|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package net | 
|  |  | 
|  | import ( | 
|  | "internal/syscall/windows" | 
|  | "os" | 
|  | "syscall" | 
|  | "unsafe" | 
|  | ) | 
|  |  | 
|  | // supportsVistaIP reports whether the platform implements new IP | 
|  | // stack and ABIs supported on Windows Vista and above. | 
|  | var supportsVistaIP bool | 
|  |  | 
|  | func init() { | 
|  | supportsVistaIP = probeWindowsIPStack() | 
|  | } | 
|  |  | 
|  | func probeWindowsIPStack() (supportsVistaIP bool) { | 
|  | v, err := syscall.GetVersion() | 
|  | if err != nil { | 
|  | return true // Windows 10 and above will deprecate this API | 
|  | } | 
|  | if byte(v) < 6 { // major version of Windows Vista is 6 | 
|  | return false | 
|  | } | 
|  | return true | 
|  | } | 
|  |  | 
|  | // adapterAddresses returns a list of IP adapter and address | 
|  | // structures. The structure contains an IP adapter and flattened | 
|  | // multiple IP addresses including unicast, anycast and multicast | 
|  | // addresses. | 
|  | func adapterAddresses() ([]*windows.IpAdapterAddresses, error) { | 
|  | var b []byte | 
|  | l := uint32(15000) // recommended initial size | 
|  | for { | 
|  | b = make([]byte, l) | 
|  | err := windows.GetAdaptersAddresses(syscall.AF_UNSPEC, windows.GAA_FLAG_INCLUDE_PREFIX, 0, (*windows.IpAdapterAddresses)(unsafe.Pointer(&b[0])), &l) | 
|  | if err == nil { | 
|  | if l == 0 { | 
|  | return nil, nil | 
|  | } | 
|  | break | 
|  | } | 
|  | if err.(syscall.Errno) != syscall.ERROR_BUFFER_OVERFLOW { | 
|  | return nil, os.NewSyscallError("getadaptersaddresses", err) | 
|  | } | 
|  | if l <= uint32(len(b)) { | 
|  | return nil, os.NewSyscallError("getadaptersaddresses", err) | 
|  | } | 
|  | } | 
|  | var aas []*windows.IpAdapterAddresses | 
|  | for aa := (*windows.IpAdapterAddresses)(unsafe.Pointer(&b[0])); aa != nil; aa = aa.Next { | 
|  | aas = append(aas, aa) | 
|  | } | 
|  | return aas, nil | 
|  | } | 
|  |  | 
|  | // If the ifindex is zero, interfaceTable returns mappings of all | 
|  | // network interfaces. Otherwise it returns a mapping of a specific | 
|  | // interface. | 
|  | func interfaceTable(ifindex int) ([]Interface, error) { | 
|  | aas, err := adapterAddresses() | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | var ift []Interface | 
|  | for _, aa := range aas { | 
|  | index := aa.IfIndex | 
|  | if index == 0 { // ipv6IfIndex is a substitute for ifIndex | 
|  | index = aa.Ipv6IfIndex | 
|  | } | 
|  | if ifindex == 0 || ifindex == int(index) { | 
|  | ifi := Interface{ | 
|  | Index: int(index), | 
|  | Name:  syscall.UTF16ToString((*(*[10000]uint16)(unsafe.Pointer(aa.FriendlyName)))[:]), | 
|  | } | 
|  | if aa.OperStatus == windows.IfOperStatusUp { | 
|  | ifi.Flags |= FlagUp | 
|  | } | 
|  | // For now we need to infer link-layer service | 
|  | // capabilities from media types. | 
|  | // We will be able to use | 
|  | // MIB_IF_ROW2.AccessType once we drop support | 
|  | // for Windows XP. | 
|  | switch aa.IfType { | 
