTOHEAP: |
| // moved to heap - already handled by frontend |
| case PFUNC: |
| // local function - already handled by frontend |
| default: |
| s.Fatalf("local variable with class %s unimplemented", classnames[n.Class]) |
| } |
| } |
| |
| // Populate arguments. |
| for _, n := range fn.Func.Dcl { |
| if n.Class != PPARAM { |
| continue |
| } |
| var v *ssa.Value |
| if s.canSSA(n) { |
| v = s.newValue0A(ssa.OpArg, n.Type, n) |
| } else { |
| // Not SSAable. Load it. |
| v = s.newValue2(ssa.OpLoad, n.Type, s.decladdrs[n], s.startmem) |
| } |
| s.vars[n] = v |
| } |
| |
| // Convert the AST-based IR to the SSA-based IR |
| s.stmtList(fn.Func.Enter) |
| s.stmtList(fn.Nbody) |
| |
| // fallthrough to exit |
| if s.curBlock != nil { |
| s.pushLine(fn.Func.Endlineno) |
| s.exit() |
| s.popLine() |
| } |
| |
| // Check that we used all labels |
| for name, lab := range s.labels { |
| if !lab.used() && !lab.reported && !lab.defNode.Used { |
| yyerrorl(lab.defNode.Lineno, "label %v defined and not used", name) |
| lab.reported = true |
| } |
| if lab.used() && !lab.defined() && !lab.reported { |
| yyerrorl(lab.useNode.Lineno, "label %v not defined", name) |
| lab.reported = true |
| } |
| } |
| |
| // Check any forward gotos. Non-forward gotos have already been checked. |
| for _, n := range s.fwdGotos { |
| lab := s.labels[n.Left.Sym.Name] |
| // If the label is undefined, we have already have printed an error. |
| if lab.defined() { |
| s.checkgoto(n, lab.defNode) |
| } |
| } |
| |
| if nerrors > 0 { |
| s.f.Free() |
| return nil |
| } |
| |
| s.insertPhis() |
| |
| // Don't carry reference this around longer than necessary |
| s.exitCode = Nodes{} |
| |
| // Main call to ssa package to compile function |
| ssa.Compile(s.f) |
| |
| return s.f |
| } |
| |
| type state struct { |
| // configuration (arch) information |
| config *ssa.Config |
| |
| // function we're building |
| f *ssa.Func |
| |
| // labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f |
| labels map[string]*ssaLabel |
| labeledNodes map[*Node]*ssaLabel |
| |
| // gotos that jump forward; required for deferred checkgoto calls |
| fwdGotos []*Node |
| // Code that must precede any return |
| // (e.g., copying value of heap-escaped paramout back to true paramout) |
| exitCode Nodes |
| |
| // unlabeled break and continue statement tracking |
| breakTo *ssa.Block // current target for plain break statement |
| continueTo *ssa.Block // current target for plain continue statement |
| |
| // current location where we're interpreting the AST |
| curBlock *ssa.Block |
| |
| // variable assignments in the current block (map from variable symbol to ssa value) |
| // *Node is the unique identifier (an ONAME Node) for the variable. |
| // TODO: keep a single varnum map, then make all of these maps slices instead? |
| vars map[*Node]*ssa.Value |
| |
| // fwdVars are variables that are used before they are defined in the current block. |
| // This map exists just to coalesce multiple references into a single FwdRef op. |
| // *Node is the unique identifier (an ONAME Node) for the variable. |
| fwdVars map[*Node]*ssa.Value |
| |
| // all defined variables at the end of each block. Indexed by block ID. |
| defvars []map[*Node]*ssa.Value |
| |
| // addresses of PPARAM and PPARAMOUT variables. |
| decladdrs map[*Node]*ssa.Value |
| |
| // symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused. |
| varsyms map[*Node]interface{} |
| |
| // starting values. Memory, stack pointer, and globals pointer |
| startmem *ssa.Value |
| sp *ssa.Value |
| sb *ssa.Value |
| |
| // line number stack. The current line number is top of stack |
| line []int32 |
| |
| // list of panic calls by function name and line number. |
| // Used to deduplicate panic calls. |
| panics map[funcLine]*ssa.Block |
| |
| // list of PPARAMOUT (return) variables. |
| returns []*Node |
| |
| // A dummy value used during phi construction. |
| placeholder *ssa.Value |
| |
| cgoUnsafeArgs bool |
| noWB bool |
| WBLineno int32 // line number of first write barrier. 0=no write barriers |
| } |
| |
| type funcLine struct { |
| f *Node |
| line int32 |
| } |
| |
| type ssaLabel struct { |
| target *ssa.Block // block identified by this label |
| breakTarget *ssa.Block // block to break to in control flow node identified by this label |
| continueTarget *ssa.Block // block to continue to in control flow node identified by this label |
| defNode *Node // label definition Node (OLABEL) |
| // Label use Node (OGOTO, OBREAK, OCONTINUE). |
| // Used only for error detection and reporting. |
| // There might be multiple uses, but we only need to track one. |
| useNode *Node |
| reported bool // reported indicates whether an error has already been reported for this label |
| } |
| |
| // defined reports whether the label has a definition (OLABEL node). |
| func (l *ssaLabel) defined() bool { return l.defNode != nil } |
| |
| // used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node). |
| func (l *ssaLabel) used() bool { return l.useNode != nil } |
| |
| // label returns the label associated with sym, creating it if necessary. |
| func (s *state) label(sym *Sym) *ssaLabel { |
| lab := s.labels[sym.Name] |
| if lab == nil { |
| lab = new(ssaLabel) |
| s.labels[sym.Name] = lab |
| } |
| return lab |
| } |
| |
| func (s *state) Logf(msg string, args ...interface{}) { s.config.Logf(msg, args...) } |
| func (s *state) Log() bool { return s.config.Log() } |
| func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(s.peekLine(), msg, args...) } |
| func (s *state) Warnl(line int32, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) } |
| func (s *state) Debug_checknil() bool { return s.config.Debug_checknil() } |
| |
| var ( |
| // dummy node for the memory variable |
| memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}} |
| |
| // dummy nodes for temporary variables |
| ptrVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}} |
| lenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "len"}} |
| newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "newlen"}} |
| capVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}} |
| typVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}} |
| okVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}} |
| ) |
| |
| // startBlock sets the current block we're generating code in to b. |
| func (s *state) startBlock(b *ssa.Block) { |
| if s.curBlock != nil { |
| s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) |
| } |
| s.curBlock = b |
| s.vars = map[*Node]*ssa.Value{} |
| for n := range s.fwdVars { |
| delete(s.fwdVars, n) |
| } |
| } |
| |
| // endBlock marks the end of generating code for the current block. |
| // Returns the (former) current block. Returns nil if there is no current |
| // block, i.e. if no code flows to the current execution point. |
| func (s *state) endBlock() *ssa.Block { |
| b := s.curBlock |
| if b == nil { |
| return nil |
| } |
| for len(s.defvars) <= int(b.ID) { |
| s.defvars = append(s.defvars, nil) |
| } |
| s.defvars[b.ID] = s.vars |
| s.curBlock = nil |
| s.vars = nil |
| b.Line = s.peekLine() |
| return b |
| } |
| |
| // pushLine pushes a line number on the line number stack. |
| func (s *state) pushLine(line int32) { |
| if line == 0 { |
| // the frontend may emit node with line number missing, |
| // use the parent line number in this case. |
| line = s.peekLine() |
| if Debug['K'] != 0 { |
| Warn("buildssa: line 0") |
| } |
| } |
| s.line = append(s.line, line) |
| } |
| |
| // popLine pops the top of the line number stack. |
| func (s *state) popLine() { |
| s.line = s.line[:len(s.line)-1] |
| } |
| |
| // peekLine peek the top of the line number stack. |
| func (s *state) peekLine() int32 { |
| return s.line[len(s.line)-1] |
| } |
| |
| func (s *state) Error(msg string, args ...interface{}) { |
| yyerrorl(s.peekLine(), msg, args...) |
| } |
| |
| // newValue0 adds a new value with no arguments to the current block. |
| func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value { |
| return s.curBlock.NewValue0(s.peekLine(), op, t) |
| } |
| |
| // newValue0A adds a new value with no arguments and an aux value to the current block. |
| func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { |
| return s.curBlock.NewValue0A(s.peekLine(), op, t, aux) |
| } |
| |
| // newValue0I adds a new value with no arguments and an auxint value to the current block. |
| func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value { |
| return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint) |
| } |
| |
| // newValue1 adds a new value with one argument to the current block. |
| func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1(s.peekLine(), op, t, arg) |
| } |
| |
| // newValue1A adds a new value with one argument and an aux value to the current block. |
| func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg) |
| } |
| |
| // newValue1I adds a new value with one argument and an auxint value to the current block. |
| func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg) |
| } |
| |
| // newValue2 adds a new value with two arguments to the current block. |
| func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1) |
| } |
| |
| // newValue2I adds a new value with two arguments and an auxint value to the current block. |
| func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1) |
| } |
| |
| // newValue3 adds a new value with three arguments to the current block. |
| func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2) |
| } |
| |
| // newValue3I adds a new value with three arguments and an auxint value to the current block. |
| func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2) |
| } |
| |
| // newValue4 adds a new value with four arguments to the current block. |
| func (s *state) newValue4(op ssa.Op, t ssa.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue4(s.peekLine(), op, t, arg0, arg1, arg2, arg3) |
| } |
| |
| // entryNewValue0 adds a new value with no arguments to the entry block. |
| func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value { |
| return s.f.Entry.NewValue0(s.peekLine(), op, t) |
| } |
| |
| // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. |
| func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { |
| return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux) |
| } |
| |
| // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block. |
| func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value { |
| return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint) |
| } |
| |
| // entryNewValue1 adds a new value with one argument to the entry block. |
| func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue1(s.peekLine(), op, t, arg) |
| } |
| |
| // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. |
| func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg) |
| } |
| |
| // entryNewValue1A adds a new value with one argument and an aux value to the entry block. |
| func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg) |
| } |
| |
| // entryNewValue2 adds a new value with two arguments to the entry block. |
| func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1) |
| } |
| |
| // const* routines add a new const value to the entry block. |
| func (s *state) constSlice(t ssa.Type) *ssa.Value { return s.f.ConstSlice(s.peekLine(), t) } |
| func (s *state) constInterface(t ssa.Type) *ssa.Value { return s.f.ConstInterface(s.peekLine(), t) } |
| func (s *state) constNil(t ssa.Type) *ssa.Value { return s.f.ConstNil(s.peekLine(), t) } |
| func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekLine(), t) } |
| func (s *state) constBool(c bool) *ssa.Value { |
| return s.f.ConstBool(s.peekLine(), Types[TBOOL], c) |
| } |
| func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value { |
| return s.f.ConstInt8(s.peekLine(), t, c) |
| } |
| func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value { |
| return s.f.ConstInt16(s.peekLine(), t, c) |
| } |
| func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value { |
| return s.f.ConstInt32(s.peekLine(), t, c) |
| } |
| func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value { |
| return s.f.ConstInt64(s.peekLine(), t, c) |
| } |
| func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value { |
| return s.f.ConstFloat32(s.peekLine(), t, c) |
| } |
| func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value { |
| return s.f.ConstFloat64(s.peekLine(), t, c) |
| } |
| func (s *state) constInt(t ssa.Type, c int64) *ssa.Value { |
| if s.config.IntSize == 8 { |
| return s.constInt64(t, c) |
| } |
| if int64(int32(c)) != c { |
| s.Fatalf("integer constant too big %d", c) |
| } |
| return s.constInt32(t, int32(c)) |
| } |
| |
| // stmtList converts the statement list n to SSA and adds it to s. |
| func (s *state) stmtList(l Nodes) { |
| for _, n := range l.Slice() { |
| s.stmt(n) |
| } |
| } |
| |
| // stmt converts the statement n to SSA and adds it to s. |
| func (s *state) stmt(n *Node) { |
| s.pushLine(n.Lineno) |
| defer s.popLine() |
| |
| // If s.curBlock is nil, then we're about to generate dead code. |
| // We can't just short-circuit here, though, |
| // because we check labels and gotos as part of SSA generation. |
| // Provide a block for the dead code so that we don't have |
| // to add special cases everywhere else. |
| if s.curBlock == nil { |
| dead := s.f.NewBlock(ssa.BlockPlain) |
| s.startBlock(dead) |
| } |
| |
| s.stmtList(n.Ninit) |
| switch n.Op { |
| |
| case OBLOCK: |
| s.stmtList(n.List) |
| |
| // No-ops |
| case OEMPTY, ODCLCONST, ODCLTYPE, OFALL: |
| |
| // Expression statements |
| case OCALLFUNC: |
| if isIntrinsicCall(n) { |
| s.intrinsicCall(n) |
| return |
| } |
| fallthrough |
| |
| case OCALLMETH, OCALLINTER: |
| s.call(n, callNormal) |
| if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC { |
| if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" || |
| n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "selectgo" || fn == "block") { |
| m := s.mem() |
| b := s.endBlock() |
| b.Kind = ssa.BlockExit |
| b.SetControl(m) |
| // TODO: never rewrite OPANIC to OCALLFUNC in the |
| // first place. Need to wait until all backends |
| // go through SSA. |
| } |
| } |
| case ODEFER: |
| s.call(n.Left, callDefer) |
| case OPROC: |
| s.call(n.Left, callGo) |
| |
| case OAS2DOTTYPE: |
| res, resok := s.dottype(n.Rlist.First(), true) |
| deref := false |
| if !canSSAType(n.Rlist.First().Type) { |
| if res.Op != ssa.OpLoad { |
| s.Fatalf("dottype of non-load") |
| } |
| mem := s.mem() |
| if mem.Op == ssa.OpVarKill { |
| mem = mem.Args[0] |
| } |
| if res.Args[1] != mem { |
| s.Fatalf("memory no longer live from 2-result dottype load") |
| } |
| deref = true |
| res = res.Args[0] |
| } |
| s.assign(n.List.First(), res, needwritebarrier(n.List.First(), n.Rlist.First()), deref, n.Lineno, 0, false) |
| s.assign(n.List.Second(), resok, false, false, n.Lineno, 0, false) |
| return |
| |
| case OAS2FUNC: |
| // We come here only when it is an intrinsic call returning two values. |
| if !isIntrinsicCall(n.Rlist.First()) { |
| s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First()) |
| } |
| v := s.intrinsicCall(n.Rlist.First()) |
| v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v) |
| v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v) |
| // Make a fake node to mimic loading return value, ONLY for write barrier test. |
| // This is future-proofing against non-scalar 2-result intrinsics. |
| // Currently we only have scalar ones, which result in no write barrier. |
| fakeret := &Node{Op: OINDREGSP} |
| s.assign(n.List.First(), v1, needwritebarrier(n.List.First(), fakeret), false, n.Lineno, 0, false) |
| s.assign(n.List.Second(), v2, needwritebarrier(n.List.Second(), fakeret), false, n.Lineno, 0, false) |
| return |
| |
| case ODCL: |
| if n.Left.Class == PAUTOHEAP { |
| Fatalf("DCL %v", n) |
| } |
| |
| case OLABEL: |
| sym := n.Left.Sym |
| |
| if isblanksym(sym) { |
| // Empty identifier is valid but useless. |
| // See issues 11589, 11593. |
| return |
| } |
| |
| lab := s.label(sym) |
| |
| // Associate label with its control flow node, if any |
| if ctl := n.Name.Defn; ctl != nil { |
| switch ctl.Op { |
| case OFOR, OSWITCH, OSELECT: |
| s.labeledNodes[ctl] = lab |
| } |
| } |
| |
| if !lab.defined() { |
| lab.defNode = n |
| } else { |
| s.Error("label %v already defined at %v", sym, linestr(lab.defNode.Lineno)) |
| lab.reported = true |
| } |
| // The label might already have a target block via a goto. |
| if lab.target == nil { |
| lab.target = s.f.NewBlock(ssa.BlockPlain) |
| } |
| |
| // go to that label (we pretend "label:" is preceded by "goto label") |
| b := s.endBlock() |
| b.AddEdgeTo(lab.target) |
| s.startBlock(lab.target) |
| |
| case OGOTO: |
| sym := n.Left.Sym |
| |
| lab := s.label(sym) |
| if lab.target == nil { |
| lab.target = s.f.NewBlock(ssa.BlockPlain) |
| } |
| if !lab.used() { |
| lab.useNode = n |
| } |
| |
| if lab.defined() { |
| s.checkgoto(n, lab.defNode) |
| } else { |
| s.fwdGotos = append(s.fwdGotos, n) |
| } |
| |
| b := s.endBlock() |
| b.AddEdgeTo(lab.target) |
| |
| case OAS, OASWB: |
| // Check whether we can generate static data rather than code. |
| // If so, ignore n and defer data generation until codegen. |
| // Failure to do this causes writes to readonly symbols. |
| if gen_as_init(n, true) { |
| var data []*Node |
| if s.f.StaticData != nil { |
| data = s.f.StaticData.([]*Node) |
| } |
| s.f.StaticData = append(data, n) |
| return |
| } |
| |
| if n.Left == n.Right && n.Left.Op == ONAME { |
| // An x=x assignment. No point in doing anything |
| // here. In addition, skipping this assignment |
| // prevents generating: |
| // VARDEF x |
| // COPY x -> x |
| // which is bad because x is incorrectly considered |
| // dead before the vardef. See issue #14904. |
| return |
| } |
| |
| var t *Type |
| if n.Right != nil { |
| t = n.Right.Type |
| } else { |
| t = n.Left.Type |
| } |
| |
| // Evaluate RHS. |
| rhs := n.Right |
| if rhs != nil { |
| switch rhs.Op { |
| case OSTRUCTLIT, OARRAYLIT, OSLICELIT: |
| // All literals with nonzero fields have already been |
| // rewritten during walk. Any that remain are just T{} |
| // or equivalents. Use the zero value. |
| if !iszero(rhs) { |
| Fatalf("literal with nonzero value in SSA: %v", rhs) |
| } |
| rhs = nil |
| case OAPPEND: |
| // If we're writing the result of an append back to the same slice, |
| // handle it specially to avoid write barriers on the fast (non-growth) path. |
| // If the slice can be SSA'd, it'll be on the stack, |
| // so there will be no write barriers, |
| // so there's no need to attempt to prevent them. |
| if samesafeexpr(n.Left, rhs.List.First()) { |
| if !s.canSSA(n.Left) { |
| if Debug_append > 0 { |
| Warnl(n.Lineno, "append: len-only update") |
| } |
| s.append(rhs, true) |
| return |
| } else { |
| if Debug_append > 0 { // replicating old diagnostic message |
| Warnl(n.Lineno, "append: len-only update (in local slice)") |
| } |
| } |
| } |
| } |
| } |
| var r *ssa.Value |
| var isVolatile bool |
| needwb := n.Op == OASWB |
| deref := !canSSAType(t) |
| if deref { |
| if rhs == nil { |
| r = nil // Signal assign to use OpZero. |
| } else { |
| r, isVolatile = s.addr(rhs, false) |
| } |
| } else { |
| if rhs == nil { |
| r = s.zeroVal(t) |
| } else { |
| r = s.expr(rhs) |
| } |
| } |
| if rhs != nil && rhs.Op == OAPPEND && needwritebarrier(n.Left, rhs) { |
| // The frontend gets rid of the write barrier to enable the special OAPPEND |
| // handling above, but since this is not a special case, we need it. |
| // TODO: just add a ptr graying to the end of growslice? |
| // TODO: check whether we need to provide special handling and a write barrier |
