blob: fb9cb11bb7facdbcf8b3a553bbf7d9487fb4e0e0 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// The jpeg package implements a decoder for JPEG images, as defined in ITU-T T.81.
package jpeg
// See http://www.w3.org/Graphics/JPEG/itu-t81.pdf
import (
"bufio"
"image"
"io"
"os"
)
// A FormatError reports that the input is not a valid JPEG.
type FormatError string
func (e FormatError) String() string { return "invalid JPEG format: " + string(e) }
// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
type UnsupportedError string
func (e UnsupportedError) String() string { return "unsupported JPEG feature: " + string(e) }
// Component specification, specified in section B.2.2.
type component struct {
c uint8 // Component identifier.
h uint8 // Horizontal sampling factor.
v uint8 // Vertical sampling factor.
tq uint8 // Quantization table destination selector.
}
const (
blockSize = 64 // A DCT block is 8x8.
dcTableClass = 0
acTableClass = 1
maxTc = 1
maxTh = 3
maxTq = 3
// We only support 4:4:4, 4:2:2 and 4:2:0 downsampling, and assume that the components are Y, Cb, Cr.
nComponent = 3
maxH = 2
maxV = 2
)
const (
soiMarker = 0xd8 // Start Of Image.
eoiMarker = 0xd9 // End Of Image.
sof0Marker = 0xc0 // Start Of Frame (Baseline).
sof2Marker = 0xc2 // Start Of Frame (Progressive).
dhtMarker = 0xc4 // Define Huffman Table.
dqtMarker = 0xdb // Define Quantization Table.
sosMarker = 0xda // Start Of Scan.
driMarker = 0xdd // Define Restart Interval.
rst0Marker = 0xd0 // ReSTart (0).
rst7Marker = 0xd7 // ReSTart (7).
app0Marker = 0xe0 // APPlication specific (0).
app15Marker = 0xef // APPlication specific (15).
comMarker = 0xfe // COMment.
)
// Maps from the zig-zag ordering to the natural ordering.
var unzig = [blockSize]int{
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
}
// If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering.
type Reader interface {
io.Reader
ReadByte() (c byte, err os.Error)
}
type decoder struct {
r Reader
width, height int
image *image.RGBA
ri int // Restart Interval.
comps [nComponent]component
huff [maxTc + 1][maxTh + 1]huffman
quant [maxTq + 1][blockSize]int
b bits
blocks [nComponent][maxH * maxV][blockSize]int
tmp [1024]byte
}
// Reads and ignores the next n bytes.
func (d *decoder) ignore(n int) os.Error {
for n > 0 {
m := len(d.tmp)
if m > n {
m = n
}
_, err := io.ReadFull(d.r, d.tmp[0:m])
if err != nil {
return err
}
n -= m
}
return nil
}
// Specified in section B.2.2.
func (d *decoder) processSOF(n int) os.Error {
if n != 6+3*nComponent {
return UnsupportedError("SOF has wrong length")
}
_, err := io.ReadFull(d.r, d.tmp[0:6+3*nComponent])
if err != nil {
return err
}
// We only support 8-bit precision.
if d.tmp[0] != 8 {
return UnsupportedError("precision")
}
d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
if d.tmp[5] != nComponent {
return UnsupportedError("SOF has wrong number of image components")
}
for i := 0; i < nComponent; i++ {
hv := d.tmp[7+3*i]
d.comps[i].c = d.tmp[6+3*i]
d.comps[i].h = hv >> 4
d.comps[i].v = hv & 0x0f
d.comps[i].tq = d.tmp[8+3*i]
// We only support YCbCr images, and 4:4:4, 4:2:2 or 4:2:0 chroma downsampling ratios. This implies that
// the (h, v) values for the Y component are either (1, 1), (2, 1) or (2, 2), and the
// (h, v) values for the Cr and Cb components must be (1, 1).
if i == 0 {
if hv != 0x11 && hv != 0x21 && hv != 0x22 {
return UnsupportedError("luma downsample ratio")
}
} else {
if hv != 0x11 {
return UnsupportedError("chroma downsample ratio")
}
}
}
return nil
}
// Specified in section B.2.4.1.
