| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Page heap. |
| // |
| // See malloc.h for overview. |
| // |
| // When a MSpan is in the heap free list, state == MSpanFree |
| // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span. |
| // |
| // When a MSpan is allocated, state == MSpanInUse |
| // and heapmap(i) == span for all s->start <= i < s->start+s->npages. |
| |
| #include "runtime.h" |
| #include "malloc.h" |
| |
| static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32); |
| static bool MHeap_Grow(MHeap*, uintptr); |
| static void MHeap_FreeLocked(MHeap*, MSpan*); |
| static MSpan *MHeap_AllocLarge(MHeap*, uintptr); |
| static MSpan *BestFit(MSpan*, uintptr, MSpan*); |
| |
| static void |
| RecordSpan(void *vh, byte *p) |
| { |
| MHeap *h; |
| MSpan *s; |
| |
| h = vh; |
| s = (MSpan*)p; |
| s->allnext = h->allspans; |
| h->allspans = s; |
| } |
| |
| // Initialize the heap; fetch memory using alloc. |
| void |
| runtime·MHeap_Init(MHeap *h, void *(*alloc)(uintptr)) |
| { |
| uint32 i; |
| |
| runtime·FixAlloc_Init(&h->spanalloc, sizeof(MSpan), alloc, RecordSpan, h); |
| runtime·FixAlloc_Init(&h->cachealloc, sizeof(MCache), alloc, nil, nil); |
| // h->mapcache needs no init |
| for(i=0; i<nelem(h->free); i++) |
| runtime·MSpanList_Init(&h->free[i]); |
| runtime·MSpanList_Init(&h->large); |
| for(i=0; i<nelem(h->central); i++) |
| runtime·MCentral_Init(&h->central[i], i); |
| } |
| |
| // Allocate a new span of npage pages from the heap |
| // and record its size class in the HeapMap and HeapMapCache. |
| MSpan* |
| runtime·MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct) |
| { |
| MSpan *s; |
| |
| runtime·lock(h); |
| mstats.heap_alloc += m->mcache->local_alloc; |
| m->mcache->local_alloc = 0; |
| mstats.heap_objects += m->mcache->local_objects; |
| m->mcache->local_objects = 0; |
| s = MHeap_AllocLocked(h, npage, sizeclass); |
| if(s != nil) { |
| mstats.heap_inuse += npage<<PageShift; |
| if(acct) { |
| mstats.heap_objects++; |
| mstats.heap_alloc += npage<<PageShift; |
| } |
| } |
| runtime·unlock(h); |
| return s; |
| } |
| |
| static MSpan* |
| MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass) |
| { |
| uintptr n; |
| MSpan *s, *t; |
| PageID p; |
| |
| // Try in fixed-size lists up to max. |
| for(n=npage; n < nelem(h->free); n++) { |
| if(!runtime·MSpanList_IsEmpty(&h->free[n])) { |
| s = h->free[n].next; |
| goto HaveSpan; |
| } |
| } |
| |
| // Best fit in list of large spans. |
| if((s = MHeap_AllocLarge(h, npage)) == nil) { |
| if(!MHeap_Grow(h, npage)) |
| return nil; |
| if((s = MHeap_AllocLarge(h, npage)) == nil) |
| return nil; |
| } |
| |
| HaveSpan: |
| // Mark span in use. |
| if(s->state != MSpanFree) |
| runtime·throw("MHeap_AllocLocked - MSpan not free"); |
| if(s->npages < npage) |
| runtime·throw("MHeap_AllocLocked - bad npages"); |
| runtime·MSpanList_Remove(s); |
| s->state = MSpanInUse; |
| |
| if(s->npages > npage) { |
| // Trim extra and put it back in the heap. |
| t = runtime·FixAlloc_Alloc(&h->spanalloc); |
| mstats.mspan_inuse = h->spanalloc.inuse; |
| mstats.mspan_sys = h->spanalloc.sys; |
| runtime·MSpan_Init(t, s->start + npage, s->npages - npage); |
| s->npages = npage; |
| p = t->start; |
| if(sizeof(void*) == 8) |
| p -= ((uintptr)h->arena_start>>PageShift); |
| if(p > 0) |
| h->map[p-1] = s; |
| h->map[p] = t; |
| h->map[p+t->npages-1] = t; |
| *(uintptr*)(t->start<<PageShift) = *(uintptr*)(s->start<<PageShift); // copy "needs zeroing" mark |
| t->state = MSpanInUse; |
| MHeap_FreeLocked(h, t); |
| } |
| |