| // for ODOTTYPE and ORECV also. |
| // They get similar wb-removal treatment in walk.go:OAS. |
| needwb = true |
| } |
| |
| var skip skipMask |
| if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) { |
| // We're assigning a slicing operation back to its source. |
| // Don't write back fields we aren't changing. See issue #14855. |
| i, j, k := rhs.SliceBounds() |
| if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) { |
| // [0:...] is the same as [:...] |
| i = nil |
| } |
| // TODO: detect defaults for len/cap also. |
| // Currently doesn't really work because (*p)[:len(*p)] appears here as: |
| // tmp = len(*p) |
| // (*p)[:tmp] |
| //if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) { |
| // j = nil |
| //} |
| //if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) { |
| // k = nil |
| //} |
| if i == nil { |
| skip |= skipPtr |
| if j == nil { |
| skip |= skipLen |
| } |
| if k == nil { |
| skip |= skipCap |
| } |
| } |
| } |
| |
| s.assign(n.Left, r, needwb, deref, n.Lineno, skip, isVolatile) |
| |
| case OIF: |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| var bElse *ssa.Block |
| if n.Rlist.Len() != 0 { |
| bElse = s.f.NewBlock(ssa.BlockPlain) |
| s.condBranch(n.Left, bThen, bElse, n.Likely) |
| } else { |
| s.condBranch(n.Left, bThen, bEnd, n.Likely) |
| } |
| |
| s.startBlock(bThen) |
| s.stmtList(n.Nbody) |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bEnd) |
| } |
| |
| if n.Rlist.Len() != 0 { |
| s.startBlock(bElse) |
| s.stmtList(n.Rlist) |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bEnd) |
| } |
| } |
| s.startBlock(bEnd) |
| |
| case ORETURN: |
| s.stmtList(n.List) |
| s.exit() |
| case ORETJMP: |
| s.stmtList(n.List) |
| b := s.exit() |
| b.Kind = ssa.BlockRetJmp // override BlockRet |
| b.Aux = n.Left.Sym |
| |
| case OCONTINUE, OBREAK: |
| var op string |
| var to *ssa.Block |
| switch n.Op { |
| case OCONTINUE: |
| op = "continue" |
| to = s.continueTo |
| case OBREAK: |
| op = "break" |
| to = s.breakTo |
| } |
| if n.Left == nil { |
| // plain break/continue |
| if to == nil { |
| s.Error("%s is not in a loop", op) |
| return |
| } |
| // nothing to do; "to" is already the correct target |
| } else { |
| // labeled break/continue; look up the target |
| sym := n.Left.Sym |
| lab := s.label(sym) |
| if !lab.used() { |
| lab.useNode = n.Left |
| } |
| if !lab.defined() { |
| s.Error("%s label not defined: %v", op, sym) |
| lab.reported = true |
| return |
| } |
| switch n.Op { |
| case OCONTINUE: |
| to = lab.continueTarget |
| case OBREAK: |
| to = lab.breakTarget |
| } |
| if to == nil { |
| // Valid label but not usable with a break/continue here, e.g.: |
| // for { |
| // continue abc |
| // } |
| // abc: |
| // for {} |
| s.Error("invalid %s label %v", op, sym) |
| lab.reported = true |
| return |
| } |
| } |
| |
| b := s.endBlock() |
| b.AddEdgeTo(to) |
| |
| case OFOR: |
| // OFOR: for Ninit; Left; Right { Nbody } |
| bCond := s.f.NewBlock(ssa.BlockPlain) |
| bBody := s.f.NewBlock(ssa.BlockPlain) |
| bIncr := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| // first, jump to condition test |
| b := s.endBlock() |
| b.AddEdgeTo(bCond) |
| |
| // generate code to test condition |
| s.startBlock(bCond) |
| if n.Left != nil { |
| s.condBranch(n.Left, bBody, bEnd, 1) |
| } else { |
| b := s.endBlock() |
| b.Kind = ssa.BlockPlain |
| b.AddEdgeTo(bBody) |
| } |
| |
| // set up for continue/break in body |
| prevContinue := s.continueTo |
| prevBreak := s.breakTo |
| s.continueTo = bIncr |
| s.breakTo = bEnd |
| lab := s.labeledNodes[n] |
| if lab != nil { |
| // labeled for loop |
| lab.continueTarget = bIncr |
| lab.breakTarget = bEnd |
| } |
| |
| // generate body |
| s.startBlock(bBody) |
| s.stmtList(n.Nbody) |
| |
| // tear down continue/break |
| s.continueTo = prevContinue |
| s.breakTo = prevBreak |
| if lab != nil { |
| lab.continueTarget = nil |
| lab.breakTarget = nil |
| } |
| |
| // done with body, goto incr |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bIncr) |
| } |
| |
| // generate incr |
| s.startBlock(bIncr) |
| if n.Right != nil { |
| s.stmt(n.Right) |
| } |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bCond) |
| } |
| s.startBlock(bEnd) |
| |
| case OSWITCH, OSELECT: |
| // These have been mostly rewritten by the front end into their Nbody fields. |
| // Our main task is to correctly hook up any break statements. |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| prevBreak := s.breakTo |
| s.breakTo = bEnd |
| lab := s.labeledNodes[n] |
| if lab != nil { |
| // labeled |
| lab.breakTarget = bEnd |
| } |
| |
| // generate body code |
| s.stmtList(n.Nbody) |
| |
| s.breakTo = prevBreak |
| if lab != nil { |
| lab.breakTarget = nil |
| } |
| |
| // OSWITCH never falls through (s.curBlock == nil here). |
| // OSELECT does not fall through if we're calling selectgo. |
| // OSELECT does fall through if we're calling selectnb{send,recv}[2]. |
| // In those latter cases, go to the code after the select. |
| if b := s.endBlock(); b != nil { |
| b.AddEdgeTo(bEnd) |
| } |
| s.startBlock(bEnd) |
| |
| case OVARKILL: |
| // Insert a varkill op to record that a variable is no longer live. |
| // We only care about liveness info at call sites, so putting the |
| // varkill in the store chain is enough to keep it correctly ordered |
| // with respect to call ops. |
| if !s.canSSA(n.Left) { |
| s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem()) |
| } |
| |
| case OVARLIVE: |
| // Insert a varlive op to record that a variable is still live. |
| if !n.Left.Addrtaken { |
| s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left) |
| } |
| s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem()) |
| |
| case OCHECKNIL: |
| p := s.expr(n.Left) |
| s.nilCheck(p) |
| |
| case OSQRT: |
| s.expr(n.Left) |
| |
| default: |
| s.Fatalf("unhandled stmt %v", n.Op) |
| } |
| } |
| |
| // exit processes any code that needs to be generated just before returning. |
| // It returns a BlockRet block that ends the control flow. Its control value |
| // will be set to the final memory state. |
| func (s *state) exit() *ssa.Block { |
| if hasdefer { |
| s.rtcall(Deferreturn, true, nil) |
| } |
| |
| // Run exit code. Typically, this code copies heap-allocated PPARAMOUT |
| // variables back to the stack. |
| s.stmtList(s.exitCode) |
| |
| // Store SSAable PPARAMOUT variables back to stack locations. |
| for _, n := range s.returns { |
| addr := s.decladdrs[n] |
| val := s.variable(n, n.Type) |
| s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem()) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem()) |
| // TODO: if val is ever spilled, we'd like to use the |
| // PPARAMOUT slot for spilling it. That won't happen |
| // currently. |
| } |
| |
| // Do actual return. |
| m := s.mem() |
| b := s.endBlock() |
| b.Kind = ssa.BlockRet |
| b.SetControl(m) |
| return b |
| } |
| |
| type opAndType struct { |
| op Op |
| etype EType |
| } |
| |
| var opToSSA = map[opAndType]ssa.Op{ |
| opAndType{OADD, TINT8}: ssa.OpAdd8, |
| opAndType{OADD, TUINT8}: ssa.OpAdd8, |
| opAndType{OADD, TINT16}: ssa.OpAdd16, |
| opAndType{OADD, TUINT16}: ssa.OpAdd16, |
| opAndType{OADD, TINT32}: ssa.OpAdd32, |
| opAndType{OADD, TUINT32}: ssa.OpAdd32, |
| opAndType{OADD, TPTR32}: ssa.OpAdd32, |
| opAndType{OADD, TINT64}: ssa.OpAdd64, |
| opAndType{OADD, TUINT64}: ssa.OpAdd64, |
| opAndType{OADD, TPTR64}: ssa.OpAdd64, |
| opAndType{OADD, TFLOAT32}: ssa.OpAdd32F, |
| opAndType{OADD, TFLOAT64}: ssa.OpAdd64F, |
| |
| opAndType{OSUB, TINT8}: ssa.OpSub8, |
| opAndType{OSUB, TUINT8}: ssa.OpSub8, |
| opAndType{OSUB, TINT16}: ssa.OpSub16, |
| opAndType{OSUB, TUINT16}: ssa.OpSub16, |
| opAndType{OSUB, TINT32}: ssa.OpSub32, |
| opAndType{OSUB, TUINT32}: ssa.OpSub32, |
| opAndType{OSUB, TINT64}: ssa.OpSub64, |
| opAndType{OSUB, TUINT64}: ssa.OpSub64, |
| opAndType{OSUB, TFLOAT32}: ssa.OpSub32F, |
| opAndType{OSUB, TFLOAT64}: ssa.OpSub64F, |
| |
| opAndType{ONOT, TBOOL}: ssa.OpNot, |
| |
| opAndType{OMINUS, TINT8}: ssa.OpNeg8, |
| opAndType{OMINUS, TUINT8}: ssa.OpNeg8, |
| opAndType{OMINUS, TINT16}: ssa.OpNeg16, |
| opAndType{OMINUS, TUINT16}: ssa.OpNeg16, |
| opAndType{OMINUS, TINT32}: ssa.OpNeg32, |
| opAndType{OMINUS, TUINT32}: ssa.OpNeg32, |
| opAndType{OMINUS, TINT64}: ssa.OpNeg64, |
| opAndType{OMINUS, TUINT64}: ssa.OpNeg64, |
| opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F, |
| opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F, |
| |
| opAndType{OCOM, TINT8}: ssa.OpCom8, |
| opAndType{OCOM, TUINT8}: ssa.OpCom8, |
| opAndType{OCOM, TINT16}: ssa.OpCom16, |
| opAndType{OCOM, TUINT16}: ssa.OpCom16, |
| opAndType{OCOM, TINT32}: ssa.OpCom32, |
| opAndType{OCOM, TUINT32}: ssa.OpCom32, |
| opAndType{OCOM, TINT64}: ssa.OpCom64, |
| opAndType{OCOM, TUINT64}: ssa.OpCom64, |
| |
| opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag, |
| opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag, |
| opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal, |
| opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal, |
| |
| opAndType{OMUL, TINT8}: ssa.OpMul8, |
| opAndType{OMUL, TUINT8}: ssa.OpMul8, |
| opAndType{OMUL, TINT16}: ssa.OpMul16, |
| opAndType{OMUL, TUINT16}: ssa.OpMul16, |
| opAndType{OMUL, TINT32}: ssa.OpMul32, |
| opAndType{OMUL, TUINT32}: ssa.OpMul32, |
| opAndType{OMUL, TINT64}: ssa.OpMul64, |
| opAndType{OMUL, TUINT64}: ssa.OpMul64, |
| opAndType{OMUL, TFLOAT32}: ssa.OpMul32F, |
| opAndType{OMUL, TFLOAT64}: ssa.OpMul64F, |
| |
| opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F, |
| opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F, |
| |
| opAndType{OHMUL, TINT8}: ssa.OpHmul8, |
| opAndType{OHMUL, TUINT8}: ssa.OpHmul8u, |
| opAndType{OHMUL, TINT16}: ssa.OpHmul16, |
| opAndType{OHMUL, TUINT16}: ssa.OpHmul16u, |
| opAndType{OHMUL, TINT32}: ssa.OpHmul32, |
| opAndType{OHMUL, TUINT32}: ssa.OpHmul32u, |
| |
| opAndType{ODIV, TINT8}: ssa.OpDiv8, |
| opAndType{ODIV, TUINT8}: ssa.OpDiv8u, |
| opAndType{ODIV, TINT16}: ssa.OpDiv16, |
| opAndType{ODIV, TUINT16}: ssa.OpDiv16u, |
| opAndType{ODIV, TINT32}: ssa.OpDiv32, |
| opAndType{ODIV, TUINT32}: ssa.OpDiv32u, |
| opAndType{ODIV, TINT64}: ssa.OpDiv64, |
| opAndType{ODIV, TUINT64}: ssa.OpDiv64u, |
| |
| opAndType{OMOD, TINT8}: ssa.OpMod8, |
| opAndType{OMOD, TUINT8}: ssa.OpMod8u, |
| opAndType{OMOD, TINT16}: ssa.OpMod16, |
| opAndType{OMOD, TUINT16}: ssa.OpMod16u, |
| opAndType{OMOD, TINT32}: ssa.OpMod32, |
| opAndType{OMOD, TUINT32}: ssa.OpMod32u, |
| opAndType{OMOD, TINT64}: ssa.OpMod64, |
| opAndType{OMOD, TUINT64}: ssa.OpMod64u, |
| |
| opAndType{OAND, TINT8}: ssa.OpAnd8, |
| opAndType{OAND, TUINT8}: ssa.OpAnd8, |
| opAndType{OAND, TINT16}: ssa.OpAnd16, |
| opAndType{OAND, TUINT16}: ssa.OpAnd16, |
| opAndType{OAND, TINT32}: ssa.OpAnd32, |
| opAndType{OAND, TUINT32}: ssa.OpAnd32, |
| opAndType{OAND, TINT64}: ssa.OpAnd64, |
| opAndType{OAND, TUINT64}: ssa.OpAnd64, |
| |
| opAndType{OOR, TINT8}: ssa.OpOr8, |
| opAndType{OOR, TUINT8}: ssa.OpOr8, |
| opAndType{OOR, TINT16}: ssa.OpOr16, |
| opAndType{OOR, TUINT16}: ssa.OpOr16, |
| opAndType{OOR, TINT32}: ssa.OpOr32, |
| opAndType{OOR, TUINT32}: ssa.OpOr32, |
| opAndType{OOR, TINT64}: ssa.OpOr64, |
| opAndType{OOR, TUINT64}: ssa.OpOr64, |
| |
| opAndType{OXOR, TINT8}: ssa.OpXor8, |
| opAndType{OXOR, TUINT8}: ssa.OpXor8, |
| opAndType{OXOR, TINT16}: ssa.OpXor16, |
| opAndType{OXOR, TUINT16}: ssa.OpXor16, |
| opAndType{OXOR, TINT32}: ssa.OpXor32, |
| opAndType{OXOR, TUINT32}: ssa.OpXor32, |
| opAndType{OXOR, TINT64}: ssa.OpXor64, |
| opAndType{OXOR, TUINT64}: ssa.OpXor64, |
| |
| opAndType{OEQ, TBOOL}: ssa.OpEqB, |
| opAndType{OEQ, TINT8}: ssa.OpEq8, |
| opAndType{OEQ, TUINT8}: ssa.OpEq8, |
| opAndType{OEQ, TINT16}: ssa.OpEq16, |
| opAndType{OEQ, TUINT16}: ssa.OpEq16, |
| opAndType{OEQ, TINT32}: ssa.OpEq32, |
| opAndType{OEQ, TUINT32}: ssa.OpEq32, |
| opAndType{OEQ, TINT64}: ssa.OpEq64, |
| opAndType{OEQ, TUINT64}: ssa.OpEq64, |
| opAndType{OEQ, TINTER}: ssa.OpEqInter, |
| opAndType{OEQ, TSLICE}: ssa.OpEqSlice, |
| opAndType{OEQ, TFUNC}: ssa.OpEqPtr, |
| opAndType{OEQ, TMAP}: ssa.OpEqPtr, |
| opAndType{OEQ, TCHAN}: ssa.OpEqPtr, |
| opAndType{OEQ, TPTR32}: ssa.OpEqPtr, |
| opAndType{OEQ, TPTR64}: ssa.OpEqPtr, |
| opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr, |
| opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr, |
| opAndType{OEQ, TFLOAT64}: ssa.OpEq64F, |
| opAndType{OEQ, TFLOAT32}: ssa.OpEq32F, |
| |
| opAndType{ONE, TBOOL}: ssa.OpNeqB, |
| opAndType{ONE, TINT8}: ssa.OpNeq8, |
| opAndType{ONE, TUINT8}: ssa.OpNeq8, |
| opAndType{ONE, TINT16}: ssa.OpNeq16, |
| opAndType{ONE, TUINT16}: ssa.OpNeq16, |
| opAndType{ONE, TINT32}: ssa.OpNeq32, |
| opAndType{ONE, TUINT32}: ssa.OpNeq32, |
| opAndType{ONE, TINT64}: ssa.OpNeq64, |
| opAndType{ONE, TUINT64}: ssa.OpNeq64, |
| opAndType{ONE, TINTER}: ssa.OpNeqInter, |
| opAndType{ONE, TSLICE}: ssa.OpNeqSlice, |
| opAndType{ONE, TFUNC}: ssa.OpNeqPtr, |
| opAndType{ONE, TMAP}: ssa.OpNeqPtr, |
| opAndType{ONE, TCHAN}: ssa.OpNeqPtr, |
| opAndType{ONE, TPTR32}: ssa.OpNeqPtr, |
| opAndType{ONE, TPTR64}: ssa.OpNeqPtr, |
| opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr, |
| opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr, |
| opAndType{ONE, TFLOAT64}: ssa.OpNeq64F, |
| opAndType{ONE, TFLOAT32}: ssa.OpNeq32F, |
| |
| opAndType{OLT, TINT8}: ssa.OpLess8, |
| opAndType{OLT, TUINT8}: ssa.OpLess8U, |
| opAndType{OLT, TINT16}: ssa.OpLess16, |
| opAndType{OLT, TUINT16}: ssa.OpLess16U, |
| opAndType{OLT, TINT32}: ssa.OpLess32, |
| opAndType{OLT, TUINT32}: ssa.OpLess32U, |
| opAndType{OLT, TINT64}: ssa.OpLess64, |
| opAndType{OLT, TUINT64}: ssa.OpLess64U, |
| opAndType{OLT, TFLOAT64}: ssa.OpLess64F, |
| opAndType{OLT, TFLOAT32}: ssa.OpLess32F, |
| |
| opAndType{OGT, TINT8}: ssa.OpGreater8, |
| opAndType{OGT, TUINT8}: ssa.OpGreater8U, |
| opAndType{OGT, TINT16}: ssa.OpGreater16, |
| opAndType{OGT, TUINT16}: ssa.OpGreater16U, |
| opAndType{OGT, TINT32}: ssa.OpGreater32, |
| opAndType{OGT, TUINT32}: ssa.OpGreater32U, |
| opAndType{OGT, TINT64}: ssa.OpGreater64, |
| opAndType{OGT, TUINT64}: ssa.OpGreater64U, |
| opAndType{OGT, TFLOAT64}: ssa.OpGreater64F, |
| opAndType{OGT, TFLOAT32}: ssa.OpGreater32F, |
| |
| opAndType{OLE, TINT8}: ssa.OpLeq8, |
| opAndType{OLE, TUINT8}: ssa.OpLeq8U, |
| opAndType{OLE, TINT16}: ssa.OpLeq16, |
| opAndType{OLE, TUINT16}: ssa.OpLeq16U, |
| opAndType{OLE, TINT32}: ssa.OpLeq32, |
| opAndType{OLE, TUINT32}: ssa.OpLeq32U, |
| opAndType{OLE, TINT64}: ssa.OpLeq64, |
| opAndType{OLE, TUINT64}: ssa.OpLeq64U, |
| opAndType{OLE, TFLOAT64}: ssa.OpLeq64F, |
| opAndType{OLE, TFLOAT32}: ssa.OpLeq32F, |
| |
| opAndType{OGE, TINT8}: ssa.OpGeq8, |
| opAndType{OGE, TUINT8}: ssa.OpGeq8U, |
| opAndType{OGE, TINT16}: ssa.OpGeq16, |
| opAndType{OGE, TUINT16}: ssa.OpGeq16U, |
| opAndType{OGE, TINT32}: ssa.OpGeq32, |
| opAndType{OGE, TUINT32}: ssa.OpGeq32U, |
| opAndType{OGE, TINT64}: ssa.OpGeq64, |
| opAndType{OGE, TUINT64}: ssa.OpGeq64U, |
| opAndType{OGE, TFLOAT64}: ssa.OpGeq64F, |
| opAndType{OGE, TFLOAT32}: ssa.OpGeq32F, |
| |
| opAndType{OLROT, TUINT8}: ssa.OpLrot8, |
| opAndType{OLROT, TUINT16}: ssa.OpLrot16, |
| opAndType{OLROT, TUINT32}: ssa.OpLrot32, |
| opAndType{OLROT, TUINT64}: ssa.OpLrot64, |
| |
| opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt, |
| } |
| |
| func (s *state) concreteEtype(t *Type) EType { |
| e := t.Etype |
| switch e { |
| default: |
| return e |
| case TINT: |
| if s.config.IntSize == 8 { |
| return TINT64 |
| } |
| return TINT32 |
| case TUINT: |
| if s.config.IntSize == 8 { |
| return TUINT64 |
| } |
| return TUINT32 |
| case TUINTPTR: |
| if s.config.PtrSize == 8 { |
| return TUINT64 |
| } |
| return TUINT32 |
| } |
| } |
| |
| func (s *state) ssaOp(op Op, t *Type) ssa.Op { |
| etype := s.concreteEtype(t) |
| x, ok := opToSSA[opAndType{op, etype}] |
| if !ok { |
| s.Fatalf("unhandled binary op %v %s", op, etype) |
| } |
| return x |
| } |
| |
| func floatForComplex(t *Type) *Type { |
| if t.Size() == 8 { |
| return Types[TFLOAT32] |
| } else { |
| return Types[TFLOAT64] |
| } |
| } |
| |
| type opAndTwoTypes struct { |
| op Op |
| etype1 EType |
| etype2 EType |
| } |
| |
| type twoTypes struct { |
| etype1 EType |
| etype2 EType |
| } |
| |
| type twoOpsAndType struct { |
| op1 ssa.Op |
| op2 ssa.Op |
| intermediateType EType |
| } |
| |
| var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ |
| |
| twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64}, |
| |
| twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64}, |
| |
| twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, |
| twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, |
| twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32}, |
| twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64}, |
| |
| twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, |
| twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, |
| twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32}, |
| twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64}, |
| // unsigned |
| twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32}, |
| twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned |
| twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead |
| |
| twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32}, |
| twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned |
| twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead |
| |
| twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, |
| twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, |
| twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned |
| twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead |
| |
| twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, |
| twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, |
| twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned |
| twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead |
| |
| // float |
| twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32}, |
| twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64}, |
| twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32}, |
| twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64}, |
| } |
| |
| // this map is used only for 32-bit arch, and only includes the difference |
| // on 32-bit arch, don't use int64<->float conversion for uint32 |
| var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{ |
| twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32}, |
| twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32}, |
| twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32}, |
| twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32}, |
| } |
| |
| // uint64<->float conversions, only on machines that have intructions for that |
| var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{ |
| twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64}, |
| twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64}, |
| twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64}, |
| twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64}, |
| } |
| |
| var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ |
| opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8, |
| opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8, |
| opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16, |
| opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16, |
| opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32, |
| opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32, |
| opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64, |
| opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64, |
| |
| opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8, |
| opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8, |
| opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16, |
| opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16, |
| opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32, |
| opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32, |
| opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64, |
| opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64, |
| |
| opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8, |
| opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8, |
| opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16, |
| opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16, |
| opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32, |
| opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32, |
| opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64, |
| opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64, |
| |
| opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8, |
| opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8, |
| opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16, |
| opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16, |
| opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32, |
| opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32, |
| opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64, |
| opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64, |
| |
| opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8, |
| opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8, |
| opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16, |
| opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16, |
| opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32, |
| opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32, |
| opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64, |
| opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64, |
| |
| opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8, |
| opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8, |
| opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16, |
| opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16, |
| opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32, |
| opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32, |
| opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64, |
| opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64, |
| |
| opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8, |
| opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8, |
| opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16, |
| opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16, |
| opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32, |
| opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32, |
| opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64, |
| opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64, |
| |
| opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8, |
| opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8, |
| opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16, |
| opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16, |
| opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32, |
| opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32, |
| opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64, |
| opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64, |
| } |
| |
| func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op { |
| etype1 := s.concreteEtype(t) |
| etype2 := s.concreteEtype(u) |
| x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] |
| if !ok { |
| s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2) |
| } |
| return x |
| } |
| |
| func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op { |
| etype1 := s.concreteEtype(t) |
| x, ok := opToSSA[opAndType{op, etype1}] |
| if !ok { |
| s.Fatalf("unhandled rotate op %v etype=%s", op, etype1) |
| } |
| return x |
| } |
| |
| // expr converts the expression n to ssa, adds it to s and returns the ssa result. |
| func (s *state) expr(n *Node) *ssa.Value { |
| if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) { |
| // ONAMEs and named OLITERALs have the line number |
| // of the decl, not the use. See issue 14742. |
| s.pushLine(n.Lineno) |
| defer s.popLine() |
| } |
| |
| s.stmtList(n.Ninit) |
| switch n.Op { |
| case OARRAYBYTESTRTMP: |
| slice := s.expr(n.Left) |
| ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), slice) |
| len := s.newValue1(ssa.OpSliceLen, Types[TINT], slice) |
| return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) |
| case OSTRARRAYBYTETMP: |
| str := s.expr(n.Left) |
| ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), str) |
| len := s.newValue1(ssa.OpStringLen, Types[TINT], str) |
| return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len) |
| case OCFUNC: |
| aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Left.Sym}) |
| return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb) |
| case ONAME: |
| if n.Class == PFUNC { |
| // "value" of a function is the address of the function's closure |
| sym := funcsym(n.Sym) |
| aux := &ssa.ExternSymbol{Typ: n.Type, Sym: sym} |
| return s.entryNewValue1A(ssa.OpAddr, ptrto(n.Type), aux, s.sb) |
| } |
| if s.canSSA(n) { |
| return s.variable(n, n.Type) |
| } |
| addr, _ := s.addr(n, false) |
| return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) |
| case OCLOSUREVAR: |
| addr, _ := s.addr(n, false) |
| return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) |
| case OLITERAL: |
| switch u := n.Val().U.(type) { |
| case *Mpint: |
| i := u.Int64() |
| switch n.Type.Size() { |
| case 1: |
| return s.constInt8(n.Type, int8(i)) |
| case 2: |
| return s.constInt16(n.Type, int16(i)) |
| case 4: |
| return s.constInt32(n.Type, int32(i)) |
| case 8: |
| return s.constInt64(n.Type, i) |
| default: |
| s.Fatalf("bad integer size %d", n.Type.Size()) |
| return nil |
| } |
| case string: |
| if u == "" { |
| return s.constEmptyString(n.Type) |
| } |
| return s.entryNewValue0A(ssa.OpConstString, n.Type, u) |
| case bool: |
| return s.constBool(u) |
| case *NilVal: |
| t := n.Type |
| switch { |
| case t.IsSlice(): |
| return s.constSlice(t) |
| case t.IsInterface(): |
| return s.constInterface(t) |
| default: |
| return s.constNil(t) |
| } |
| case *Mpflt: |
| switch n.Type.Size() { |
| case 4: |
| return s.constFloat32(n.Type, u.Float32()) |
| case 8: |
| return s.constFloat64(n.Type, u.Float64()) |
| default: |
| s.Fatalf("bad float size %d", n.Type.Size()) |
| return nil |
| } |
| case *Mpcplx: |
| r := &u.Real |
| i := &u.Imag |
| switch n.Type.Size() { |
| case 8: |
| pt := Types[TFLOAT32] |
| return s.newValue2(ssa.OpComplexMake, n.Type, |
| s.constFloat32(pt, r.Float32()), |
| s.constFloat32(pt, i.Float32())) |
| case 16: |
| pt := Types[TFLOAT64] |
| return s.newValue2(ssa.OpComplexMake, n.Type, |
| s.constFloat64(pt, r.Float64()), |
| s.constFloat64(pt, i.Float64())) |
| default: |
| s.Fatalf("bad float size %d", n.Type.Size()) |
| return nil |
| } |
| |
| default: |
| s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype()) |
| return nil |
| } |
| case OCONVNOP: |
| to := n.Type |
| from := n.Left.Type |
| |
| // Assume everything will work out, so set up our return value. |
| // Anything interesting that happens from here is a fatal. |
| x := s.expr(n.Left) |
| |
| // Special case for not confusing GC and liveness. |
| // We don't want pointers accidentally classified |
| // as not-pointers or vice-versa because of copy |
| // elision. |
| if to.IsPtrShaped() != from.IsPtrShaped() { |
| return s.newValue2(ssa.OpConvert, to, x, s.mem()) |
| } |
| |
| v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type |
| |
| // CONVNOP closure |
| if to.Etype == TFUNC && from.IsPtrShaped() { |
| return v |
| } |
| |
| // named <--> unnamed type or typed <--> untyped const |
| if from.Etype == to.Etype { |
| return v |
| } |
| |
| // unsafe.Pointer <--> *T |
| if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() { |
| return v |
| } |
| |
| dowidth(from) |
| dowidth(to) |
| if from.Width != to.Width { |
| s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width) |
| return nil |
| } |
| if etypesign(from.Etype) != etypesign(to.Etype) { |
| s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype) |
| return nil |
| } |
| |
| if instrumenting { |
| // These appear to be fine, but they fail the |
| // integer constraint below, so okay them here. |
| // Sample non-integer conversion: map[string]string -> *uint8 |
| return v |
| } |
| |
| if etypesign(from.Etype) == 0 { |
| s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) |
| return nil |
| } |
| |
| // integer, same width, same sign |
| return v |
| |
| case OCONV: |
| x := s.expr(n.Left) |
| ft := n.Left.Type // from type |
| tt := n.Type // to type |
| if ft.IsInteger() && tt.IsInteger() { |
| var op ssa.Op |
| if tt.Size() == ft.Size() { |
| op = ssa.OpCopy |
| } else if tt.Size() < ft.Size() { |
| // truncation |
| switch 10*ft.Size() + tt.Size() { |
| case 21: |
| op = ssa.OpTrunc16to8 |
| case 41: |
| op = ssa.OpTrunc32to8 |
| case 42: |
| op = ssa.OpTrunc32to16 |
| case 81: |
| op = ssa.OpTrunc64to8 |
| case 82: |
| op = ssa.OpTrunc64to16 |
| case 84: |
| op = ssa.OpTrunc64to32 |
| default: |
| s.Fatalf("weird integer truncation %v -> %v", ft, tt) |
| } |
| } else if ft.IsSigned() { |
| // sign extension |
| switch 10*ft.Size() + tt.Size() { |
| case 12: |
| op = ssa.OpSignExt8to16 |
| case 14: |
| op = ssa.OpSignExt8to32 |
| case 18: |
| op = ssa.OpSignExt8to64 |
| case 24: |
| op = ssa.OpSignExt16to32 |
| case 28: |
| op = ssa.OpSignExt16to64 |
| case 48: |
| op = ssa.OpSignExt32to64 |
| default: |
| s.Fatalf("bad integer sign extension %v -> %v", ft, tt) |
| } |
| } else { |
| // zero extension |
| switch 10*ft.Size() + tt.Size() { |
| case 12: |
| op = ssa.OpZeroExt8to16 |
| case 14: |
| op = ssa.OpZeroExt8to32 |
| case 18: |
| op = ssa.OpZeroExt8to64 |
| case 24: |
| op = ssa.OpZeroExt16to32 |
| case 28: |
| op = ssa.OpZeroExt16to64 |
| case 48: |
| op = ssa.OpZeroExt32to64 |
| default: |
| s.Fatalf("weird integer sign extension %v -> %v", ft, tt) |
| } |
| } |
| return s.newValue1(op, n.Type, x) |
| } |
| |
| if ft.IsFloat() || tt.IsFloat() { |
| conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] |
| if s.config.IntSize == 4 && Thearch.LinkArch.Name != "amd64p32" && Thearch.LinkArch.Family != sys.MIPS { |
| if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { |
| conv = conv1 |
| } |
| } |
| if Thearch.LinkArch.Name == "arm64" { |
| if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { |
| conv = conv1 |
| } |
| } |
| |
| if Thearch.LinkArch.Family == sys.MIPS { |
| if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() { |
| // tt is float32 or float64, and ft is also unsigned |
| if tt.Size() == 4 { |
| return s.uint32Tofloat32(n, x, ft, tt) |
| } |
| if tt.Size() == 8 { |
| return s.uint32Tofloat64(n, x, ft, tt) |
| } |
| } else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() { |
| // ft is float32 or float64, and tt is unsigned integer |
| if ft.Size() == 4 { |
| return s.float32ToUint32(n, x, ft, tt) |
| } |
| if ft.Size() == 8 { |
| return s.float64ToUint32(n, x, ft, tt) |
| } |
| } |
| } |
| |
| if !ok { |
| s.Fatalf("weird float conversion %v -> %v", ft, tt) |
| } |
| op1, op2, it := conv.op1, conv.op2, conv.intermediateType |
| |
| if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { |
| // normal case, not tripping over unsigned 64 |
| if op1 == ssa.OpCopy { |
| if op2 == ssa.OpCopy { |
| return x |
| } |
| return s.newValue1(op2, n.Type, x) |
| } |
| if op2 == ssa.OpCopy { |
| return s.newValue1(op1, n.Type, x) |
| } |
| return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x)) |
| } |
| // Tricky 64-bit unsigned cases. |
| if ft.IsInteger() { |
| // tt is float32 or float64, and ft is also unsigned |
| if tt.Size() == 4 { |
| return s.uint64Tofloat32(n, x, ft, tt) |
| } |
| if tt.Size() == 8 { |
| return s.uint64Tofloat64(n, x, ft, tt) |
| } |
| s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt) |
| } |
| // ft is float32 or float64, and tt is unsigned integer |
| if ft.Size() == 4 { |
| return s.float32ToUint64(n, x, ft, tt) |
| } |
| if ft.Size() == 8 { |
| return s.float64ToUint64(n, x, ft, tt) |
| } |
| s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt) |
| return nil |
| } |
| |
| if ft.IsComplex() && tt.IsComplex() { |
| var op ssa.Op |
| if ft.Size() == tt.Size() { |
| op = ssa.OpCopy |
| } else if ft.Size() == 8 && tt.Size() == 16 { |
| op = ssa.OpCvt32Fto64F |
| } else if ft.Size() == 16 && tt.Size() == 8 { |
| op = ssa.OpCvt64Fto32F |
| } else { |
| s.Fatalf("weird complex conversion %v -> %v", ft, tt) |
| } |
| ftp := floatForComplex(ft) |
| ttp := floatForComplex(tt) |
| return s.newValue2(ssa.OpComplexMake, tt, |
| s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)), |
| s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x))) |
| } |
| |
| s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype) |
| return nil |
| |
| case ODOTTYPE: |
| res, _ := s.dottype(n, false) |
| return res |
| |
| // binary ops |
| case OLT, OEQ, ONE, OLE, OGE, OGT: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| if n.Left.Type.IsComplex() { |
| pt := floatForComplex(n.Left.Type) |
| op := s.ssaOp(OEQ, pt) |
| r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) |
| i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) |
| c := s.newValue2(ssa.OpAndB, Types[TBOOL], r, i) |
| switch n.Op { |
| case OEQ: |
| return c |
| case ONE: |
| return s.newValue1(ssa.OpNot, Types[TBOOL], c) |
| default: |
| s.Fatalf("ordered complex compare %v", n.Op) |
| } |
| } |
| return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b) |
| case OMUL: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| if n.Type.IsComplex() { |
| mulop := ssa.OpMul64F |
| addop := ssa.OpAdd64F |
| subop := ssa.OpSub64F |
| pt := floatForComplex(n.Type) // Could be Float32 or Float64 |
| wt := Types[TFLOAT64] // Compute in Float64 to minimize cancelation error |
| |
| areal := s.newValue1(ssa.OpComplexReal, pt, a) |
| breal := s.newValue1(ssa.OpComplexReal, pt, b) |
| aimag := s.newValue1(ssa.OpComplexImag, pt, a) |
| bimag := s.newValue1(ssa.OpComplexImag, pt, b) |
| |
| if pt != wt { // Widen for calculation |
| areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) |
| breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) |
| aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) |
| bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) |
| } |
| |
| xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) |
| ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal)) |
| |
| if pt != wt { // Narrow to store back |
| xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) |
| ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) |
| } |
| |
| return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) |
| } |
| return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) |
| |
| case ODIV: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| if n.Type.IsComplex() { |
| // TODO this is not executed because the front-end substitutes a runtime call. |
| // That probably ought to change; with modest optimization the widen/narrow |
| // conversions could all be elided in larger expression trees. |
| mulop := ssa.OpMul64F |
| addop := ssa.OpAdd64F |
| subop := ssa.OpSub64F |
| divop := ssa.OpDiv64F |
| pt := floatForComplex(n.Type) // Could be Float32 or Float64 |
| wt := Types[TFLOAT64] // Compute in Float64 to minimize cancelation error |
| |
| areal := s.newValue1(ssa.OpComplexReal, pt, a) |
| breal := s.newValue1(ssa.OpComplexReal, pt, b) |
| aimag := s.newValue1(ssa.OpComplexImag, pt, a) |
| bimag := s.newValue1(ssa.OpComplexImag, pt, b) |
| |
| if pt != wt { // Widen for calculation |
| areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) |
| breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) |
| aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) |
| bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) |
| } |
| |
| denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag)) |
| xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) |
| ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag)) |
| |
| // TODO not sure if this is best done in wide precision or narrow |
| // Double-rounding might be an issue. |
| // Note that the pre-SSA implementation does the entire calculation |
| // in wide format, so wide is compatible. |
| xreal = s.newValue2(divop, wt, xreal, denom) |
| ximag = s.newValue2(divop, wt, ximag, denom) |
| |
| if pt != wt { // Narrow to store back |
| xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) |
| ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) |
| } |
| return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) |
| } |
| if n.Type.IsFloat() { |
| return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) |
| } |
| return s.intDivide(n, a, b) |
| case OMOD: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| return s.intDivide(n, a, b) |
| case OADD, OSUB: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| if n.Type.IsComplex() { |
| pt := floatForComplex(n.Type) |
| op := s.ssaOp(n.Op, pt) |
| return s.newValue2(ssa.OpComplexMake, n.Type, |
| s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), |
| s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) |
| } |
| return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) |
| case OAND, OOR, OHMUL, OXOR: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) |
| case OLSH, ORSH: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b) |
| case OLROT: |
| a := s.expr(n.Left) |
| i := n.Right.Int64() |
| if i <= 0 || i >= n.Type.Size()*8 { |
| s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i) |
| } |
| return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a) |
| case OANDAND, OOROR: |
| // To implement OANDAND (and OOROR), we introduce a |
| // new temporary variable to hold the result. The |
| // variable is associated with the OANDAND node in the |
| // s.vars table (normally variables are only |
| // associated with ONAME nodes). We convert |
| // A && B |
| // to |
| // var = A |
| // if var { |
| // var = B |
| // } |
| // Using var in the subsequent block introduces the |
| // necessary phi variable. |
| el := s.expr(n.Left) |
| s.vars[n] = el |
| |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(el) |
| // In theory, we should set b.Likely here based on context. |
| // However, gc only gives us likeliness hints |
| // in a single place, for plain OIF statements, |
| // and passing around context is finnicky, so don't bother for now. |
| |
| bRight := s.f.NewBlock(ssa.BlockPlain) |
| bResult := s.f.NewBlock(ssa.BlockPlain) |
| if n.Op == OANDAND { |
| b.AddEdgeTo(bRight) |
| b.AddEdgeTo(bResult) |
| } else if n.Op == OOROR { |
| b.AddEdgeTo(bResult) |
| b.AddEdgeTo(bRight) |
| } |
| |
| s.startBlock(bRight) |
| er := s.expr(n.Right) |
| s.vars[n] = er |
| |
| b = s.endBlock() |
| b.AddEdgeTo(bResult) |
| |
| s.startBlock(bResult) |
| return s.variable(n, Types[TBOOL]) |
| case OCOMPLEX: |
| r := s.expr(n.Left) |
| i := s.expr(n.Right) |
| return s.newValue2(ssa.OpComplexMake, n.Type, r, i) |
| |
| // unary ops |
| case OMINUS: |
| a := s.expr(n.Left) |
| if n.Type.IsComplex() { |
| tp := floatForComplex(n.Type) |
| negop := s.ssaOp(n.Op, tp) |
| return s.newValue2(ssa.OpComplexMake, n.Type, |
| s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), |
| s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) |
| } |
| return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) |
| case ONOT, OCOM, OSQRT: |