func (d *decoder) processDQT(n int) os.Error {
const qtLength = 1 + blockSize
for ; n >= qtLength; n -= qtLength {
_, err := io.ReadFull(d.r, d.tmp[0:qtLength])
if err != nil {
return err
}
pq := d.tmp[0] >> 4
if pq != 0 {
return UnsupportedError("bad Pq value")
}
tq := d.tmp[0] & 0x0f
if tq > maxTq {
return FormatError("bad Tq value")
}
for i := range d.quant[tq] {
d.quant[tq][i] = int(d.tmp[i+1])
}
}
if n != 0 {
return FormatError("DQT has wrong length")
}
return nil
}
// Set the Pixel (px, py)'s RGB value, based on its YCbCr value.
func (d *decoder) calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex int) {
y, cb, cr := d.blocks[0][lumaBlock][lumaIndex], d.blocks[1][0][chromaIndex], d.blocks[2][0][chromaIndex]
// The JFIF specification (http://www.w3.org/Graphics/JPEG/jfif3.pdf, page 3) gives the formula
// for translating YCbCr to RGB as:
// R = Y + 1.402 (Cr-128)
// G = Y - 0.34414 (Cb-128) - 0.71414 (Cr-128)
// B = Y + 1.772 (Cb-128)
yPlusHalf := 100000*y + 50000
cb -= 128
cr -= 128
r := (yPlusHalf + 140200*cr) / 100000
g := (yPlusHalf - 34414*cb - 71414*cr) / 100000
b := (yPlusHalf + 177200*cb) / 100000
if r < 0 {
r = 0
} else if r > 255 {
r = 255
}
if g < 0 {
g = 0
} else if g > 255 {
g = 255
}
if b < 0 {
b = 0
} else if b > 255 {
b = 255
}
d.image.Pix[py*d.image.Stride+px] = image.RGBAColor{uint8(r), uint8(g), uint8(b), 0xff}
}
// Convert the MCU from YCbCr to RGB.
func (d *decoder) convertMCU(mx, my, h0, v0 int) {
lumaBlock := 0
for v := 0; v < v0; v++ {
for h := 0; h < h0; h++ {
chromaBase := 8*4*v + 4*h
py := 8 * (v0*my + v)
for y := 0; y < 8 && py < d.height; y++ {
px := 8 * (h0*mx + h)
lumaIndex := 8 * y
chromaIndex := chromaBase + 8*(y/v0)
for x := 0; x < 8 && px < d.width; x++ {
d.calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex)
if h0 == 1 {
chromaIndex += 1
} else {
chromaIndex += x % 2
}
lumaIndex++
px++
}
py++
}
lumaBlock++
}
}
}
// Specified in section B.2.3.
func (d *decoder) processSOS(n int) os.Error {
if d.image == nil {
d.image = image.NewRGBA(d.width, d.height)
}
if n != 4+2*nComponent {
return UnsupportedError("SOS has wrong length")
}
_, err := io.ReadFull(d.r, d.tmp[0:4+2*nComponent])
if err != nil {
return err
}
if d.tmp[0] != nComponent {
return UnsupportedError("SOS has wrong number of image components")
}
var scanComps [nComponent]struct {
td uint8 // DC table selector.
ta uint8 // AC table selector.
}
h0, v0 := int(d.comps[0].h), int(d.comps[0].v) // The h and v values from the Y components.
for i := 0; i < nComponent; i++ {
cs := d.tmp[1+2*i] // Component selector.
if cs != d.comps[i].c {
return UnsupportedError("scan components out of order")
}
scanComps[i].td = d.tmp[2+2*i] >> 4
scanComps[i].ta = d.tmp[2+2*i] & 0x0f
}
// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
mxx := (d.width + 8*int(h0) - 1) / (8 * int(h0))
myy := (d.height + 8*int(v0) - 1) / (8 * int(v0))
mcu, expectedRST := 0, uint8(rst0Marker)
var allZeroes [blockSize]int
var dc [nComponent]int
for my := 0; my < myy; my++ {
for mx := 0; mx < mxx; mx++ {
for i := 0; i < nComponent; i++ {
qt := &d.quant[d.comps[i].tq]
for j := 0; j < int(d.comps[i].h*d.comps[i].v); j++ {
d.blocks[i][j] = allZeroes
// Decode the DC coefficient, as specified in section F.2.2.1.