|  | case windows.IF_TYPE_ETHERNET_CSMACD, windows.IF_TYPE_ISO88025_TOKENRING, windows.IF_TYPE_IEEE80211, windows.IF_TYPE_IEEE1394: | 
|  | ifi.Flags |= FlagBroadcast | FlagMulticast | 
|  | case windows.IF_TYPE_PPP, windows.IF_TYPE_TUNNEL: | 
|  | ifi.Flags |= FlagPointToPoint | FlagMulticast | 
|  | case windows.IF_TYPE_SOFTWARE_LOOPBACK: | 
|  | ifi.Flags |= FlagLoopback | FlagMulticast | 
|  | case windows.IF_TYPE_ATM: | 
|  | ifi.Flags |= FlagBroadcast | FlagPointToPoint | FlagMulticast // assume all services available; LANE, point-to-point and point-to-multipoint | 
|  | } | 
|  | if aa.Mtu == 0xffffffff { | 
|  | ifi.MTU = -1 | 
|  | } else { | 
|  | ifi.MTU = int(aa.Mtu) | 
|  | } | 
|  | if aa.PhysicalAddressLength > 0 { | 
|  | ifi.HardwareAddr = make(HardwareAddr, aa.PhysicalAddressLength) | 
|  | copy(ifi.HardwareAddr, aa.PhysicalAddress[:]) | 
|  | } | 
|  | ift = append(ift, ifi) | 
|  | if ifindex == ifi.Index { | 
|  | break | 
|  | } | 
|  | } | 
|  | } | 
|  | return ift, nil | 
|  | } | 
|  |  | 
|  | // If the ifi is nil, interfaceAddrTable returns addresses for all | 
|  | // network interfaces. Otherwise it returns addresses for a specific | 
|  | // interface. | 
|  | func interfaceAddrTable(ifi *Interface) ([]Addr, error) { | 
|  | aas, err := adapterAddresses() | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | var ifat []Addr | 
|  | for _, aa := range aas { | 
|  | index := aa.IfIndex | 
|  | if index == 0 { // ipv6IfIndex is a substitute for ifIndex | 
|  | index = aa.Ipv6IfIndex | 
|  | } | 
|  | var pfx4, pfx6 []IPNet | 
|  | if !supportsVistaIP { | 
|  | pfx4, pfx6, err = addrPrefixTable(aa) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | } | 
|  | if ifi == nil || ifi.Index == int(index) { | 
|  | for puni := aa.FirstUnicastAddress; puni != nil; puni = puni.Next { | 
|  | sa, err := puni.Address.Sockaddr.Sockaddr() | 
|  | if err != nil { | 
|  | return nil, os.NewSyscallError("sockaddr", err) | 
|  | } | 
|  | var l int | 
|  | switch sa := sa.(type) { | 
|  | case *syscall.SockaddrInet4: | 
|  | if supportsVistaIP { | 
|  | l = int(puni.OnLinkPrefixLength) | 
|  | } else { | 
|  | l = addrPrefixLen(pfx4, IP(sa.Addr[:])) | 
|  | } | 
|  | ifat = append(ifat, &IPNet{IP: IPv4(sa.Addr[0], sa.Addr[1], sa.Addr[2], sa.Addr[3]), Mask: CIDRMask(l, 8*IPv4len)}) | 
|  | case *syscall.SockaddrInet6: | 
|  | if supportsVistaIP { | 
|  | l = int(puni.OnLinkPrefixLength) | 
|  | } else { | 
|  | l = addrPrefixLen(pfx6, IP(sa.Addr[:])) | 
|  | } | 
|  | ifa := &IPNet{IP: make(IP, IPv6len), Mask: CIDRMask(l, 8*IPv6len)} | 
|  | if ifa.IP.IsLinkLocalUnicast() { | 
|  | ifa.Zone = syscall.UTF16ToString((*(*[10000]uint16)(unsafe.Pointer(aa.FriendlyName)))[:]) | 
|  | } | 
|  | copy(ifa.IP, sa.Addr[:]) | 
|  | ifat = append(ifat, ifa) | 
|  | } | 
|  | } | 
|  | for pany := aa.FirstAnycastAddress; pany != nil; pany = pany.Next { | 
|  | sa, err := pany.Address.Sockaddr.Sockaddr() | 
|  | if err != nil { | 
|  | return nil, os.NewSyscallError("sockaddr", err) | 
|  | } | 
|  | switch sa := sa.(type) { | 
|  | case *syscall.SockaddrInet4: | 