| a := s.expr(n.Left) |
| return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) |
| case OIMAG, OREAL: |
| a := s.expr(n.Left) |
| return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a) |
| case OPLUS: |
| return s.expr(n.Left) |
| |
| case OADDR: |
| a, _ := s.addr(n.Left, n.Bounded) |
| // Note we know the volatile result is false because you can't write &f() in Go. |
| return a |
| |
| case OINDREGSP: |
| addr := s.entryNewValue1I(ssa.OpOffPtr, ptrto(n.Type), n.Xoffset, s.sp) |
| return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) |
| |
| case OIND: |
| p := s.exprPtr(n.Left, false, n.Lineno) |
| return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) |
| |
| case ODOT: |
| t := n.Left.Type |
| if canSSAType(t) { |
| v := s.expr(n.Left) |
| return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v) |
| } |
| p, _ := s.addr(n, false) |
| return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) |
| |
| case ODOTPTR: |
| p := s.exprPtr(n.Left, false, n.Lineno) |
| p = s.newValue1I(ssa.OpOffPtr, p.Type, n.Xoffset, p) |
| return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) |
| |
| case OINDEX: |
| switch { |
| case n.Left.Type.IsString(): |
| if n.Bounded && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) { |
| // Replace "abc"[1] with 'b'. |
| // Delayed until now because "abc"[1] is not an ideal constant. |
| // See test/fixedbugs/issue11370.go. |
| return s.newValue0I(ssa.OpConst8, Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()]))) |
| } |
| a := s.expr(n.Left) |
| i := s.expr(n.Right) |
| i = s.extendIndex(i, panicindex) |
| if !n.Bounded { |
| len := s.newValue1(ssa.OpStringLen, Types[TINT], a) |
| s.boundsCheck(i, len) |
| } |
| ptrtyp := ptrto(Types[TUINT8]) |
| ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) |
| if Isconst(n.Right, CTINT) { |
| ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr) |
| } else { |
| ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) |
| } |
| return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem()) |
| case n.Left.Type.IsSlice(): |
| p, _ := s.addr(n, false) |
| return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) |
| case n.Left.Type.IsArray(): |
| if bound := n.Left.Type.NumElem(); bound <= 1 { |
| // SSA can handle arrays of length at most 1. |
| a := s.expr(n.Left) |
| i := s.expr(n.Right) |
| if bound == 0 { |
| // Bounds check will never succeed. Might as well |
| // use constants for the bounds check. |
| z := s.constInt(Types[TINT], 0) |
| s.boundsCheck(z, z) |
| // The return value won't be live, return junk. |
| return s.newValue0(ssa.OpUnknown, n.Type) |
| } |
| i = s.extendIndex(i, panicindex) |
| s.boundsCheck(i, s.constInt(Types[TINT], bound)) |
| return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a) |
| } |
| p, _ := s.addr(n, false) |
| return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) |
| default: |
| s.Fatalf("bad type for index %v", n.Left.Type) |
| return nil |
| } |
| |
| case OLEN, OCAP: |
| switch { |
| case n.Left.Type.IsSlice(): |
| op := ssa.OpSliceLen |
| if n.Op == OCAP { |
| op = ssa.OpSliceCap |
| } |
| return s.newValue1(op, Types[TINT], s.expr(n.Left)) |
| case n.Left.Type.IsString(): // string; not reachable for OCAP |
| return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left)) |
| case n.Left.Type.IsMap(), n.Left.Type.IsChan(): |
| return s.referenceTypeBuiltin(n, s.expr(n.Left)) |
| default: // array |
| return s.constInt(Types[TINT], n.Left.Type.NumElem()) |
| } |
| |
| case OSPTR: |
| a := s.expr(n.Left) |
| if n.Left.Type.IsSlice() { |
| return s.newValue1(ssa.OpSlicePtr, n.Type, a) |
| } else { |
| return s.newValue1(ssa.OpStringPtr, n.Type, a) |
| } |
| |
| case OITAB: |
| a := s.expr(n.Left) |
| return s.newValue1(ssa.OpITab, n.Type, a) |
| |
| case OIDATA: |
| a := s.expr(n.Left) |
| return s.newValue1(ssa.OpIData, n.Type, a) |
| |
| case OEFACE: |
| tab := s.expr(n.Left) |
| data := s.expr(n.Right) |
| return s.newValue2(ssa.OpIMake, n.Type, tab, data) |
| |
| case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR: |
| v := s.expr(n.Left) |
| var i, j, k *ssa.Value |
| low, high, max := n.SliceBounds() |
| if low != nil { |
| i = s.extendIndex(s.expr(low), panicslice) |
| } |
| if high != nil { |
| j = s.extendIndex(s.expr(high), panicslice) |
| } |
| if max != nil { |
| k = s.extendIndex(s.expr(max), panicslice) |
| } |
| p, l, c := s.slice(n.Left.Type, v, i, j, k) |
| return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) |
| |
| case OSLICESTR: |
| v := s.expr(n.Left) |
| var i, j *ssa.Value |
| low, high, _ := n.SliceBounds() |
| if low != nil { |
| i = s.extendIndex(s.expr(low), panicslice) |
| } |
| if high != nil { |
| j = s.extendIndex(s.expr(high), panicslice) |
| } |
| p, l, _ := s.slice(n.Left.Type, v, i, j, nil) |
| return s.newValue2(ssa.OpStringMake, n.Type, p, l) |
| |
| case OCALLFUNC: |
| if isIntrinsicCall(n) { |
| return s.intrinsicCall(n) |
| } |
| fallthrough |
| |
| case OCALLINTER, OCALLMETH: |
| a := s.call(n, callNormal) |
| return s.newValue2(ssa.OpLoad, n.Type, a, s.mem()) |
| |
| case OGETG: |
| return s.newValue1(ssa.OpGetG, n.Type, s.mem()) |
| |
| case OAPPEND: |
| return s.append(n, false) |
| |
| default: |
| s.Fatalf("unhandled expr %v", n.Op) |
| return nil |
| } |
| } |
| |
| // append converts an OAPPEND node to SSA. |
| // If inplace is false, it converts the OAPPEND expression n to an ssa.Value, |
| // adds it to s, and returns the Value. |
| // If inplace is true, it writes the result of the OAPPEND expression n |
| // back to the slice being appended to, and returns nil. |
| // inplace MUST be set to false if the slice can be SSA'd. |
| func (s *state) append(n *Node, inplace bool) *ssa.Value { |
| // If inplace is false, process as expression "append(s, e1, e2, e3)": |
| // |
| // ptr, len, cap := s |
| // newlen := len + 3 |
| // if newlen > cap { |
| // ptr, len, cap = growslice(s, newlen) |
| // newlen = len + 3 // recalculate to avoid a spill |
| // } |
| // // with write barriers, if needed: |
| // *(ptr+len) = e1 |
| // *(ptr+len+1) = e2 |
| // *(ptr+len+2) = e3 |
| // return makeslice(ptr, newlen, cap) |
| // |
| // |
| // If inplace is true, process as statement "s = append(s, e1, e2, e3)": |
| // |
| // a := &s |
| // ptr, len, cap := s |
| // newlen := len + 3 |
| // if newlen > cap { |
| // newptr, len, newcap = growslice(ptr, len, cap, newlen) |
| // vardef(a) // if necessary, advise liveness we are writing a new a |
| // *a.cap = newcap // write before ptr to avoid a spill |
| // *a.ptr = newptr // with write barrier |
| // } |
| // newlen = len + 3 // recalculate to avoid a spill |
| // *a.len = newlen |
| // // with write barriers, if needed: |
| // *(ptr+len) = e1 |
| // *(ptr+len+1) = e2 |
| // *(ptr+len+2) = e3 |
| |
| et := n.Type.Elem() |
| pt := ptrto(et) |
| |
| // Evaluate slice |
| sn := n.List.First() // the slice node is the first in the list |
| |
| var slice, addr *ssa.Value |
| if inplace { |
| addr, _ = s.addr(sn, false) |
| slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) |
| } else { |
| slice = s.expr(sn) |
| } |
| |
| // Allocate new blocks |
| grow := s.f.NewBlock(ssa.BlockPlain) |
| assign := s.f.NewBlock(ssa.BlockPlain) |
| |
| // Decide if we need to grow |
| nargs := int64(n.List.Len() - 1) |
| p := s.newValue1(ssa.OpSlicePtr, pt, slice) |
| l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice) |
| c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice) |
| nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs)) |
| |
| cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c) |
| s.vars[&ptrVar] = p |
| |
| if !inplace { |
| s.vars[&newlenVar] = nl |
| s.vars[&capVar] = c |
| } else { |
| s.vars[&lenVar] = l |
| } |
| |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Likely = ssa.BranchUnlikely |
| b.SetControl(cmp) |
| b.AddEdgeTo(grow) |
| b.AddEdgeTo(assign) |
| |
| // Call growslice |
| s.startBlock(grow) |
| taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(n.Type.Elem())}, s.sb) |
| |
| r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl) |
| |
| if inplace { |
| if sn.Op == ONAME { |
| // Tell liveness we're about to build a new slice |
| s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem()) |
| } |
| capaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(array_cap), addr) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem()) |
| if ssa.IsStackAddr(addr) { |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, pt.Size(), addr, r[0], s.mem()) |
| } else { |
| s.insertWBstore(pt, addr, r[0], n.Lineno, 0) |
| } |
| // load the value we just stored to avoid having to spill it |
| s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem()) |
| s.vars[&lenVar] = r[1] // avoid a spill in the fast path |
| } else { |
| s.vars[&ptrVar] = r[0] |
| s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], r[1], s.constInt(Types[TINT], nargs)) |
| s.vars[&capVar] = r[2] |
| } |
| |
| b = s.endBlock() |
| b.AddEdgeTo(assign) |
| |
| // assign new elements to slots |
| s.startBlock(assign) |
| |
| if inplace { |
| l = s.variable(&lenVar, Types[TINT]) // generates phi for len |
| nl = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs)) |
| lenaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(array_nel), addr) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenaddr, nl, s.mem()) |
| } |
| |
| // Evaluate args |
| type argRec struct { |
| // if store is true, we're appending the value v. If false, we're appending the |
| // value at *v. If store==false, isVolatile reports whether the source |
| // is in the outargs section of the stack frame. |
| v *ssa.Value |
| store bool |
| isVolatile bool |
| } |
| args := make([]argRec, 0, nargs) |
| for _, n := range n.List.Slice()[1:] { |
| if canSSAType(n.Type) { |
| args = append(args, argRec{v: s.expr(n), store: true}) |
| } else { |
| v, isVolatile := s.addr(n, false) |
| args = append(args, argRec{v: v, isVolatile: isVolatile}) |
| } |
| } |
| |
| p = s.variable(&ptrVar, pt) // generates phi for ptr |
| if !inplace { |
| nl = s.variable(&newlenVar, Types[TINT]) // generates phi for nl |
| c = s.variable(&capVar, Types[TINT]) // generates phi for cap |
| } |
| p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l) |
| // TODO: just one write barrier call for all of these writes? |
| // TODO: maybe just one writeBarrier.enabled check? |
| for i, arg := range args { |
| addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i))) |
| if arg.store { |
| if haspointers(et) { |
| s.insertWBstore(et, addr, arg.v, n.Lineno, 0) |
| } else { |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg.v, s.mem()) |
| } |
| } else { |
| if haspointers(et) { |
| s.insertWBmove(et, addr, arg.v, n.Lineno, arg.isVolatile) |
| } else { |
| s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(et), addr, arg.v, s.mem()) |
| } |
| } |
| } |
| |
| delete(s.vars, &ptrVar) |
| if inplace { |
| delete(s.vars, &lenVar) |
| return nil |
| } |
| delete(s.vars, &newlenVar) |
| delete(s.vars, &capVar) |
| // make result |
| return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c) |
| } |
| |
| // condBranch evaluates the boolean expression cond and branches to yes |
| // if cond is true and no if cond is false. |
| // This function is intended to handle && and || better than just calling |
| // s.expr(cond) and branching on the result. |
| func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) { |
| if cond.Op == OANDAND { |
| mid := s.f.NewBlock(ssa.BlockPlain) |
| s.stmtList(cond.Ninit) |
| s.condBranch(cond.Left, mid, no, max8(likely, 0)) |
| s.startBlock(mid) |
| s.condBranch(cond.Right, yes, no, likely) |
| return |
| // Note: if likely==1, then both recursive calls pass 1. |
| // If likely==-1, then we don't have enough information to decide |
| // whether the first branch is likely or not. So we pass 0 for |
| // the likeliness of the first branch. |
| // TODO: have the frontend give us branch prediction hints for |
| // OANDAND and OOROR nodes (if it ever has such info). |
| } |
| if cond.Op == OOROR { |
| mid := s.f.NewBlock(ssa.BlockPlain) |
| s.stmtList(cond.Ninit) |
| s.condBranch(cond.Left, yes, mid, min8(likely, 0)) |
| s.startBlock(mid) |
| s.condBranch(cond.Right, yes, no, likely) |
| return |
| // Note: if likely==-1, then both recursive calls pass -1. |
| // If likely==1, then we don't have enough info to decide |
| // the likelihood of the first branch. |
| } |
| if cond.Op == ONOT { |
| s.stmtList(cond.Ninit) |
| s.condBranch(cond.Left, no, yes, -likely) |
| return |
| } |
| c := s.expr(cond) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(c) |
| b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness |
| b.AddEdgeTo(yes) |
| b.AddEdgeTo(no) |
| } |
| |
| type skipMask uint8 |
| |
| const ( |
| skipPtr skipMask = 1 << iota |
| skipLen |
| skipCap |
| ) |
| |
| // assign does left = right. |
| // Right has already been evaluated to ssa, left has not. |
| // If deref is true, then we do left = *right instead (and right has already been nil-checked). |
| // If deref is true and right == nil, just do left = 0. |
| // If deref is true, rightIsVolatile reports whether right points to volatile (clobbered by a call) storage. |
| // Include a write barrier if wb is true. |
| // skip indicates assignments (at the top level) that can be avoided. |
| func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32, skip skipMask, rightIsVolatile bool) { |
| if left.Op == ONAME && isblank(left) { |
| return |
| } |
| t := left.Type |
| dowidth(t) |
| if s.canSSA(left) { |
| if deref { |
| s.Fatalf("can SSA LHS %v but not RHS %s", left, right) |
| } |
| if left.Op == ODOT { |
| // We're assigning to a field of an ssa-able value. |
| // We need to build a new structure with the new value for the |
| // field we're assigning and the old values for the other fields. |
| // For instance: |
| // type T struct {a, b, c int} |
| // var T x |
| // x.b = 5 |
| // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c} |
| |
| // Grab information about the structure type. |
| t := left.Left.Type |
| nf := t.NumFields() |
| idx := fieldIdx(left) |
| |
| // Grab old value of structure. |
| old := s.expr(left.Left) |
| |
| // Make new structure. |
| new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t) |
| |
| // Add fields as args. |
| for i := 0; i < nf; i++ { |
| if i == idx { |
| new.AddArg(right) |
| } else { |
| new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old)) |
| } |
| } |
| |
| // Recursively assign the new value we've made to the base of the dot op. |
| s.assign(left.Left, new, false, false, line, 0, rightIsVolatile) |
| // TODO: do we need to update named values here? |
| return |
| } |
| if left.Op == OINDEX && left.Left.Type.IsArray() { |
| // We're assigning to an element of an ssa-able array. |
| // a[i] = v |
| t := left.Left.Type |
| n := t.NumElem() |
| |
| i := s.expr(left.Right) // index |
| if n == 0 { |
| // The bounds check must fail. Might as well |
| // ignore the actual index and just use zeros. |
| z := s.constInt(Types[TINT], 0) |
| s.boundsCheck(z, z) |
| return |
| } |
| if n != 1 { |
| s.Fatalf("assigning to non-1-length array") |
| } |
| // Rewrite to a = [1]{v} |
| i = s.extendIndex(i, panicindex) |
| s.boundsCheck(i, s.constInt(Types[TINT], 1)) |
| v := s.newValue1(ssa.OpArrayMake1, t, right) |
| s.assign(left.Left, v, false, false, line, 0, rightIsVolatile) |
| return |
| } |
| // Update variable assignment. |
| s.vars[left] = right |
| s.addNamedValue(left, right) |
| return |
| } |
| // Left is not ssa-able. Compute its address. |
| addr, _ := s.addr(left, false) |
| if left.Op == ONAME && skip == 0 { |
| s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem()) |
| } |
| if deref { |
| // Treat as a mem->mem move. |
| if wb && !ssa.IsStackAddr(addr) { |
| s.insertWBmove(t, addr, right, line, rightIsVolatile) |
| return |
| } |
| if right == nil { |
| s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, sizeAlignAuxInt(t), addr, s.mem()) |
| return |
| } |
| s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(t), addr, right, s.mem()) |
| return |
| } |
| // Treat as a store. |
| if wb && !ssa.IsStackAddr(addr) { |
| if skip&skipPtr != 0 { |
| // Special case: if we don't write back the pointers, don't bother |
| // doing the write barrier check. |
| s.storeTypeScalars(t, addr, right, skip) |
| return |
| } |
| s.insertWBstore(t, addr, right, line, skip) |
| return |
| } |
| if skip != 0 { |
| if skip&skipPtr == 0 { |
| s.storeTypePtrs(t, addr, right) |
| } |
| s.storeTypeScalars(t, addr, right, skip) |
| return |
| } |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem()) |
| } |
| |
| // zeroVal returns the zero value for type t. |
| func (s *state) zeroVal(t *Type) *ssa.Value { |
| switch { |
| case t.IsInteger(): |
| switch t.Size() { |
| case 1: |
| return s.constInt8(t, 0) |
| case 2: |
| return s.constInt16(t, 0) |
| case 4: |
| return s.constInt32(t, 0) |
| case 8: |
| return s.constInt64(t, 0) |
| default: |
| s.Fatalf("bad sized integer type %v", t) |
| } |
| case t.IsFloat(): |
| switch t.Size() { |
| case 4: |
| return s.constFloat32(t, 0) |
| case 8: |
| return s.constFloat64(t, 0) |
| default: |
| s.Fatalf("bad sized float type %v", t) |
| } |
| case t.IsComplex(): |
| switch t.Size() { |
| case 8: |
| z := s.constFloat32(Types[TFLOAT32], 0) |
| return s.entryNewValue2(ssa.OpComplexMake, t, z, z) |
| case 16: |
| z := s.constFloat64(Types[TFLOAT64], 0) |
| return s.entryNewValue2(ssa.OpComplexMake, t, z, z) |
| default: |
| s.Fatalf("bad sized complex type %v", t) |
| } |
| |
| case t.IsString(): |
| return s.constEmptyString(t) |
| case t.IsPtrShaped(): |
| return s.constNil(t) |
| case t.IsBoolean(): |
| return s.constBool(false) |
| case t.IsInterface(): |
| return s.constInterface(t) |
| case t.IsSlice(): |
| return s.constSlice(t) |
| case t.IsStruct(): |
| n := t.NumFields() |
| v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t) |
| for i := 0; i < n; i++ { |
| v.AddArg(s.zeroVal(t.FieldType(i).(*Type))) |
| } |
| return v |
| case t.IsArray(): |
| switch t.NumElem() { |
| case 0: |
| return s.entryNewValue0(ssa.OpArrayMake0, t) |
| case 1: |
| return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem())) |
| } |
| } |
| s.Fatalf("zero for type %v not implemented", t) |
| return nil |
| } |
| |
| type callKind int8 |
| |
| const ( |
| callNormal callKind = iota |
| callDefer |
| callGo |
| ) |
| |
| // TODO: make this a field of a configuration object instead of a global. |
| var intrinsics *intrinsicInfo |
| |
| type intrinsicInfo struct { |
| std map[intrinsicKey]intrinsicBuilder |
| intSized map[sizedIntrinsicKey]intrinsicBuilder |
| ptrSized map[sizedIntrinsicKey]intrinsicBuilder |
| } |
| |
| // An intrinsicBuilder converts a call node n into an ssa value that |
| // implements that call as an intrinsic. args is a list of arguments to the func. |
| type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value |
| |
| type intrinsicKey struct { |
| pkg string |
| fn string |
| } |
| |
| type sizedIntrinsicKey struct { |
| pkg string |
| fn string |
| size int |
| } |
| |
| // disableForInstrumenting returns nil when instrumenting, fn otherwise |
| func disableForInstrumenting(fn intrinsicBuilder) intrinsicBuilder { |
| if instrumenting { |
| return nil |
| } |
| return fn |
| } |
| |
| // enableOnArch returns fn on given archs, nil otherwise |
| func enableOnArch(fn intrinsicBuilder, archs ...sys.ArchFamily) intrinsicBuilder { |
| if Thearch.LinkArch.InFamily(archs...) { |
| return fn |
| } |
| return nil |
| } |
| |
| func intrinsicInit() { |
| i := &intrinsicInfo{} |
| intrinsics = i |
| |
| // initial set of intrinsics. |