| if(*(uintptr*)(s->start<<PageShift) != 0) |
| runtime·memclr((byte*)(s->start<<PageShift), s->npages<<PageShift); |
| |
| // Record span info, because gc needs to be |
| // able to map interior pointer to containing span. |
| s->sizeclass = sizeclass; |
| p = s->start; |
| if(sizeof(void*) == 8) |
| p -= ((uintptr)h->arena_start>>PageShift); |
| for(n=0; n<npage; n++) |
| h->map[p+n] = s; |
| return s; |
| } |
| |
| // Allocate a span of exactly npage pages from the list of large spans. |
| static MSpan* |
| MHeap_AllocLarge(MHeap *h, uintptr npage) |
| { |
| return BestFit(&h->large, npage, nil); |
| } |
| |
| // Search list for smallest span with >= npage pages. |
| // If there are multiple smallest spans, take the one |
| // with the earliest starting address. |
| static MSpan* |
| BestFit(MSpan *list, uintptr npage, MSpan *best) |
| { |
| MSpan *s; |
| |
| for(s=list->next; s != list; s=s->next) { |
| if(s->npages < npage) |
| continue; |
| if(best == nil |
| || s->npages < best->npages |
| || (s->npages == best->npages && s->start < best->start)) |
| best = s; |
| } |
| return best; |
| } |
| |
| // Try to add at least npage pages of memory to the heap, |
| // returning whether it worked. |
| static bool |
| MHeap_Grow(MHeap *h, uintptr npage) |
| { |
| uintptr ask; |
| void *v; |
| MSpan *s; |
| PageID p; |
| |
| // Ask for a big chunk, to reduce the number of mappings |
| // the operating system needs to track; also amortizes |
| // the overhead of an operating system mapping. |
| // Allocate a multiple of 64kB (16 pages). |
| npage = (npage+15)&~15; |
| ask = npage<<PageShift; |
| if(ask > h->arena_end - h->arena_used) |
| return false; |
| if(ask < HeapAllocChunk && HeapAllocChunk <= h->arena_end - h->arena_used) |
| ask = HeapAllocChunk; |
| |
| v = runtime·MHeap_SysAlloc(h, ask); |
| if(v == nil) { |
| if(ask > (npage<<PageShift)) { |
| ask = npage<<PageShift; |
| v = runtime·MHeap_SysAlloc(h, ask); |
| } |
| if(v == nil) |
| return false; |
| } |
| mstats.heap_sys += ask; |
| |
| // Create a fake "in use" span and free it, so that the |
| // right coalescing happens. |
| s = runtime·FixAlloc_Alloc(&h->spanalloc); |
| mstats.mspan_inuse = h->spanalloc.inuse; |
| mstats.mspan_sys = h->spanalloc.sys; |
| runtime·MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift); |
| p = s->start; |
| if(sizeof(void*) == 8) |
| p -= ((uintptr)h->arena_start>>PageShift); |
| h->map[p] = s; |
| h->map[p + s->npages - 1] = s; |
| s->state = MSpanInUse; |
| MHeap_FreeLocked(h, s); |
| return true; |
| } |
| |
| // Look up the span at the given address. |
| // Address is guaranteed to be in map |
| // and is guaranteed to be start or end of span. |
| MSpan* |
| runtime·MHeap_Lookup(MHeap *h, void *v) |
| { |
| uintptr p; |
| |
| p = (uintptr)v; |
| if(sizeof(void*) == 8) |
| p -= (uintptr)h->arena_start; |
| return h->map[p >> PageShift]; |
| } |
| |
| // Look up the span at the given address. |
| // Address is *not* guaranteed to be in map |
| // and may be anywhere in the span. |
| // Map entries for the middle of a span are only |
| // valid for allocated spans. Free spans may have |
| // other garbage in their middles, so we have to |
| // check for that. |
| MSpan* |
| runtime·MHeap_LookupMaybe(MHeap *h, void *v) |
| { |
| MSpan *s; |
| PageID p, q; |
| |
| if((byte*)v < h->arena_start || (byte*)v >= h->arena_used) |
| return nil; |
| p = (uintptr)v>>PageShift; |
| q = p; |
| if(sizeof(void*) == 8) |
| q -= (uintptr)h->arena_start >> PageShift; |
| s = h->map[q]; |
| if(s == nil || p < s->start || p - s->start >= s->npages) |