value, err := d.decodeHuffman(&d.huff[dcTableClass][scanComps[i].td])
if err != nil {
return err
}
if value > 16 {
return UnsupportedError("excessive DC component")
}
dcDelta, err := d.receiveExtend(value)
if err != nil {
return err
}
dc[i] += dcDelta
d.blocks[i][j][0] = dc[i] * qt[0]
// Decode the AC coefficients, as specified in section F.2.2.2.
for k := 1; k < blockSize; k++ {
value, err := d.decodeHuffman(&d.huff[acTableClass][scanComps[i].ta])
if err != nil {
return err
}
v0 := value >> 4
v1 := value & 0x0f
if v1 != 0 {
k += int(v0)
if k > blockSize {
return FormatError("bad DCT index")
}
ac, err := d.receiveExtend(v1)
if err != nil {
return err
}
d.blocks[i][j][unzig[k]] = ac * qt[k]
} else {
if v0 != 0x0f {
break
}
k += 0x0f
}
}
idct(&d.blocks[i][j])
} // for j
} // for i
d.convertMCU(mx, my, int(d.comps[0].h), int(d.comps[0].v))
mcu++
if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
// but this one assumes well-formed input, and hence the restart marker follows immediately.
_, err := io.ReadFull(d.r, d.tmp[0:2])
if err != nil {
return err
}
if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
return FormatError("bad RST marker")
}
expectedRST++
if expectedRST == rst7Marker+1 {
expectedRST = rst0Marker
}
// Reset the Huffman decoder.
d.b = bits{}
// Reset the DC components, as per section F.2.1.3.1.
for i := 0; i < nComponent; i++ {
dc[i] = 0
}
}
} // for mx
} // for my
return nil
}
// Specified in section B.2.4.4.
func (d *decoder) processDRI(n int) os.Error {
if n != 2 {
return FormatError("DRI has wrong length")
}
_, err := io.ReadFull(d.r, d.tmp[0:2])
if err != nil {
return err
}
d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
return nil
}
// decode reads a JPEG image from r and returns it as an image.Image.
func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, os.Error) {
if rr, ok := r.(Reader); ok {
d.r = rr
} else {
d.r = bufio.NewReader(r)
}
// Check for the Start Of Image marker.
_, err := io.ReadFull(d.r, d.tmp[0:2])
if err != nil {
return nil, err
}
if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
return nil, FormatError("missing SOI marker")
}
// Process the remaining segments until the End Of Image marker.
for {
_, err := io.ReadFull(d.r, d.tmp[0:2])
if err != nil {
return nil, err
}
if d.tmp[0] != 0xff {
return nil, FormatError("missing 0xff marker start")
}
marker := d.tmp[1]
if marker == eoiMarker { // End Of Image.
break
}
// Read the 16-bit length of the segment. The value includes the 2 bytes for the
// length itself, so we subtract 2 to get the number of remaining bytes.
_, err = io.ReadFull(d.r, d.tmp[0:2])
if err != nil {
return nil, err
}
n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
if n < 0 {
return nil, FormatError("short segment length")
}
switch {
case marker == sof0Marker: // Start Of Frame (Baseline).
err = d.processSOF(n)
if configOnly {
return nil, err
}
case marker == sof2Marker: // Start Of Frame (Progressive).
err = UnsupportedError("progressive mode")
case marker == dhtMarker: // Define Huffman Table.
err = d.processDHT(n)
case marker == dqtMarker: // Define Quantization Table.
err = d.processDQT(n)
case marker == sosMarker: // Start Of Scan.
err = d.processSOS(n)
case marker == driMarker: // Define Restart Interval.
err = d.processDRI(n)
case marker >= app0Marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment.
err = d.ignore(n)
default:
err = UnsupportedError("unknown marker")
}
if err != nil {
return nil, err
}
}
return d.image, nil
}
// Decode reads a JPEG image from r and returns it as an image.Image.
func Decode(r io.Reader) (image.Image, os.Error) {
var d decoder
return d.decode(r, false)
}
// DecodeConfig returns the color model and dimensions of a JPEG image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, os.Error) {
var d decoder
if _, err := d.decode(r, true); err != nil {
return image.Config{}, err
}
return image.Config{image.RGBAColorModel, d.width, d.height}, nil
}
func init() {
image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
}