| i.std = map[intrinsicKey]intrinsicBuilder{ |
| /******** runtime ********/ |
| intrinsicKey{"runtime", "slicebytetostringtmp"}: disableForInstrumenting(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| // Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes |
| // for the backend instead of slicebytetostringtmp calls |
| // when not instrumenting. |
| slice := args[0] |
| ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), slice) |
| len := s.newValue1(ssa.OpSliceLen, Types[TINT], slice) |
| return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) |
| }), |
| intrinsicKey{"runtime", "KeepAlive"}: func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| data := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), args[0]) |
| s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, data, s.mem()) |
| return nil |
| }, |
| |
| /******** runtime/internal/sys ********/ |
| intrinsicKey{"runtime/internal/sys", "Ctz32"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpCtz32, Types[TUINT32], args[0]) |
| }, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS), |
| intrinsicKey{"runtime/internal/sys", "Ctz64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpCtz64, Types[TUINT64], args[0]) |
| }, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS), |
| intrinsicKey{"runtime/internal/sys", "Bswap32"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBswap32, Types[TUINT32], args[0]) |
| }, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X), |
| intrinsicKey{"runtime/internal/sys", "Bswap64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| return s.newValue1(ssa.OpBswap64, Types[TUINT64], args[0]) |
| }, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X), |
| |
| /******** runtime/internal/atomic ********/ |
| intrinsicKey{"runtime/internal/atomic", "Load"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| v := s.newValue2(ssa.OpAtomicLoad32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), args[0], s.mem()) |
| s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, Types[TUINT32], v) |
| }, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS), |
| intrinsicKey{"runtime/internal/atomic", "Load64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| v := s.newValue2(ssa.OpAtomicLoad64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), args[0], s.mem()) |
| s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, Types[TUINT64], v) |
| }, sys.AMD64, sys.ARM64, sys.S390X), |
| intrinsicKey{"runtime/internal/atomic", "Loadp"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| v := s.newValue2(ssa.OpAtomicLoadPtr, ssa.MakeTuple(ptrto(Types[TUINT8]), ssa.TypeMem), args[0], s.mem()) |
| s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, ptrto(Types[TUINT8]), v) |
| }, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS), |
| |
| intrinsicKey{"runtime/internal/atomic", "Store"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, ssa.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS), |
| intrinsicKey{"runtime/internal/atomic", "Store64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, ssa.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, sys.AMD64, sys.ARM64, sys.S390X), |
| intrinsicKey{"runtime/internal/atomic", "StorepNoWB"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, ssa.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS), |
| |
| intrinsicKey{"runtime/internal/atomic", "Xchg"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| v := s.newValue3(ssa.OpAtomicExchange32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem()) |
| s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, Types[TUINT32], v) |
| }, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS), |
| intrinsicKey{"runtime/internal/atomic", "Xchg64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| v := s.newValue3(ssa.OpAtomicExchange64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem()) |
| s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, Types[TUINT64], v) |
| }, sys.AMD64, sys.ARM64, sys.S390X), |
| |
| intrinsicKey{"runtime/internal/atomic", "Xadd"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| v := s.newValue3(ssa.OpAtomicAdd32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem()) |
| s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, Types[TUINT32], v) |
| }, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS), |
| intrinsicKey{"runtime/internal/atomic", "Xadd64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| v := s.newValue3(ssa.OpAtomicAdd64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem()) |
| s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, Types[TUINT64], v) |
| }, sys.AMD64, sys.ARM64, sys.S390X), |
| |
| intrinsicKey{"runtime/internal/atomic", "Cas"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| v := s.newValue4(ssa.OpAtomicCompareAndSwap32, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem()) |
| s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, Types[TBOOL], v) |
| }, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS), |
| intrinsicKey{"runtime/internal/atomic", "Cas64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| v := s.newValue4(ssa.OpAtomicCompareAndSwap64, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem()) |
| s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v) |
| return s.newValue1(ssa.OpSelect0, Types[TBOOL], v) |
| }, sys.AMD64, sys.ARM64, sys.S390X), |
| |
| intrinsicKey{"runtime/internal/atomic", "And8"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, ssa.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, sys.AMD64, sys.ARM64, sys.MIPS), |
| intrinsicKey{"runtime/internal/atomic", "Or8"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, ssa.TypeMem, args[0], args[1], s.mem()) |
| return nil |
| }, sys.AMD64, sys.ARM64, sys.MIPS), |
| } |
| |
| // aliases internal to runtime/internal/atomic |
| i.std[intrinsicKey{"runtime/internal/atomic", "Loadint64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}] |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xaddint64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}] |
| |
| // intrinsics which vary depending on the size of int/ptr. |
| i.intSized = map[sizedIntrinsicKey]intrinsicBuilder{ |
| sizedIntrinsicKey{"runtime/internal/atomic", "Loaduint", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Load"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Loaduint", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}], |
| } |
| i.ptrSized = map[sizedIntrinsicKey]intrinsicBuilder{ |
| sizedIntrinsicKey{"runtime/internal/atomic", "Loaduintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Load"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Loaduintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Storeuintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Store"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Storeuintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Xchguintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Xchguintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Xadduintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Xadduintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Casuintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Casuintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Casp1", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}], |
| sizedIntrinsicKey{"runtime/internal/atomic", "Casp1", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}], |
| } |
| |
| /******** sync/atomic ********/ |
| if flag_race { |
| // The race detector needs to be able to intercept these calls. |
| // We can't intrinsify them. |
| return |
| } |
| // these are all aliases to runtime/internal/atomic implementations. |
| i.std[intrinsicKey{"sync/atomic", "LoadInt32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Load"}] |
| i.std[intrinsicKey{"sync/atomic", "LoadInt64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}] |
| i.std[intrinsicKey{"sync/atomic", "LoadPointer"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Loadp"}] |
| i.std[intrinsicKey{"sync/atomic", "LoadUint32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Load"}] |
| i.std[intrinsicKey{"sync/atomic", "LoadUint64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "LoadUintptr", 4}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Load"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "LoadUintptr", 8}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}] |
| |
| i.std[intrinsicKey{"sync/atomic", "StoreInt32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Store"}] |
| i.std[intrinsicKey{"sync/atomic", "StoreInt64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}] |
| // Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap. |
| i.std[intrinsicKey{"sync/atomic", "StoreUint32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Store"}] |
| i.std[intrinsicKey{"sync/atomic", "StoreUint64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "StoreUintptr", 4}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Store"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "StoreUintptr", 8}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}] |
| |
| i.std[intrinsicKey{"sync/atomic", "SwapInt32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}] |
| i.std[intrinsicKey{"sync/atomic", "SwapInt64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}] |
| i.std[intrinsicKey{"sync/atomic", "SwapUint32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}] |
| i.std[intrinsicKey{"sync/atomic", "SwapUint64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "SwapUintptr", 4}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "SwapUintptr", 8}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}] |
| |
| i.std[intrinsicKey{"sync/atomic", "CompareAndSwapInt32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}] |
| i.std[intrinsicKey{"sync/atomic", "CompareAndSwapInt64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}] |
| i.std[intrinsicKey{"sync/atomic", "CompareAndSwapUint32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}] |
| i.std[intrinsicKey{"sync/atomic", "CompareAndSwapUint64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "CompareAndSwapUintptr", 4}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "CompareAndSwapUintptr", 8}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}] |
| |
| i.std[intrinsicKey{"sync/atomic", "AddInt32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}] |
| i.std[intrinsicKey{"sync/atomic", "AddInt64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}] |
| i.std[intrinsicKey{"sync/atomic", "AddUint32"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}] |
| i.std[intrinsicKey{"sync/atomic", "AddUint64"}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "AddUintptr", 4}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}] |
| i.ptrSized[sizedIntrinsicKey{"sync/atomic", "AddUintptr", 8}] = |
| i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}] |
| |
| /******** math/big ********/ |
| i.intSized[sizedIntrinsicKey{"math/big", "mulWW", 8}] = |
| enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| return s.newValue2(ssa.OpMul64uhilo, ssa.MakeTuple(Types[TUINT64], Types[TUINT64]), args[0], args[1]) |
| }, sys.AMD64) |
| i.intSized[sizedIntrinsicKey{"math/big", "divWW", 8}] = |
| enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value { |
| return s.newValue3(ssa.OpDiv128u, ssa.MakeTuple(Types[TUINT64], Types[TUINT64]), args[0], args[1], args[2]) |
| }, sys.AMD64) |
| } |
| |
| // findIntrinsic returns a function which builds the SSA equivalent of the |
| // function identified by the symbol sym. If sym is not an intrinsic call, returns nil. |
| func findIntrinsic(sym *Sym) intrinsicBuilder { |
| if ssa.IntrinsicsDisable { |
| return nil |
| } |
| if sym == nil || sym.Pkg == nil { |
| return nil |
| } |
| if intrinsics == nil { |
| intrinsicInit() |
| } |
| pkg := sym.Pkg.Path |
| if sym.Pkg == localpkg { |
| pkg = myimportpath |
| } |
| fn := sym.Name |
| f := intrinsics.std[intrinsicKey{pkg, fn}] |
| if f != nil { |
| return f |
| } |
| f = intrinsics.intSized[sizedIntrinsicKey{pkg, fn, Widthint}] |
| if f != nil { |
| return f |
| } |
| return intrinsics.ptrSized[sizedIntrinsicKey{pkg, fn, Widthptr}] |
| } |
| |
| func isIntrinsicCall(n *Node) bool { |
| if n == nil || n.Left == nil { |
| return false |
| } |
| return findIntrinsic(n.Left.Sym) != nil |
| } |
| |
| // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation. |
| func (s *state) intrinsicCall(n *Node) *ssa.Value { |
| v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n)) |
| if ssa.IntrinsicsDebug > 0 { |
| x := v |
| if x == nil { |
| x = s.mem() |
| } |
| if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 { |
| x = x.Args[0] |
| } |
| Warnl(n.Lineno, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString()) |
| } |
| return v |
| } |
| |
| type callArg struct { |
| offset int64 |
| v *ssa.Value |
| } |
| type byOffset []callArg |
| |
| func (x byOffset) Len() int { return len(x) } |
| func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
| func (x byOffset) Less(i, j int) bool { |
| return x[i].offset < x[j].offset |
| } |
| |
| // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them. |
| func (s *state) intrinsicArgs(n *Node) []*ssa.Value { |
| // This code is complicated because of how walk transforms calls. For a call node, |
| // each entry in n.List is either an assignment to OINDREGSP which actually |
| // stores an arg, or an assignment to a temporary which computes an arg |
| // which is later assigned. |
| // The args can also be out of order. |
| // TODO: when walk goes away someday, this code can go away also. |
| var args []callArg |
| temps := map[*Node]*ssa.Value{} |
| for _, a := range n.List.Slice() { |
| if a.Op != OAS { |
| s.Fatalf("non-assignment as a function argument %s", opnames[a.Op]) |
| } |
| l, r := a.Left, a.Right |
| switch l.Op { |
| case ONAME: |
| // Evaluate and store to "temporary". |
| // Walk ensures these temporaries are dead outside of n. |
| temps[l] = s.expr(r) |
| case OINDREGSP: |
| // Store a value to an argument slot. |
| var v *ssa.Value |
| if x, ok := temps[r]; ok { |
| // This is a previously computed temporary. |
| v = x |
| } else { |
| // This is an explicit value; evaluate it. |
| v = s.expr(r) |
| } |
| args = append(args, callArg{l.Xoffset, v}) |
| default: |
| s.Fatalf("function argument assignment target not allowed: %s", opnames[l.Op]) |
| } |
| } |
| sort.Sort(byOffset(args)) |
| res := make([]*ssa.Value, len(args)) |
| for i, a := range args { |
| res[i] = a.v |
| } |
| return res |
| } |
| |
| // Calls the function n using the specified call type. |
| // Returns the address of the return value (or nil if none). |
| func (s *state) call(n *Node, k callKind) *ssa.Value { |
| var sym *Sym // target symbol (if static) |
| var closure *ssa.Value // ptr to closure to run (if dynamic) |
| var codeptr *ssa.Value // ptr to target code (if dynamic) |
| var rcvr *ssa.Value // receiver to set |
| fn := n.Left |
| switch n.Op { |
| case OCALLFUNC: |
| if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC { |
| sym = fn.Sym |
| break |
| } |
| closure = s.expr(fn) |
| case OCALLMETH: |
| if fn.Op != ODOTMETH { |
| Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn) |
| } |
| if k == callNormal { |
| sym = fn.Sym |
| break |
| } |
| // Make a name n2 for the function. |
| // fn.Sym might be sync.(*Mutex).Unlock. |
| // Make a PFUNC node out of that, then evaluate it. |
| // We get back an SSA value representing &sync.(*Mutex).Unlock·f. |
| // We can then pass that to defer or go. |
| n2 := newname(fn.Sym) |
| n2.Class = PFUNC |
| n2.Lineno = fn.Lineno |
| n2.Type = Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it. |
| closure = s.expr(n2) |
| // Note: receiver is already assigned in n.List, so we don't |
| // want to set it here. |
| case OCALLINTER: |
| if fn.Op != ODOTINTER { |
| Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op) |
| } |
| i := s.expr(fn.Left) |
| itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i) |
| if k != callNormal { |
| s.nilCheck(itab) |
| } |
| itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab |
| itab = s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), itabidx, itab) |
| if k == callNormal { |
| codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem()) |
| } else { |
| closure = itab |
| } |
| rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i) |
| } |
| dowidth(fn.Type) |
| stksize := fn.Type.ArgWidth() // includes receiver |
| |
| // Run all argument assignments. The arg slots have already |
| // been offset by the appropriate amount (+2*widthptr for go/defer, |
| // +widthptr for interface calls). |
| // For OCALLMETH, the receiver is set in these statements. |
| s.stmtList(n.List) |
| |
| // Set receiver (for interface calls) |
| if rcvr != nil { |
| argStart := Ctxt.FixedFrameSize() |
| if k != callNormal { |
| argStart += int64(2 * Widthptr) |
| } |
| addr := s.entryNewValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), argStart, s.sp) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem()) |
| } |
| |
| // Defer/go args |
| if k != callNormal { |
| // Write argsize and closure (args to Newproc/Deferproc). |
| argStart := Ctxt.FixedFrameSize() |
| argsize := s.constInt32(Types[TUINT32], int32(stksize)) |
| addr := s.entryNewValue1I(ssa.OpOffPtr, ptrto(Types[TUINT32]), argStart, s.sp) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, addr, argsize, s.mem()) |
| addr = s.entryNewValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), argStart+int64(Widthptr), s.sp) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem()) |
| stksize += 2 * int64(Widthptr) |
| } |
| |
| // call target |
| var call *ssa.Value |
| switch { |
| case k == callDefer: |
| call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem()) |
| case k == callGo: |
| call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem()) |
| case closure != nil: |
| codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem()) |
| call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem()) |
| case codeptr != nil: |
| call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem()) |
| case sym != nil: |
| call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem()) |
| default: |
| Fatalf("bad call type %v %v", n.Op, n) |
| } |
| call.AuxInt = stksize // Call operations carry the argsize of the callee along with them |
| s.vars[&memVar] = call |
| |
| // Finish block for defers |
| if k == callDefer { |
| b := s.endBlock() |
| b.Kind = ssa.BlockDefer |
| b.SetControl(call) |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bNext) |
| // Add recover edge to exit code. |
| r := s.f.NewBlock(ssa.BlockPlain) |
| s.startBlock(r) |
| s.exit() |
| b.AddEdgeTo(r) |
| b.Likely = ssa.BranchLikely |
| s.startBlock(bNext) |
| } |
| |
| res := n.Left.Type.Results() |
| if res.NumFields() == 0 || k != callNormal { |
| // call has no return value. Continue with the next statement. |
| return nil |
| } |
| fp := res.Field(0) |
| return s.entryNewValue1I(ssa.OpOffPtr, ptrto(fp.Type), fp.Offset+Ctxt.FixedFrameSize(), s.sp) |
| } |
| |
| // etypesign returns the signed-ness of e, for integer/pointer etypes. |
| // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer. |
| func etypesign(e EType) int8 { |
| switch e { |
| case TINT8, TINT16, TINT32, TINT64, TINT: |
| return -1 |
| case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR: |
| return +1 |
| } |
| return 0 |
| } |
| |
| // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node. |
| // This improves the effectiveness of cse by using the same Aux values for the |
| // same symbols. |
| func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} { |