| return nil; |
| if(s->state != MSpanInUse) |
| return nil; |
| return s; |
| } |
| |
| // Free the span back into the heap. |
| void |
| runtime·MHeap_Free(MHeap *h, MSpan *s, int32 acct) |
| { |
| runtime·lock(h); |
| mstats.heap_alloc += m->mcache->local_alloc; |
| m->mcache->local_alloc = 0; |
| mstats.heap_objects += m->mcache->local_objects; |
| m->mcache->local_objects = 0; |
| mstats.heap_inuse -= s->npages<<PageShift; |
| if(acct) { |
| mstats.heap_alloc -= s->npages<<PageShift; |
| mstats.heap_objects--; |
| } |
| MHeap_FreeLocked(h, s); |
| runtime·unlock(h); |
| } |
| |
| static void |
| MHeap_FreeLocked(MHeap *h, MSpan *s) |
| { |
| uintptr *sp, *tp; |
| MSpan *t; |
| PageID p; |
| |
| if(s->state != MSpanInUse || s->ref != 0) { |
| runtime·printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d\n", s, s->start<<PageShift, s->state, s->ref); |
| runtime·throw("MHeap_FreeLocked - invalid free"); |
| } |
| s->state = MSpanFree; |
| runtime·MSpanList_Remove(s); |
| sp = (uintptr*)(s->start<<PageShift); |
| |
| // Coalesce with earlier, later spans. |
| p = s->start; |
| if(sizeof(void*) == 8) |
| p -= (uintptr)h->arena_start >> PageShift; |
| if(p > 0 && (t = h->map[p-1]) != nil && t->state != MSpanInUse) { |
| tp = (uintptr*)(t->start<<PageShift); |
| *tp |= *sp; // propagate "needs zeroing" mark |
| s->start = t->start; |
| s->npages += t->npages; |
| p -= t->npages; |
| h->map[p] = s; |
| runtime·MSpanList_Remove(t); |
| t->state = MSpanDead; |
| runtime·FixAlloc_Free(&h->spanalloc, t); |
| mstats.mspan_inuse = h->spanalloc.inuse; |
| mstats.mspan_sys = h->spanalloc.sys; |
| } |
| if(p+s->npages < nelem(h->map) && (t = h->map[p+s->npages]) != nil && t->state != MSpanInUse) { |
| tp = (uintptr*)(t->start<<PageShift); |
| *sp |= *tp; // propagate "needs zeroing" mark |
| s->npages += t->npages; |
| h->map[p + s->npages - 1] = s; |
| runtime·MSpanList_Remove(t); |
| t->state = MSpanDead; |
| runtime·FixAlloc_Free(&h->spanalloc, t); |
| mstats.mspan_inuse = h->spanalloc.inuse; |
| mstats.mspan_sys = h->spanalloc.sys; |
| } |
| |
| // Insert s into appropriate list. |
| if(s->npages < nelem(h->free)) |
| runtime·MSpanList_Insert(&h->free[s->npages], s); |
| else |
| runtime·MSpanList_Insert(&h->large, s); |
| |
| // TODO(rsc): IncrementalScavenge() to return memory to OS. |
| } |
| |
| // Initialize a new span with the given start and npages. |
| void |
| runtime·MSpan_Init(MSpan *span, PageID start, uintptr npages) |
| { |
| span->next = nil; |
| span->prev = nil; |
| span->start = start; |
| span->npages = npages; |
| span->freelist = nil; |
| span->ref = 0; |
| span->sizeclass = 0; |
| span->state = 0; |
| } |
| |
| // Initialize an empty doubly-linked list. |
| void |
| runtime·MSpanList_Init(MSpan *list) |
| { |
| list->state = MSpanListHead; |
| list->next = list; |
| list->prev = list; |
| } |
| |
| void |
| runtime·MSpanList_Remove(MSpan *span) |
| { |
| if(span->prev == nil && span->next == nil) |
| return; |
| span->prev->next = span->next; |
| span->next->prev = span->prev; |
| span->prev = nil; |
| span->next = nil; |
| } |
| |
| bool |
| runtime·MSpanList_IsEmpty(MSpan *list) |
| { |
| return list->next == list; |
| } |
| |
| void |
| runtime·MSpanList_Insert(MSpan *list, MSpan *span) |
| { |
| if(span->next != nil || span->prev != nil) { |
| runtime·printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev); |
| runtime·throw("MSpanList_Insert"); |
| } |
| span->next = list->next; |
| span->prev = list; |
| span->next->prev = span; |
| span->prev->next = span; |
| } |
| |
| |