|  | ifat = append(ifat, &IPAddr{IP: IPv4(sa.Addr[0], sa.Addr[1], sa.Addr[2], sa.Addr[3])}) | 
|  | case *syscall.SockaddrInet6: | 
|  | ifa := &IPAddr{IP: make(IP, IPv6len)} | 
|  | copy(ifa.IP, sa.Addr[:]) | 
|  | ifat = append(ifat, ifa) | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return ifat, nil | 
|  | } | 
|  |  | 
|  | func addrPrefixTable(aa *windows.IpAdapterAddresses) (pfx4, pfx6 []IPNet, err error) { | 
|  | for p := aa.FirstPrefix; p != nil; p = p.Next { | 
|  | sa, err := p.Address.Sockaddr.Sockaddr() | 
|  | if err != nil { | 
|  | return nil, nil, os.NewSyscallError("sockaddr", err) | 
|  | } | 
|  | switch sa := sa.(type) { | 
|  | case *syscall.SockaddrInet4: | 
|  | pfx := IPNet{IP: IP(sa.Addr[:]), Mask: CIDRMask(int(p.PrefixLength), 8*IPv4len)} | 
|  | pfx4 = append(pfx4, pfx) | 
|  | case *syscall.SockaddrInet6: | 
|  | pfx := IPNet{IP: IP(sa.Addr[:]), Mask: CIDRMask(int(p.PrefixLength), 8*IPv6len)} | 
|  | pfx6 = append(pfx6, pfx) | 
|  | } | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // addrPrefixLen returns an appropriate prefix length in bits for ip | 
|  | // from pfxs. It returns 32 or 128 when no appropriate on-link address | 
|  | // prefix found. | 
|  | // | 
|  | // NOTE: This is pretty naive implementation that contains many | 
|  | // allocations and non-effective linear search, and should not be used | 
|  | // freely. | 
|  | func addrPrefixLen(pfxs []IPNet, ip IP) int { | 
|  | var l int | 
|  | var cand *IPNet | 
|  | for i := range pfxs { | 
|  | if !pfxs[i].Contains(ip) { | 
|  | continue | 
|  | } | 
|  | if cand == nil { | 
|  | l, _ = pfxs[i].Mask.Size() | 
|  | cand = &pfxs[i] | 
|  | continue | 
|  | } | 
|  | m, _ := pfxs[i].Mask.Size() | 
|  | if m > l { | 
|  | l = m | 
|  | cand = &pfxs[i] | 
|  | continue | 
|  | } | 
|  | } | 
|  | if l > 0 { | 
|  | return l | 
|  | } | 
|  | if ip.To4() != nil { | 
|  | return 8 * IPv4len | 
|  | } | 
|  | return 8 * IPv6len | 
|  | } | 
|  |  | 
|  | // interfaceMulticastAddrTable returns addresses for a specific | 
|  | // interface. | 
|  | func interfaceMulticastAddrTable(ifi *Interface) ([]Addr, error) { | 
|  | aas, err := adapterAddresses() | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | var ifat []Addr | 
|  | for _, aa := range aas { | 
|  | index := aa.IfIndex | 
|  | if index == 0 { // ipv6IfIndex is a substitute for ifIndex | 
|  | index = aa.Ipv6IfIndex | 
|  | } | 
|  | if ifi == nil || ifi.Index == int(index) { | 
|  | for pmul := aa.FirstMulticastAddress; pmul != nil; pmul = pmul.Next { | 
|  | sa, err := pmul.Address.Sockaddr.Sockaddr() | 
|  | if err != nil { | 
|  | return nil, os.NewSyscallError("sockaddr", err) | 
|  | } | 
|  | switch sa := sa.(type) { | 
|  | case *syscall.SockaddrInet4: | 
|  | ifat = append(ifat, &IPAddr{IP: IPv4(sa.Addr[0], sa.Addr[1], sa.Addr[2], sa.Addr[3])}) | 
|  | case *syscall.SockaddrInet6: | 
|  | ifa := &IPAddr{IP: make(IP, IPv6len)} | 
|  | copy(ifa.IP, sa.Addr[:]) | 
|  | ifat = append(ifat, ifa) | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return ifat, nil | 
|  | } |