| switch sym.(type) { |
| default: |
| s.Fatalf("sym %v is of uknown type %T", sym, sym) |
| case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol: |
| // these are the only valid types |
| } |
| |
| if lsym, ok := s.varsyms[n]; ok { |
| return lsym |
| } else { |
| s.varsyms[n] = sym |
| return sym |
| } |
| } |
| |
| // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. |
| // Also returns a bool reporting whether the returned value is "volatile", that is it |
| // points to the outargs section and thus the referent will be clobbered by any call. |
| // The value that the returned Value represents is guaranteed to be non-nil. |
| // If bounded is true then this address does not require a nil check for its operand |
| // even if that would otherwise be implied. |
| func (s *state) addr(n *Node, bounded bool) (*ssa.Value, bool) { |
| t := ptrto(n.Type) |
| switch n.Op { |
| case ONAME: |
| switch n.Class { |
| case PEXTERN: |
| // global variable |
| aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Sym}) |
| v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb) |
| // TODO: Make OpAddr use AuxInt as well as Aux. |
| if n.Xoffset != 0 { |
| v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v) |
| } |
| return v, false |
| case PPARAM: |
| // parameter slot |
| v := s.decladdrs[n] |
| if v != nil { |
| return v, false |
| } |
| if n == nodfp { |
| // Special arg that points to the frame pointer (Used by ORECOVER). |
| aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n}) |
| return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp), false |
| } |
| s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) |
| return nil, false |
| case PAUTO: |
| aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n}) |
| return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false |
| case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early. |
| // ensure that we reuse symbols for out parameters so |
| // that cse works on their addresses |
| aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n}) |
| return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false |
| default: |
| s.Fatalf("variable address class %v not implemented", classnames[n.Class]) |
| return nil, false |
| } |
| case OINDREGSP: |
| // indirect off REGSP |
| // used for storing/loading arguments/returns to/from callees |
| return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp), true |
| case OINDEX: |
| if n.Left.Type.IsSlice() { |
| a := s.expr(n.Left) |
| i := s.expr(n.Right) |
| i = s.extendIndex(i, panicindex) |
| len := s.newValue1(ssa.OpSliceLen, Types[TINT], a) |
| if !n.Bounded { |
| s.boundsCheck(i, len) |
| } |
| p := s.newValue1(ssa.OpSlicePtr, t, a) |
| return s.newValue2(ssa.OpPtrIndex, t, p, i), false |
| } else { // array |
| a, isVolatile := s.addr(n.Left, bounded) |
| i := s.expr(n.Right) |
| i = s.extendIndex(i, panicindex) |
| len := s.constInt(Types[TINT], n.Left.Type.NumElem()) |
| if !n.Bounded { |
| s.boundsCheck(i, len) |
| } |
| return s.newValue2(ssa.OpPtrIndex, ptrto(n.Left.Type.Elem()), a, i), isVolatile |
| } |
| case OIND: |
| return s.exprPtr(n.Left, bounded, n.Lineno), false |
| case ODOT: |
| p, isVolatile := s.addr(n.Left, bounded) |
| return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), isVolatile |
| case ODOTPTR: |
| p := s.exprPtr(n.Left, bounded, n.Lineno) |
| return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), false |
| case OCLOSUREVAR: |
| return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, |
| s.entryNewValue0(ssa.OpGetClosurePtr, ptrto(Types[TUINT8]))), false |
| case OCONVNOP: |
| addr, isVolatile := s.addr(n.Left, bounded) |
| return s.newValue1(ssa.OpCopy, t, addr), isVolatile // ensure that addr has the right type |
| case OCALLFUNC, OCALLINTER, OCALLMETH: |
| return s.call(n, callNormal), true |
| case ODOTTYPE: |
| v, _ := s.dottype(n, false) |
| if v.Op != ssa.OpLoad { |
| s.Fatalf("dottype of non-load") |
| } |
| if v.Args[1] != s.mem() { |
| s.Fatalf("memory no longer live from dottype load") |
| } |
| return v.Args[0], false |
| default: |
| s.Fatalf("unhandled addr %v", n.Op) |
| return nil, false |
| } |
| } |
| |
| // canSSA reports whether n is SSA-able. |
| // n must be an ONAME (or an ODOT sequence with an ONAME base). |
| func (s *state) canSSA(n *Node) bool { |
| if Debug['N'] != 0 { |
| return false |
| } |
| for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) { |
| n = n.Left |
| } |
| if n.Op != ONAME { |
| return false |
| } |
| if n.Addrtaken { |
| return false |
| } |
| if n.isParamHeapCopy() { |
| return false |
| } |
| if n.Class == PAUTOHEAP { |
| Fatalf("canSSA of PAUTOHEAP %v", n) |
| } |
| switch n.Class { |
| case PEXTERN: |
| return false |
| case PPARAMOUT: |
| if hasdefer { |
| // TODO: handle this case? Named return values must be |
| // in memory so that the deferred function can see them. |
| // Maybe do: if !strings.HasPrefix(n.String(), "~") { return false } |
| return false |
| } |
| if s.cgoUnsafeArgs { |
| // Cgo effectively takes the address of all result args, |
| // but the compiler can't see that. |
| return false |
| } |
| } |
| if n.Class == PPARAM && n.String() == ".this" { |
| // wrappers generated by genwrapper need to update |
| // the .this pointer in place. |
| // TODO: treat as a PPARMOUT? |
| return false |
| } |
| return canSSAType(n.Type) |
| // TODO: try to make more variables SSAable? |
| } |
| |
| // canSSA reports whether variables of type t are SSA-able. |
| func canSSAType(t *Type) bool { |
| dowidth(t) |
| if t.Width > int64(4*Widthptr) { |
| // 4*Widthptr is an arbitrary constant. We want it |
| // to be at least 3*Widthptr so slices can be registerized. |
| // Too big and we'll introduce too much register pressure. |
| return false |
| } |
| switch t.Etype { |
| case TARRAY: |
| // We can't do larger arrays because dynamic indexing is |
| // not supported on SSA variables. |
| // TODO: allow if all indexes are constant. |
| if t.NumElem() == 0 { |
| return true |
| } |
| if t.NumElem() == 1 { |
| return canSSAType(t.Elem()) |
| } |
| return false |
| case TSTRUCT: |
| if t.NumFields() > ssa.MaxStruct { |
| return false |
| } |
| for _, t1 := range t.Fields().Slice() { |
| if !canSSAType(t1.Type) { |
| return false |
| } |
| } |
| return true |
| default: |
| return true |
| } |
| } |
| |
| // exprPtr evaluates n to a pointer and nil-checks it. |
| func (s *state) exprPtr(n *Node, bounded bool, lineno int32) *ssa.Value { |
| p := s.expr(n) |
| if bounded || n.NonNil { |
| if s.f.Config.Debug_checknil() && lineno > 1 { |
| s.f.Config.Warnl(lineno, "removed nil check") |
| } |
| return p |
| } |
| s.nilCheck(p) |
| return p |
| } |
| |
| // nilCheck generates nil pointer checking code. |
| // Used only for automatically inserted nil checks, |
| // not for user code like 'x != nil'. |
| func (s *state) nilCheck(ptr *ssa.Value) { |
| if disable_checknil != 0 { |
| return |
| } |
| s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem()) |
| } |
| |
| // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not. |
| // Starts a new block on return. |
| // idx is already converted to full int width. |
| func (s *state) boundsCheck(idx, len *ssa.Value) { |
| if Debug['B'] != 0 { |
| return |
| } |
| |
| // bounds check |
| cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len) |
| s.check(cmp, panicindex) |
| } |
| |
| // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not. |
| // Starts a new block on return. |
| // idx and len are already converted to full int width. |
| func (s *state) sliceBoundsCheck(idx, len *ssa.Value) { |
| if Debug['B'] != 0 { |
| return |
| } |
| |
| // bounds check |
| cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len) |
| s.check(cmp, panicslice) |
| } |
| |
| // If cmp (a bool) is false, panic using the given function. |
| func (s *state) check(cmp *ssa.Value, fn *Node) { |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| line := s.peekLine() |
| bPanic := s.panics[funcLine{fn, line}] |
| if bPanic == nil { |
| bPanic = s.f.NewBlock(ssa.BlockPlain) |
| s.panics[funcLine{fn, line}] = bPanic |
| s.startBlock(bPanic) |
| // The panic call takes/returns memory to ensure that the right |
| // memory state is observed if the panic happens. |
| s.rtcall(fn, false, nil) |
| } |
| b.AddEdgeTo(bNext) |
| b.AddEdgeTo(bPanic) |
| s.startBlock(bNext) |
| } |
| |
| func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value { |
| needcheck := true |
| switch b.Op { |
| case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64: |
| if b.AuxInt != 0 { |
| needcheck = false |
| } |
| } |
| if needcheck { |
| // do a size-appropriate check for zero |
| cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type)) |
| s.check(cmp, panicdivide) |
| } |
| return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) |
| } |
| |
| // rtcall issues a call to the given runtime function fn with the listed args. |
| // Returns a slice of results of the given result types. |
| // The call is added to the end of the current block. |
| // If returns is false, the block is marked as an exit block. |
| func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value { |
| // Write args to the stack |
| off := Ctxt.FixedFrameSize() |
| for _, arg := range args { |
| t := arg.Type |
| off = Rnd(off, t.Alignment()) |
| ptr := s.sp |
| if off != 0 { |
| ptr = s.newValue1I(ssa.OpOffPtr, t.PtrTo(), off, s.sp) |
| } |
| size := t.Size() |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem()) |
| off += size |
| } |
| off = Rnd(off, int64(Widthptr)) |
| if Thearch.LinkArch.Name == "amd64p32" { |
| // amd64p32 wants 8-byte alignment of the start of the return values. |
| off = Rnd(off, 8) |
| } |
| |
| // Issue call |
| call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem()) |
| s.vars[&memVar] = call |
| |
| if !returns { |
| // Finish block |
| b := s.endBlock() |
| b.Kind = ssa.BlockExit |
| b.SetControl(call) |
| call.AuxInt = off - Ctxt.FixedFrameSize() |
| if len(results) > 0 { |
| Fatalf("panic call can't have results") |
| } |
| return nil |
| } |
| |
| // Load results |
| res := make([]*ssa.Value, len(results)) |
| for i, t := range results { |
| off = Rnd(off, t.Alignment()) |
| ptr := s.sp |
| if off != 0 { |
| ptr = s.newValue1I(ssa.OpOffPtr, ptrto(t), off, s.sp) |
| } |
| res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem()) |
| off += t.Size() |
| } |
| off = Rnd(off, int64(Widthptr)) |
| |
| // Remember how much callee stack space we needed. |
| call.AuxInt = off |
| |
| return res |
| } |
| |
| // insertWBmove inserts the assignment *left = *right including a write barrier. |
| // t is the type being assigned. |
| // If right == nil, then we're zeroing *left. |
| func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightIsVolatile bool) { |
| // if writeBarrier.enabled { |
| // typedmemmove(&t, left, right) |
| // } else { |
| // *left = *right |
| // } |
| // |
| // or |
| // |
| // if writeBarrier.enabled { |
| // typedmemclr(&t, left) |
| // } else { |
| // *left = zeroValue |
| // } |
| |
| if s.noWB { |
| s.Error("write barrier prohibited") |
| } |
| if s.WBLineno == 0 { |
| s.WBLineno = left.Line |
| } |
| |
| var val *ssa.Value |
| if right == nil { |
| val = s.newValue2I(ssa.OpZeroWB, ssa.TypeMem, sizeAlignAuxInt(t), left, s.mem()) |
| } else { |
| var op ssa.Op |
| if rightIsVolatile { |
| op = ssa.OpMoveWBVolatile |
| } else { |
| op = ssa.OpMoveWB |
| } |
| val = s.newValue3I(op, ssa.TypeMem, sizeAlignAuxInt(t), left, right, s.mem()) |
| } |
| val.Aux = &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)} |
| s.vars[&memVar] = val |
| |
| // WB ops will be expanded to branches at writebarrier phase. |
| // To make it easy, we put WB ops at the end of a block, so |
| // that it does not need to split a block into two parts when |
| // expanding WB ops. |
| b := s.f.NewBlock(ssa.BlockPlain) |
| s.endBlock().AddEdgeTo(b) |
| s.startBlock(b) |
| } |
| |
| // insertWBstore inserts the assignment *left = right including a write barrier. |
| // t is the type being assigned. |
| func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip skipMask) { |
| // store scalar fields |
| // if writeBarrier.enabled { |
| // writebarrierptr for pointer fields |
| // } else { |
| // store pointer fields |
| // } |
| |
| if s.noWB { |
| s.Error("write barrier prohibited") |
| } |
| if s.WBLineno == 0 { |
| s.WBLineno = left.Line |
| } |
| if t == Types[TUINTPTR] { |
| // Stores to reflect.{Slice,String}Header.Data. |
| s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, right, s.mem()) |
| } else { |
| s.storeTypeScalars(t, left, right, skip) |
| s.storeTypePtrsWB(t, left, right) |
| } |
| |
| // WB ops will be expanded to branches at writebarrier phase. |
| // To make it easy, we put WB ops at the end of a block, so |
| // that it does not need to split a block into two parts when |
| // expanding WB ops. |
| b := s.f.NewBlock(ssa.BlockPlain) |
| s.endBlock().AddEdgeTo(b) |
| s.startBlock(b) |
| } |
| |
| // do *left = right for all scalar (non-pointer) parts of t. |
| func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) { |
| switch { |
| case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex(): |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem()) |
| case t.IsPtrShaped(): |
| // no scalar fields. |
| case t.IsString(): |
| if skip&skipLen != 0 { |
| return |
| } |
| len := s.newValue1(ssa.OpStringLen, Types[TINT], right) |
| lenAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), s.config.IntSize, left) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem()) |
| case t.IsSlice(): |
| if skip&skipLen == 0 { |
| len := s.newValue1(ssa.OpSliceLen, Types[TINT], right) |
| lenAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), s.config.IntSize, left) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem()) |
| } |
| if skip&skipCap == 0 { |
| cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right) |
| capAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), 2*s.config.IntSize, left) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem()) |
| } |
| case t.IsInterface(): |
| // itab field doesn't need a write barrier (even though it is a pointer). |
| itab := s.newValue1(ssa.OpITab, ptrto(Types[TUINT8]), right) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem()) |
| case t.IsStruct(): |
| n := t.NumFields() |
| for i := 0; i < n; i++ { |
| ft := t.FieldType(i) |
| addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) |
| val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) |
| s.storeTypeScalars(ft.(*Type), addr, val, 0) |
| } |
| case t.IsArray() && t.NumElem() == 0: |
| // nothing |
| case t.IsArray() && t.NumElem() == 1: |
| s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0) |
| default: |
| s.Fatalf("bad write barrier type %v", t) |
| } |
| } |
| |
| // do *left = right for all pointer parts of t. |
| func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) { |
| switch { |
| case t.IsPtrShaped(): |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem()) |
| case t.IsString(): |
| ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), right) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem()) |
| case t.IsSlice(): |
| ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), right) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem()) |
| case t.IsInterface(): |
| // itab field is treated as a scalar. |
| idata := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), right) |
| idataAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINT8]), s.config.PtrSize, left) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem()) |
| case t.IsStruct(): |
| n := t.NumFields() |
| for i := 0; i < n; i++ { |
| ft := t.FieldType(i) |
| if !haspointers(ft.(*Type)) { |
| continue |
| } |
| addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) |
| val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) |
| s.storeTypePtrs(ft.(*Type), addr, val) |
| } |
| case t.IsArray() && t.NumElem() == 0: |
| // nothing |
| case t.IsArray() && t.NumElem() == 1: |
| s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right)) |
| default: |
| s.Fatalf("bad write barrier type %v", t) |
| } |
| } |
| |
| // do *left = right for all pointer parts of t, with write barriers if necessary. |
| func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) { |
| switch { |
| case t.IsPtrShaped(): |
| s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, right, s.mem()) |
| case t.IsString(): |
| ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), right) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem()) |
| case t.IsSlice(): |
| ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), right) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem()) |
| case t.IsInterface(): |
| // itab field is treated as a scalar. |
| idata := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), right) |
| idataAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINT8]), s.config.PtrSize, left) |
| s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem()) |
| case t.IsStruct(): |
| n := t.NumFields() |
| for i := 0; i < n; i++ { |
| ft := t.FieldType(i) |
| if !haspointers(ft.(*Type)) { |
| continue |
| } |
| addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) |
| val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) |
| s.storeTypePtrsWB(ft.(*Type), addr, val) |
| } |
| case t.IsArray() && t.NumElem() == 0: |
| // nothing |
| case t.IsArray() && t.NumElem() == 1: |
| s.storeTypePtrsWB(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right)) |
| default: |
| s.Fatalf("bad write barrier type %v", t) |
| } |
| } |
| |
| // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result. |
| // i,j,k may be nil, in which case they are set to their default value. |
| // t is a slice, ptr to array, or string type. |
| func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) { |
| var elemtype *Type |
| var ptrtype *Type |
| var ptr *ssa.Value |
| var len *ssa.Value |
| var cap *ssa.Value |
| zero := s.constInt(Types[TINT], 0) |
| switch { |
| case t.IsSlice(): |
| elemtype = t.Elem() |
| ptrtype = ptrto(elemtype) |
| ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v) |
| len = s.newValue1(ssa.OpSliceLen, Types[TINT], v) |
| cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v) |
| case t.IsString(): |
| elemtype = Types[TUINT8] |
| ptrtype = ptrto(elemtype) |
| ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v) |
| len = s.newValue1(ssa.OpStringLen, Types[TINT], v) |
| cap = len |
| case t.IsPtr(): |
| if !t.Elem().IsArray() { |
| s.Fatalf("bad ptr to array in slice %v\n", t) |
| } |
| elemtype = t.Elem().Elem() |
| ptrtype = ptrto(elemtype) |
| s.nilCheck(v) |
| ptr = v |
| len = s.constInt(Types[TINT], t.Elem().NumElem()) |
| cap = len |
| default: |
| s.Fatalf("bad type in slice %v\n", t) |
| } |
| |
| // Set default values |
| if i == nil { |
| i = zero |
| } |
| if j == nil { |
| j = len |
| } |
| if k == nil { |
| k = cap |
| } |
| |
| // Panic if slice indices are not in bounds. |
| s.sliceBoundsCheck(i, j) |
| if j != k { |
| s.sliceBoundsCheck(j, k) |
| } |
| if k != cap { |
| s.sliceBoundsCheck(k, cap) |
| } |
| |
| // Generate the following code assuming that indexes are in bounds. |
| // The masking is to make sure that we don't generate a slice |
| // that points to the next object in memory. |
| // rlen = j - i |
| // rcap = k - i |
| // delta = i * elemsize |
| // rptr = p + delta&mask(rcap) |
| // result = (SliceMake rptr rlen rcap) |
| // where mask(x) is 0 if x==0 and -1 if x>0. |
| subOp := s.ssaOp(OSUB, Types[TINT]) |
| mulOp := s.ssaOp(OMUL, Types[TINT]) |
| andOp := s.ssaOp(OAND, Types[TINT]) |
| rlen := s.newValue2(subOp, Types[TINT], j, i) |
| var rcap *ssa.Value |
| switch { |
| case t.IsString(): |
| // Capacity of the result is unimportant. However, we use |
| // rcap to test if we've generated a zero-length slice. |
| // Use length of strings for that. |
| rcap = rlen |
| case j == k: |
| rcap = rlen |
| default: |
| rcap = s.newValue2(subOp, Types[TINT], k, i) |
| } |
| |
| var rptr *ssa.Value |
| if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 { |
| // No pointer arithmetic necessary. |
| rptr = ptr |
| } else { |
| // delta = # of bytes to offset pointer by. |
| delta := s.newValue2(mulOp, Types[TINT], i, s.constInt(Types[TINT], elemtype.Width)) |
| // If we're slicing to the point where the capacity is zero, |
| // zero out the delta. |
| mask := s.newValue1(ssa.OpSlicemask, Types[TINT], rcap) |
| delta = s.newValue2(andOp, Types[TINT], delta, mask) |
| // Compute rptr = ptr + delta |
| rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta) |
| } |
| |
| return rptr, rlen, rcap |
| } |
| |
| type u642fcvtTab struct { |
| geq, cvt2F, and, rsh, or, add ssa.Op |
| one func(*state, ssa.Type, int64) *ssa.Value |
| } |
| |
| var u64_f64 u642fcvtTab = u642fcvtTab{ |
| geq: ssa.OpGeq64, |
| cvt2F: ssa.OpCvt64to64F, |
| and: ssa.OpAnd64, |
| rsh: ssa.OpRsh64Ux64, |
| or: ssa.OpOr64, |
| add: ssa.OpAdd64F, |
| one: (*state).constInt64, |
| } |
| |
| var u64_f32 u642fcvtTab = u642fcvtTab{ |
| geq: ssa.OpGeq64, |
| cvt2F: ssa.OpCvt64to32F, |
| and: ssa.OpAnd64, |
| rsh: ssa.OpRsh64Ux64, |
| or: ssa.OpOr64, |
| add: ssa.OpAdd32F, |
| one: (*state).constInt64, |
| } |
| |
| func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.uint64Tofloat(&u64_f64, n, x, ft, tt) |
| } |
| |
| func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.uint64Tofloat(&u64_f32, n, x, ft, tt) |
| } |
| |
| func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| // if x >= 0 { |
| // result = (floatY) x |
| // } else { |
| // y = uintX(x) ; y = x & 1 |
| // z = uintX(x) ; z = z >> 1 |
| // z = z >> 1 |
| // z = z | y |
| // result = floatY(z) |
| // result = result + result |
| // } |
| // |
| // Code borrowed from old code generator. |
| // What's going on: large 64-bit "unsigned" looks like |
| // negative number to hardware's integer-to-float |
| // conversion. However, because the mantissa is only |
| // 63 bits, we don't need the LSB, so instead we do an |
| // unsigned right shift (divide by two), convert, and |
| // double. However, before we do that, we need to be |
| // sure that we do not lose a "1" if that made the |
| // difference in the resulting rounding. Therefore, we |
| // preserve it, and OR (not ADD) it back in. The case |
| // that matters is when the eleven discarded bits are |
| // equal to 10000000001; that rounds up, and the 1 cannot |
| // be lost else it would round down if the LSB of the |
| // candidate mantissa is 0. |
| cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft)) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| a0 := s.newValue1(cvttab.cvt2F, tt, x) |
| s.vars[n] = a0 |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| one := cvttab.one(s, ft, 1) |
| y := s.newValue2(cvttab.and, ft, x, one) |
| z := s.newValue2(cvttab.rsh, ft, x, one) |
| z = s.newValue2(cvttab.or, ft, z, y) |
| a := s.newValue1(cvttab.cvt2F, tt, z) |
| a1 := s.newValue2(cvttab.add, tt, a, a) |
| s.vars[n] = a1 |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, n.Type) |
| } |
| |
| type u322fcvtTab struct { |
| cvtI2F, cvtF2F ssa.Op |
| } |
| |
| var u32_f64 u322fcvtTab = u322fcvtTab{ |
| cvtI2F: ssa.OpCvt32to64F, |
| cvtF2F: ssa.OpCopy, |
| } |
| |
| var u32_f32 u322fcvtTab = u322fcvtTab{ |
| cvtI2F: ssa.OpCvt32to32F, |
| cvtF2F: ssa.OpCvt64Fto32F, |
| } |
| |
| func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.uint32Tofloat(&u32_f64, n, x, ft, tt) |
| } |
| |
| func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.uint32Tofloat(&u32_f32, n, x, ft, tt) |
| } |
| |
| func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| // if x >= 0 { |
| // result = floatY(x) |
| // } else { |
| // result = floatY(float64(x) + (1<<32)) |
| // } |
| cmp := s.newValue2(ssa.OpGeq32, Types[TBOOL], x, s.zeroVal(ft)) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| a0 := s.newValue1(cvttab.cvtI2F, tt, x) |
| s.vars[n] = a0 |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| a1 := s.newValue1(ssa.OpCvt32to64F, Types[TFLOAT64], x) |
| twoToThe32 := s.constFloat64(Types[TFLOAT64], float64(1<<32)) |
| a2 := s.newValue2(ssa.OpAdd64F, Types[TFLOAT64], a1, twoToThe32) |
| a3 := s.newValue1(cvttab.cvtF2F, tt, a2) |
| |
| s.vars[n] = a3 |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, n.Type) |
| } |
| |
| // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. |
| func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value { |
| if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() { |
| s.Fatalf("node must be a map or a channel") |
| } |
| // if n == nil { |
| // return 0 |
| // } else { |
| // // len |
| // return *((*int)n) |
| // // cap |
| // return *(((*int)n)+1) |
| // } |
| lenType := n.Type |
| nilValue := s.constNil(Types[TUINTPTR]) |
| cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchUnlikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| // length/capacity of a nil map/chan is zero |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| s.vars[n] = s.zeroVal(lenType) |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| if n.Op == OLEN { |
| // length is stored in the first word for map/chan |
| s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem()) |
| } else if n.Op == OCAP { |
| // capacity is stored in the second word for chan |
| sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x) |
| s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem()) |
| } else { |
| s.Fatalf("op must be OLEN or OCAP") |
| } |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, lenType) |
| } |
| |
| type f2uCvtTab struct { |
| ltf, cvt2U, subf, or ssa.Op |
| floatValue func(*state, ssa.Type, float64) *ssa.Value |
| intValue func(*state, ssa.Type, int64) *ssa.Value |
| cutoff uint64 |
| } |
| |
| var f32_u64 f2uCvtTab = f2uCvtTab{ |
| ltf: ssa.OpLess32F, |
| cvt2U: ssa.OpCvt32Fto64, |
| subf: ssa.OpSub32F, |
| or: ssa.OpOr64, |
| floatValue: (*state).constFloat32, |
| intValue: (*state).constInt64, |
| cutoff: 9223372036854775808, |
| } |
| |
| var f64_u64 f2uCvtTab = f2uCvtTab{ |
| ltf: ssa.OpLess64F, |
| cvt2U: ssa.OpCvt64Fto64, |
| subf: ssa.OpSub64F, |
| or: ssa.OpOr64, |
| floatValue: (*state).constFloat64, |
| intValue: (*state).constInt64, |
| cutoff: 9223372036854775808, |
| } |
| |
| var f32_u32 f2uCvtTab = f2uCvtTab{ |
| ltf: ssa.OpLess32F, |
| cvt2U: ssa.OpCvt32Fto32, |
| subf: ssa.OpSub32F, |
| or: ssa.OpOr32, |
| floatValue: (*state).constFloat32, |
| intValue: func(s *state, t ssa.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, |
| cutoff: 2147483648, |
| } |
| |
| var f64_u32 f2uCvtTab = f2uCvtTab{ |
| ltf: ssa.OpLess64F, |
| cvt2U: ssa.OpCvt64Fto32, |
| subf: ssa.OpSub64F, |
| or: ssa.OpOr32, |
| floatValue: (*state).constFloat64, |
| intValue: func(s *state, t ssa.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, |
| cutoff: 2147483648, |
| } |
| |
| func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.floatToUint(&f32_u64, n, x, ft, tt) |
| } |
| func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.floatToUint(&f64_u64, n, x, ft, tt) |
| } |
| |
| func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.floatToUint(&f32_u32, n, x, ft, tt) |
| } |
| |
| func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| return s.floatToUint(&f64_u32, n, x, ft, tt) |
| } |
| |
| func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value { |
| // cutoff:=1<<(intY_Size-1) |
| // if x < floatX(cutoff) { |
| // result = uintY(x) |
| // } else { |
| // y = x - floatX(cutoff) |
| // z = uintY(y) |
| // result = z | -(cutoff) |
| // } |
| cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff)) |
| cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, cutoff) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cmp) |
| b.Likely = ssa.BranchLikely |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bElse := s.f.NewBlock(ssa.BlockPlain) |
| bAfter := s.f.NewBlock(ssa.BlockPlain) |
| |
| b.AddEdgeTo(bThen) |
| s.startBlock(bThen) |
| a0 := s.newValue1(cvttab.cvt2U, tt, x) |
| s.vars[n] = a0 |
| s.endBlock() |
| bThen.AddEdgeTo(bAfter) |
| |
| b.AddEdgeTo(bElse) |
| s.startBlock(bElse) |
| y := s.newValue2(cvttab.subf, ft, x, cutoff) |
| y = s.newValue1(cvttab.cvt2U, tt, y) |
| z := cvttab.intValue(s, tt, int64(-cvttab.cutoff)) |
| a1 := s.newValue2(cvttab.or, tt, y, z) |
| s.vars[n] = a1 |
| s.endBlock() |
| bElse.AddEdgeTo(bAfter) |
| |
| s.startBlock(bAfter) |
| return s.variable(n, n.Type) |
| } |
| |
| // ifaceType returns the value for the word containing the type. |
| // t is the type of the interface expression. |
| // v is the corresponding value. |
| func (s *state) ifaceType(t *Type, v *ssa.Value) *ssa.Value { |
| byteptr := ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte) |
| |
| if t.IsEmptyInterface() { |
| // Have eface. The type is the first word in the struct. |
| return s.newValue1(ssa.OpITab, byteptr, v) |
| } |
| |
| // Have iface. |
| // The first word in the struct is the itab. |
| // If the itab is nil, return 0. |
| // Otherwise, the second word in the itab is the type. |
| |
| tab := s.newValue1(ssa.OpITab, byteptr, v) |
| s.vars[&typVar] = tab |
| isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.constNil(byteptr)) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(isnonnil) |
| b.Likely = ssa.BranchLikely |
| |
| bLoad := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| b.AddEdgeTo(bLoad) |
| b.AddEdgeTo(bEnd) |
| bLoad.AddEdgeTo(bEnd) |
| |
| s.startBlock(bLoad) |
| off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab) |
| s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem()) |
| s.endBlock() |
| |
| s.startBlock(bEnd) |
| typ := s.variable(&typVar, byteptr) |
| delete(s.vars, &typVar) |
| return typ |
| } |
| |
| // dottype generates SSA for a type assertion node. |
| // commaok indicates whether to panic or return a bool. |
| // If commaok is false, resok will be nil. |
| func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) { |
| iface := s.expr(n.Left) // input interface |
| target := s.expr(typename(n.Type)) // target type |
| byteptr := ptrto(Types[TUINT8]) |
| |
| if n.Type.IsInterface() { |
| if n.Type.IsEmptyInterface() { |
| // Converting to an empty interface. |
| // Input could be an empty or nonempty interface. |
| if Debug_typeassert > 0 { |
| Warnl(n.Lineno, "type assertion inlined") |
| } |
| |
| // Get itab/type field from input. |
| itab := s.newValue1(ssa.OpITab, byteptr, iface) |
| // Conversion succeeds iff that field is not nil. |
| cond := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], itab, s.constNil(byteptr)) |
| |
| if n.Left.Type.IsEmptyInterface() && commaok { |
| // Converting empty interface to empty interface with ,ok is just a nil check. |
| return iface, cond |
| } |
| |
| // Branch on nilness. |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cond) |
| b.Likely = ssa.BranchLikely |
| bOk := s.f.NewBlock(ssa.BlockPlain) |
| bFail := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bOk) |
| b.AddEdgeTo(bFail) |
| |
| if !commaok { |
| // On failure, panic by calling panicnildottype. |
| s.startBlock(bFail) |
| s.rtcall(panicnildottype, false, nil, target) |
| |
| // On success, return (perhaps modified) input interface. |
| s.startBlock(bOk) |
| if n.Left.Type.IsEmptyInterface() { |
| res = iface // Use input interface unchanged. |
| return |
| } |
| // Load type out of itab, build interface with existing idata. |
| off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) |
| typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem()) |
| idata := s.newValue1(ssa.OpIData, n.Type, iface) |
| res = s.newValue2(ssa.OpIMake, n.Type, typ, idata) |
| return |
| } |
| |
| s.startBlock(bOk) |
| // nonempty -> empty |
| // Need to load type from itab |
| off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) |
| s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem()) |
| s.endBlock() |
| |
| // itab is nil, might as well use that as the nil result. |
| s.startBlock(bFail) |
| s.vars[&typVar] = itab |
| s.endBlock() |
| |
| // Merge point. |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| bOk.AddEdgeTo(bEnd) |
| bFail.AddEdgeTo(bEnd) |
| s.startBlock(bEnd) |
| idata := s.newValue1(ssa.OpIData, n.Type, iface) |
| res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata) |
| resok = cond |
| delete(s.vars, &typVar) |
| return |
| } |
| // converting to a nonempty interface needs a runtime call. |
| if Debug_typeassert > 0 { |
| Warnl(n.Lineno, "type assertion not inlined") |
| } |
| if n.Left.Type.IsEmptyInterface() { |
| if commaok { |
| call := s.rtcall(assertE2I2, true, []*Type{n.Type, Types[TBOOL]}, target, iface) |
| return call[0], call[1] |
| } |
| return s.rtcall(assertE2I, true, []*Type{n.Type}, target, iface)[0], nil |
| } |
| if commaok { |
| call := s.rtcall(assertI2I2, true, []*Type{n.Type, Types[TBOOL]}, target, iface) |
| return call[0], call[1] |
| } |
| return s.rtcall(assertI2I, true, []*Type{n.Type}, target, iface)[0], nil |
| } |
| |
| if Debug_typeassert > 0 { |
| Warnl(n.Lineno, "type assertion inlined") |
| } |
| |
| // Converting to a concrete type. |
| direct := isdirectiface(n.Type) |
| typ := s.ifaceType(n.Left.Type, iface) // actual concrete type of input interface |
| |
| if Debug_typeassert > 0 { |
| Warnl(n.Lineno, "type assertion inlined") |
| } |
| |
| var tmp *Node // temporary for use with large types |
| var addr *ssa.Value // address of tmp |
| if commaok && !canSSAType(n.Type) { |
| // unSSAable type, use temporary. |
| // TODO: get rid of some of these temporaries. |
| tmp = temp(n.Type) |
| addr, _ = s.addr(tmp, false) |
| s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem()) |
| } |
| |
| // TODO: If we have a nonempty interface and its itab field is nil, |
| // then this test is redundant and ifaceType should just branch directly to bFail. |
| cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.SetControl(cond) |
| b.Likely = ssa.BranchLikely |
| |
| bOk := s.f.NewBlock(ssa.BlockPlain) |
| bFail := s.f.NewBlock(ssa.BlockPlain) |
| b.AddEdgeTo(bOk) |
| b.AddEdgeTo(bFail) |
| |
| if !commaok { |
| // on failure, panic by calling panicdottype |
| s.startBlock(bFail) |
| taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{Typ: byteptr, Sym: typenamesym(n.Left.Type)}, s.sb) |
| s.rtcall(panicdottype, false, nil, typ, target, taddr) |
| |
| // on success, return data from interface |
| s.startBlock(bOk) |
| if direct { |
| return s.newValue1(ssa.OpIData, n.Type, iface), nil |
| } |
| p := s.newValue1(ssa.OpIData, ptrto(n.Type), iface) |
| return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil |
| } |
| |
| // commaok is the more complicated case because we have |
| // a control flow merge point. |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| // Note that we need a new valVar each time (unlike okVar where we can |
| // reuse the variable) because it might have a different type every time. |
| valVar := &Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "val"}} |
| |
| // type assertion succeeded |
| s.startBlock(bOk) |
| if tmp == nil { |
| if direct { |
| s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface) |
| } else { |
| p := s.newValue1(ssa.OpIData, ptrto(n.Type), iface) |
| s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) |
| } |
| } else { |
| p := s.newValue1(ssa.OpIData, ptrto(n.Type), iface) |
| s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(n.Type), addr, p, s.mem()) |
| } |
| s.vars[&okVar] = s.constBool(true) |
| s.endBlock() |
| bOk.AddEdgeTo(bEnd) |
| |
| // type assertion failed |
| s.startBlock(bFail) |
| if tmp == nil { |
| s.vars[valVar] = s.zeroVal(n.Type) |
| } else { |
| s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, sizeAlignAuxInt(n.Type), addr, s.mem()) |
| } |
| s.vars[&okVar] = s.constBool(false) |
| s.endBlock() |
| bFail.AddEdgeTo(bEnd) |
| |
| // merge point |
| s.startBlock(bEnd) |
| if tmp == nil { |
| res = s.variable(valVar, n.Type) |
| delete(s.vars, valVar) |
| } else { |
| res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) |
| s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem()) |
| } |
| resok = s.variable(&okVar, Types[TBOOL]) |
| delete(s.vars, &okVar) |
| return res, resok |
| } |
| |
| // checkgoto checks that a goto from from to to does not |
| // jump into a block or jump over variable declarations. |
| // It is a copy of checkgoto in the pre-SSA backend, |
| // modified only for line number handling. |
| // TODO: document how this works and why it is designed the way it is. |
| func (s *state) checkgoto(from *Node, to *Node) { |
| if from.Sym == to.Sym { |
| return |
| } |
| |
| nf := 0 |
| for fs := from.Sym; fs != nil; fs = fs.Link { |
| nf++ |
| } |
| nt := 0 |
| for fs := to.Sym; fs != nil; fs = fs.Link { |
| nt++ |
| } |
| fs := from.Sym |
| for ; nf > nt; nf-- { |
| fs = fs.Link |
| } |
| if fs != to.Sym { |
| // decide what to complain about. |
| // prefer to complain about 'into block' over declarations, |
| // so scan backward to find most recent block or else dcl. |
| var block *Sym |
| |
| var dcl *Sym |
| ts := to.Sym |
| for ; nt > nf; nt-- { |
| if ts.Pkg == nil { |
| block = ts |
| } else { |
| dcl = ts |
| } |
| ts = ts.Link |
| } |
| |
| for ts != fs { |
| if ts.Pkg == nil { |
| block = ts |
| } else { |
| dcl = ts |
| } |
| ts = ts.Link |
| fs = fs.Link |
| } |
| |
| lno := from.Left.Lineno |
| if block != nil { |
| yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, linestr(block.Lastlineno)) |
| } else { |
| yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, linestr(dcl.Lastlineno)) |
| } |
| } |
| } |
| |
| // variable returns the value of a variable at the current location. |
| func (s *state) variable(name *Node, t ssa.Type) *ssa.Value { |
| v := s.vars[name] |
| if v != nil { |
| return v |
| } |
| v = s.fwdVars[name] |
| if v != nil { |
| return v |
| } |
| |
| if s.curBlock == s.f.Entry { |
| // No variable should be live at entry. |
| s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v) |
| } |
| // Make a FwdRef, which records a value that's live on block input. |
| // We'll find the matching definition as part of insertPhis. |
| v = s.newValue0A(ssa.OpFwdRef, t, name) |
| s.fwdVars[name] = v |
| s.addNamedValue(name, v) |
| return v |
| } |
| |
| func (s *state) mem() *ssa.Value { |
| return s.variable(&memVar, ssa.TypeMem) |
| } |
| |
| func (s *state) addNamedValue(n *Node, v *ssa.Value) { |
| if n.Class == Pxxx { |
| // Don't track our dummy nodes (&memVar etc.). |
| return |
| } |
| if n.IsAutoTmp() { |
| // Don't track temporary variables. |
| return |
| } |
| if n.Class == PPARAMOUT { |
| // Don't track named output values. This prevents return values |
| // from being assigned too early. See #14591 and #14762. TODO: allow this. |
| return |
| } |
| if n.Class == PAUTO && n.Xoffset != 0 { |
| s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset) |
| } |
| loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0} |
| values, ok := s.f.NamedValues[loc] |
| if !ok { |
| s.f.Names = append(s.f.Names, loc) |
| } |
| s.f.NamedValues[loc] = append(values, v) |
| } |
| |
| // Branch is an unresolved branch. |
| type Branch struct { |
| P *obj.Prog // branch instruction |
| B *ssa.Block // target |
| } |
| |
| // SSAGenState contains state needed during Prog generation. |
| type SSAGenState struct { |
| // Branches remembers all the branch instructions we've seen |
| // and where they would like to go. |
| Branches []Branch |
| |
| // bstart remembers where each block starts (indexed by block ID) |
| bstart []*obj.Prog |
| |
| // 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?) |
| SSEto387 map[int16]int16 |
| // Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8. |
| ScratchFpMem *Node |
| } |
| |
| // Pc returns the current Prog. |
| func (s *SSAGenState) Pc() *obj.Prog { |
| return pc |
| } |
| |
| // SetLineno sets the current source line number. |
| func (s *SSAGenState) SetLineno(l int32) { |
| lineno = l |
| } |
| |
| // genssa appends entries to ptxt for each instruction in f. |
| // gcargs and gclocals are filled in with pointer maps for the frame. |
| func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) { |
| var s SSAGenState |
| |
| e := f.Config.Frontend().(*ssaExport) |
| |
| // Remember where each block starts. |
| s.bstart = make([]*obj.Prog, f.NumBlocks()) |
| |
| var valueProgs map[*obj.Prog]*ssa.Value |
| var blockProgs map[*obj.Prog]*ssa.Block |
| var logProgs = e.log |
| if logProgs { |
| valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues()) |
| blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) |
| f.Logf("genssa %s\n", f.Name) |
| blockProgs[pc] = f.Blocks[0] |
| } |
| |
| if Thearch.Use387 { |
| s.SSEto387 = map[int16]int16{} |
| } |
| |
| s.ScratchFpMem = scratchFpMem |
| scratchFpMem = nil |
| |
| // Emit basic blocks |
| for i, b := range f.Blocks { |
| s.bstart[b.ID] = pc |
| // Emit values in block |
| Thearch.SSAMarkMoves(&s, b) |
| for _, v := range b.Values { |
| x := pc |
| Thearch.SSAGenValue(&s, v) |
| if logProgs { |
| for ; x != pc; x = x.Link { |
| valueProgs[x] = v |
| } |
| } |
| } |
| // Emit control flow instructions for block |
| var next *ssa.Block |
| if i < len(f.Blocks)-1 && Debug['N'] == 0 { |
| // If -N, leave next==nil so every block with successors |
| // ends in a JMP (except call blocks - plive doesn't like |
| // select{send,recv} followed by a JMP call). Helps keep |
| // line numbers for otherwise empty blocks. |
| next = f.Blocks[i+1] |
| } |
| x := pc |
| Thearch.SSAGenBlock(&s, b, next) |
| if logProgs { |
| for ; x != pc; x = x.Link { |
| blockProgs[x] = b |
| } |
| } |
| } |
| |
| // Resolve branches |
| for _, br := range s.Branches { |
| br.P.To.Val = s.bstart[br.B.ID] |
| } |
| |
| if logProgs { |
| for p := ptxt; p != nil; p = p.Link { |
| var s string |
| if v, ok := valueProgs[p]; ok { |
| s = v.String() |
| } else if b, ok := blockProgs[p]; ok { |
| s = b.String() |
| } else { |
| s = " " // most value and branch strings are 2-3 characters long |
| } |
| f.Logf("%s\t%s\n", s, p) |
| } |
| if f.Config.HTML != nil { |
| saved := ptxt.Ctxt.LineHist.PrintFilenameOnly |
| ptxt.Ctxt.LineHist.PrintFilenameOnly = true |
| var buf bytes.Buffer |
| buf.WriteString("<code>") |
| buf.WriteString("<dl class=\"ssa-gen\">") |
| for p := ptxt; p != nil; p = p.Link { |
| buf.WriteString("<dt class=\"ssa-prog-src\">") |
| if v, ok := valueProgs[p]; ok { |
| buf.WriteString(v.HTML()) |
| } else if b, ok := blockProgs[p]; ok { |
| buf.WriteString(b.HTML()) |
| } |
| buf.WriteString("</dt>") |
| buf.WriteString("<dd class=\"ssa-prog\">") |
| buf.WriteString(html.EscapeString(p.String())) |
| buf.WriteString("</dd>") |
| buf.WriteString("</li>") |
| } |
| buf.WriteString("</dl>") |
| buf.WriteString("</code>") |
| f.Config.HTML.WriteColumn("genssa", buf.String()) |
| ptxt.Ctxt.LineHist.PrintFilenameOnly = saved |
| } |
| } |
| |
| // Emit static data |
| if f.StaticData != nil { |
| for _, n := range f.StaticData.([]*Node) { |
| if !gen_as_init(n, false) { |
| Fatalf("non-static data marked as static: %v\n\n", n) |
| } |
| } |
| } |
| |
| // Generate gc bitmaps. |
| liveness(Curfn, ptxt, gcargs, gclocals) |
| |
| // Add frame prologue. Zero ambiguously live variables. |
| Thearch.Defframe(ptxt) |
| if Debug['f'] != 0 { |
| frame(0) |
| } |
| |
| // Remove leftover instrumentation from the instruction stream. |
| removevardef(ptxt) |
| |
| f.Config.HTML.Close() |
| f.Config.HTML = nil |
| } |
| |
| type FloatingEQNEJump struct { |
| Jump obj.As |
| Index int |
| } |
| |
| func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch { |
| p := Prog(jumps.Jump) |
| p.To.Type = obj.TYPE_BRANCH |
| to := jumps.Index |
| branches = append(branches, Branch{p, b.Succs[to].Block()}) |
| if to == 1 { |
| likely = -likely |
| } |
| // liblink reorders the instruction stream as it sees fit. |
| // Pass along what we know so liblink can make use of it. |
| // TODO: Once we've fully switched to SSA, |
| // make liblink leave our output alone. |
| switch likely { |
| case ssa.BranchUnlikely: |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = 0 |
| case ssa.BranchLikely: |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = 1 |
| } |
| return branches |
| } |
| |
| func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) { |
| likely := b.Likely |
| switch next { |
| case b.Succs[0].Block(): |
| s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches) |
| s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches) |
| case b.Succs[1].Block(): |
| s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches) |
| s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches) |
| default: |
| s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches) |
| s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches) |
| q := Prog(obj.AJMP) |
| q.To.Type = obj.TYPE_BRANCH |
| s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()}) |
| } |
| } |
| |
| func AuxOffset(v *ssa.Value) (offset int64) { |
| if v.Aux == nil { |
| return 0 |
| } |
| switch sym := v.Aux.(type) { |
| |
| case *ssa.AutoSymbol: |
| n := sym.Node.(*Node) |
| return n.Xoffset |
| } |
| return 0 |
| } |
| |
| // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a. |
| func AddAux(a *obj.Addr, v *ssa.Value) { |
| AddAux2(a, v, v.AuxInt) |
| } |
| func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) { |
| if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR { |
| v.Fatalf("bad AddAux addr %v", a) |
| } |
| // add integer offset |
| a.Offset += offset |
| |
| // If no additional symbol offset, we're done. |
| if v.Aux == nil { |
| return |
| } |
| // Add symbol's offset from its base register. |
| switch sym := v.Aux.(type) { |
| case *ssa.ExternSymbol: |
| a.Name = obj.NAME_EXTERN |
| switch s := sym.Sym.(type) { |
| case *Sym: |
| a.Sym = Linksym(s) |
| case *obj.LSym: |
| a.Sym = s |
| default: |
| v.Fatalf("ExternSymbol.Sym is %T", s) |
| } |
| case *ssa.ArgSymbol: |
| n := sym.Node.(*Node) |
| a.Name = obj.NAME_PARAM |
| a.Node = n |
| a.Sym = Linksym(n.Orig.Sym) |
| a.Offset += n.Xoffset |
| case *ssa.AutoSymbol: |
| n := sym.Node.(*Node) |
| a.Name = obj.NAME_AUTO |
| a.Node = n |
| a.Sym = Linksym(n.Sym) |
| a.Offset += n.Xoffset |
| default: |
| v.Fatalf("aux in %s not implemented %#v", v, v.Aux) |
| } |
| } |
| |
| // sizeAlignAuxInt returns an AuxInt encoding the size and alignment of type t. |
| func sizeAlignAuxInt(t *Type) int64 { |
| return ssa.MakeSizeAndAlign(t.Size(), t.Alignment()).Int64() |
| } |
| |
| // extendIndex extends v to a full int width. |
| // panic using the given function if v does not fit in an int (only on 32-bit archs). |
| func (s *state) extendIndex(v *ssa.Value, panicfn *Node) *ssa.Value { |
| size := v.Type.Size() |
| if size == s.config.IntSize { |
| return v |
| } |
| if size > s.config.IntSize { |
| // truncate 64-bit indexes on 32-bit pointer archs. Test the |
| // high word and branch to out-of-bounds failure if it is not 0. |
| if Debug['B'] == 0 { |
| hi := s.newValue1(ssa.OpInt64Hi, Types[TUINT32], v) |
| cmp := s.newValue2(ssa.OpEq32, Types[TBOOL], hi, s.constInt32(Types[TUINT32], 0)) |
| s.check(cmp, panicfn) |
| } |
| return s.newValue1(ssa.OpTrunc64to32, Types[TINT], v) |
| } |
| |
| // Extend value to the required size |
| var op ssa.Op |
| if v.Type.IsSigned() { |
| switch 10*size + s.config.IntSize { |
| case 14: |
| op = ssa.OpSignExt8to32 |
| case 18: |
| op = ssa.OpSignExt8to64 |
| case 24: |
| op = ssa.OpSignExt16to32 |
| case 28: |
| op = ssa.OpSignExt16to64 |
| case 48: |
| op = ssa.OpSignExt32to64 |
| default: |
| s.Fatalf("bad signed index extension %s", v.Type) |
| } |
| } else { |
| switch 10*size + s.config.IntSize { |
| case 14: |
| op = ssa.OpZeroExt8to32 |
| case 18: |
| op = ssa.OpZeroExt8to64 |
| case 24: |
| op = ssa.OpZeroExt16to32 |
| case 28: |
| op = ssa.OpZeroExt16to64 |
| case 48: |
| op = ssa.OpZeroExt32to64 |
| default: |
| s.Fatalf("bad unsigned index extension %s", v.Type) |
| } |
| } |
| return s.newValue1(op, Types[TINT], v) |
| } |
| |
| // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values. |
| // Called during ssaGenValue. |
| func CheckLoweredPhi(v *ssa.Value) { |
| if v.Op != ssa.OpPhi { |
| v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString()) |
| } |
| if v.Type.IsMemory() { |
| return |
| } |
| f := v.Block.Func |
| loc := f.RegAlloc[v.ID] |
| for _, a := range v.Args { |
| if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? |
| v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func) |
| } |
| } |
| } |
| |
| // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block. |
| // The output of LoweredGetClosurePtr is generally hardwired to the correct register. |
| // That register contains the closure pointer on closure entry. |
| func CheckLoweredGetClosurePtr(v *ssa.Value) { |
| entry := v.Block.Func.Entry |
| if entry != v.Block || entry.Values[0] != v { |
| Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) |
| } |
| } |
| |
| // KeepAlive marks the variable referenced by OpKeepAlive as live. |
| // Called during ssaGenValue. |
| func KeepAlive(v *ssa.Value) { |
| if v.Op != ssa.OpKeepAlive { |
| v.Fatalf("KeepAlive called with non-KeepAlive value: %v", v.LongString()) |
| } |
| if !v.Args[0].Type.IsPtrShaped() { |
| v.Fatalf("keeping non-pointer alive %v", v.Args[0]) |
| } |
| n, _ := AutoVar(v.Args[0]) |
| if n == nil { |
| v.Fatalf("KeepAlive with non-spilled value %s %s", v, v.Args[0]) |
| } |
| // Note: KeepAlive arg may be a small part of a larger variable n. We keep the |
| // whole variable n alive at this point. (Typically, this happens when |
| // we are requested to keep the idata portion of an interface{} alive, and |
| // we end up keeping the whole interface{} alive. That's ok.) |
| Gvarlive(n) |
| } |
| |
| // AutoVar returns a *Node and int64 representing the auto variable and offset within it |
| // where v should be spilled. |
| func AutoVar(v *ssa.Value) (*Node, int64) { |
| loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot) |
| if v.Type.Size() > loc.Type.Size() { |
| v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type) |
| } |
| return loc.N.(*Node), loc.Off |
| } |
| |
| func AddrAuto(a *obj.Addr, v *ssa.Value) { |
| n, off := AutoVar(v) |
| a.Type = obj.TYPE_MEM |
| a.Node = n |
| a.Sym = Linksym(n.Sym) |
| a.Offset = n.Xoffset + off |
| if n.Class == PPARAM || n.Class == PPARAMOUT { |
| a.Name = obj.NAME_PARAM |
| } else { |
| a.Name = obj.NAME_AUTO |
| } |
| } |
| |
| func (s *SSAGenState) AddrScratch(a *obj.Addr) { |
| if s.ScratchFpMem == nil { |
| panic("no scratch memory available; forgot to declare usesScratch for Op?") |
| } |
| a.Type = obj.TYPE_MEM |
| a.Name = obj.NAME_AUTO |
| a.Node = s.ScratchFpMem |
| a.Sym = Linksym(s.ScratchFpMem.Sym) |
| a.Reg = int16(Thearch.REGSP) |
| a.Offset = s.ScratchFpMem.Xoffset |
| } |
| |
| // fieldIdx finds the index of the field referred to by the ODOT node n. |
| func fieldIdx(n *Node) int { |
| t := n.Left.Type |
| f := n.Sym |
| if !t.IsStruct() { |
| panic("ODOT's LHS is not a struct") |
| } |
| |
| var i int |
| for _, t1 := range t.Fields().Slice() { |
| if t1.Sym != f { |
| i++ |
| continue |
| } |
| if t1.Offset != n.Xoffset { |
| panic("field offset doesn't match") |
| } |
| return i |
| } |
| panic(fmt.Sprintf("can't find field in expr %v\n", n)) |
| |
| // TODO: keep the result of this function somewhere in the ODOT Node |
| // so we don't have to recompute it each time we need it. |
| } |
| |
| // ssaExport exports a bunch of compiler services for the ssa backend. |
| type ssaExport struct { |
| log bool |
| } |
| |
| func (s *ssaExport) TypeBool() ssa.Type { return Types[TBOOL] } |
| func (s *ssaExport) TypeInt8() ssa.Type { return Types[TINT8] } |
| func (s *ssaExport) TypeInt16() ssa.Type { return Types[TINT16] } |
| func (s *ssaExport) TypeInt32() ssa.Type { return Types[TINT32] } |
| func (s *ssaExport) TypeInt64() ssa.Type { return Types[TINT64] } |
| func (s *ssaExport) TypeUInt8() ssa.Type { return Types[TUINT8] } |
| func (s *ssaExport) TypeUInt16() ssa.Type { return Types[TUINT16] } |
| func (s *ssaExport) TypeUInt32() ssa.Type { return Types[TUINT32] } |
| func (s *ssaExport) TypeUInt64() ssa.Type { return Types[TUINT64] } |
| func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] } |
| func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] } |
| func (s *ssaExport) TypeInt() ssa.Type { return Types[TINT] } |
| func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] } |
| func (s *ssaExport) TypeString() ssa.Type { return Types[TSTRING] } |
| func (s *ssaExport) TypeBytePtr() ssa.Type { return ptrto(Types[TUINT8]) } |
| |
| // StringData returns a symbol (a *Sym wrapped in an interface) which |
| // is the data component of a global string constant containing s. |
| func (*ssaExport) StringData(s string) interface{} { |
| // TODO: is idealstring correct? It might not matter... |
| data := stringsym(s) |
| return &ssa.ExternSymbol{Typ: idealstring, Sym: data} |
| } |
| |
| func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode { |
| n := temp(t.(*Type)) // Note: adds new auto to Curfn.Func.Dcl list |
| return n |
| } |
| |
| func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { |
| n := name.N.(*Node) |
| ptrType := ptrto(Types[TUINT8]) |
| lenType := Types[TINT] |
| if n.Class == PAUTO && !n.Addrtaken { |
| // Split this string up into two separate variables. |
| p := e.namedAuto(n.Sym.Name+".ptr", ptrType) |
| l := e.namedAuto(n.Sym.Name+".len", lenType) |
| return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0} |
| } |
| // Return the two parts of the larger variable. |
| return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)} |
| } |
| |
| func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { |
| n := name.N.(*Node) |
| t := ptrto(Types[TUINT8]) |
| if n.Class == PAUTO && !n.Addrtaken { |
| // Split this interface up into two separate variables. |
| f := ".itab" |
| if n.Type.IsEmptyInterface() { |
| f = ".type" |
| } |
| c := e.namedAuto(n.Sym.Name+f, t) |
| d := e.namedAuto(n.Sym.Name+".data", t) |
| return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0} |
| } |
| // Return the two parts of the larger variable. |
| return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)} |
| } |
| |
| func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) { |
| n := name.N.(*Node) |
| ptrType := ptrto(name.Type.ElemType().(*Type)) |
| lenType := Types[TINT] |
| if n.Class == PAUTO && !n.Addrtaken { |
| // Split this slice up into three separate variables. |
| p := e.namedAuto(n.Sym.Name+".ptr", ptrType) |
| l := e.namedAuto(n.Sym.Name+".len", lenType) |
| c := e.namedAuto(n.Sym.Name+".cap", lenType) |
| return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0} |
| } |
| // Return the three parts of the larger variable. |
| return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, |
| ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}, |
| ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)} |
| } |
| |
| func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { |
| n := name.N.(*Node) |
| s := name.Type.Size() / 2 |
| var t *Type |
| if s == 8 { |
| t = Types[TFLOAT64] |
| } else { |
| t = Types[TFLOAT32] |
| } |
| if n.Class == PAUTO && !n.Addrtaken { |
| // Split this complex up into two separate variables. |
| c := e.namedAuto(n.Sym.Name+".real", t) |
| d := e.namedAuto(n.Sym.Name+".imag", t) |
| return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0} |
| } |
| // Return the two parts of the larger variable. |
| return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s} |
| } |
| |
| func (e *ssaExport) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { |
| n := name.N.(*Node) |
| var t *Type |
| if name.Type.IsSigned() { |
| t = Types[TINT32] |
| } else { |
| t = Types[TUINT32] |
| } |
| if n.Class == PAUTO && !n.Addrtaken { |
| // Split this int64 up into two separate variables. |
| h := e.namedAuto(n.Sym.Name+".hi", t) |
| l := e.namedAuto(n.Sym.Name+".lo", Types[TUINT32]) |
| return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: Types[TUINT32], Off: 0} |
| } |
| // Return the two parts of the larger variable. |
| if Thearch.LinkArch.ByteOrder == binary.BigEndian { |
| return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off + 4} |
| } |
| return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off} |
| } |
| |
| func (e *ssaExport) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot { |
| n := name.N.(*Node) |
| st := name.Type |
| ft := st.FieldType(i) |
| if n.Class == PAUTO && !n.Addrtaken { |
| // Note: the _ field may appear several times. But |
| // have no fear, identically-named but distinct Autos are |
| // ok, albeit maybe confusing for a debugger. |
| x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft) |
| return ssa.LocalSlot{N: x, Type: ft, Off: 0} |
| } |
| return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)} |
| } |
| |
| func (e *ssaExport) SplitArray(name ssa.LocalSlot) ssa.LocalSlot { |
| n := name.N.(*Node) |
| at := name.Type |
| if at.NumElem() != 1 { |
| Fatalf("bad array size") |
| } |
| et := at.ElemType() |
| if n.Class == PAUTO && !n.Addrtaken { |
| x := e.namedAuto(n.Sym.Name+"[0]", et) |
| return ssa.LocalSlot{N: x, Type: et, Off: 0} |
| } |
| return ssa.LocalSlot{N: n, Type: et, Off: name.Off} |
| } |
| |
| // namedAuto returns a new AUTO variable with the given name and type. |
| // These are exposed to the debugger. |
| func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode { |
| t := typ.(*Type) |
| s := &Sym{Name: name, Pkg: localpkg} |
| n := nod(ONAME, nil, nil) |
| s.Def = n |
| s.Def.Used = true |
| n.Sym = s |
| n.Type = t |
| n.Class = PAUTO |
| n.Addable = true |
| n.Ullman = 1 |
| n.Esc = EscNever |
| n.Xoffset = 0 |
| n.Name.Curfn = Curfn |
| Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) |
| |
| dowidth(t) |
| return n |
| } |
| |
| func (e *ssaExport) CanSSA(t ssa.Type) bool { |
| return canSSAType(t.(*Type)) |
| } |
| |
| func (e *ssaExport) Line(line int32) string { |
| return linestr(line) |
| } |
| |
| // Log logs a message from the compiler. |
| func (e *ssaExport) Logf(msg string, args ...interface{}) { |
| if e.log { |
| fmt.Printf(msg, args...) |
| } |
| } |
| |
| func (e *ssaExport) Log() bool { |
| return e.log |
| } |
| |
| // Fatal reports a compiler error and exits. |
| func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) { |
| lineno = line |
| Fatalf(msg, args...) |
| } |
| |
| // Warnl reports a "warning", which is usually flag-triggered |
| // logging output for the benefit of tests. |
| func (e *ssaExport) Warnl(line int32, fmt_ string, args ...interface{}) { |
| Warnl(line, fmt_, args...) |
| } |
| |
| func (e *ssaExport) Debug_checknil() bool { |
| return Debug_checknil != 0 |
| } |
| |
| func (e *ssaExport) Debug_wb() bool { |
| return Debug_wb != 0 |
| } |
| |
| func (e *ssaExport) Syslook(name string) interface{} { |
| return syslook(name).Sym |
| } |
| |
| func (n *Node) Typ() ssa.Type { |
| return n.Type |
| } |