| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32, |
| // checksum. See https://en.wikipedia.org/wiki/Cyclic_redundancy_check for |
| // information. |
| // |
| // Polynomials are represented in LSB-first form also known as reversed representation. |
| // |
| // See https://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials |
| // for information. |
| package crc32 |
| |
| import ( |
| "errors" |
| "hash" |
| "sync" |
| "sync/atomic" |
| ) |
| |
| // The size of a CRC-32 checksum in bytes. |
| const Size = 4 |
| |
| // Predefined polynomials. |
| const ( |
| // IEEE is by far and away the most common CRC-32 polynomial. |
| // Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ... |
| IEEE = 0xedb88320 |
| |
| // Castagnoli's polynomial, used in iSCSI. |
| // Has better error detection characteristics than IEEE. |
| // https://dx.doi.org/10.1109/26.231911 |
| Castagnoli = 0x82f63b78 |
| |
| // Koopman's polynomial. |
| // Also has better error detection characteristics than IEEE. |
| // https://dx.doi.org/10.1109/DSN.2002.1028931 |
| Koopman = 0xeb31d82e |
| ) |
| |
| // Table is a 256-word table representing the polynomial for efficient processing. |
| type Table [256]uint32 |
| |
| // This file makes use of functions implemented in architecture-specific files. |
| // The interface that they implement is as follows: |
| // |
| // // archAvailableIEEE reports whether an architecture-specific CRC32-IEEE |
| // // algorithm is available. |
| // archAvailableIEEE() bool |
| // |
| // // archInitIEEE initializes the architecture-specific CRC3-IEEE algorithm. |
| // // It can only be called if archAvailableIEEE() returns true. |
| // archInitIEEE() |
| // |
| // // archUpdateIEEE updates the given CRC32-IEEE. It can only be called if |
| // // archInitIEEE() was previously called. |
| // archUpdateIEEE(crc uint32, p []byte) uint32 |
| // |
| // // archAvailableCastagnoli reports whether an architecture-specific |
| // // CRC32-C algorithm is available. |
| // archAvailableCastagnoli() bool |
| // |
| // // archInitCastagnoli initializes the architecture-specific CRC32-C |
| // // algorithm. It can only be called if archAvailableCastagnoli() returns |
| // // true. |
| // archInitCastagnoli() |
| // |
| // // archUpdateCastagnoli updates the given CRC32-C. It can only be called |
| // // if archInitCastagnoli() was previously called. |
| // archUpdateCastagnoli(crc uint32, p []byte) uint32 |
| |
| // castagnoliTable points to a lazily initialized Table for the Castagnoli |
| // polynomial. MakeTable will always return this value when asked to make a |
| // Castagnoli table so we can compare against it to find when the caller is |
| // using this polynomial. |
| var castagnoliTable *Table |
| var castagnoliTable8 *slicing8Table |
| var castagnoliArchImpl bool |
| var updateCastagnoli func(crc uint32, p []byte) uint32 |
| var castagnoliOnce sync.Once |
| var haveCastagnoli uint32 |
| |
| func castagnoliInit() { |
| castagnoliTable = simpleMakeTable(Castagnoli) |
| castagnoliArchImpl = archAvailableCastagnoli() |
| |
| if castagnoliArchImpl { |
| archInitCastagnoli() |
| updateCastagnoli = archUpdateCastagnoli |
| } else { |
| // Initialize the slicing-by-8 table. |
| castagnoliTable8 = slicingMakeTable(Castagnoli) |
| updateCastagnoli = func(crc uint32, p []byte) uint32 { |
| return slicingUpdate(crc, castagnoliTable8, p) |
| } |
| } |
| |
| atomic.StoreUint32(&haveCastagnoli, 1) |
| } |
| |
| // IEEETable is the table for the IEEE polynomial. |
| var IEEETable = simpleMakeTable(IEEE) |
| |
| // ieeeTable8 is the slicing8Table for IEEE |
| var ieeeTable8 *slicing8Table |
| var ieeeArchImpl bool |
| var updateIEEE func(crc uint32, p []byte) uint32 |
| var ieeeOnce sync.Once |
| |
| func ieeeInit() { |
| ieeeArchImpl = archAvailableIEEE() |
| |
| if ieeeArchImpl { |
| archInitIEEE() |
| updateIEEE = archUpdateIEEE |
| } else { |
| // Initialize the slicing-by-8 table. |
| ieeeTable8 = slicingMakeTable(IEEE) |
| updateIEEE = func(crc uint32, p []byte) uint32 { |
| return slicingUpdate(crc, ieeeTable8, p) |
| } |
| } |
| } |
| |
| // MakeTable returns a Table constructed from the specified polynomial. |
| // The contents of this Table must not be modified. |
| func MakeTable(poly uint32) *Table { |
| switch poly { |
| case IEEE: |
| ieeeOnce.Do(ieeeInit) |
| return IEEETable |
| case Castagnoli: |
| castagnoliOnce.Do(castagnoliInit) |
| return castagnoliTable |
| } |
| return simpleMakeTable(poly) |
| } |
| |
| // digest represents the partial evaluation of a checksum. |
| type digest struct { |
| crc uint32 |
| tab *Table |
| } |
| |
| // New creates a new hash.Hash32 computing the CRC-32 checksum using the |
| // polynomial represented by the Table. Its Sum method will lay the |
| // value out in big-endian byte order. The returned Hash32 also |
| // implements encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to |
| // marshal and unmarshal the internal state of the hash. |
| func New(tab *Table) hash.Hash32 { |
| if tab == IEEETable { |
| ieeeOnce.Do(ieeeInit) |
| } |
| return &digest{0, tab} |
| } |
| |
| // NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum using |
| // the IEEE polynomial. Its Sum method will lay the value out in |
| // big-endian byte order. The returned Hash32 also implements |
| // encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to marshal |
| // and unmarshal the internal state of the hash. |
| func NewIEEE() hash.Hash32 { return New(IEEETable) } |
| |
| func (d *digest) Size() int { return Size } |
| |
| func (d *digest) BlockSize() int { return 1 } |
| |
| func (d *digest) Reset() { d.crc = 0 } |
| |
| const ( |
| magic = "crc\x01" |
| marshaledSize = len(magic) + 4 + 4 |
| ) |
| |
| func (d *digest) MarshalBinary() ([]byte, error) { |
| b := make([]byte, 0, marshaledSize) |
| b = append(b, magic...) |
| b = appendUint32(b, tableSum(d.tab)) |
| b = appendUint32(b, d.crc) |
| return b, nil |
| } |
| |
| func (d *digest) UnmarshalBinary(b []byte) error { |
| if len(b) < len(magic) || string(b[:len(magic)]) != magic { |
| return errors.New("hash/crc32: invalid hash state identifier") |
| } |
| if len(b) != marshaledSize { |
| return errors.New("hash/crc32: invalid hash state size") |
| } |
| if tableSum(d.tab) != readUint32(b[4:]) { |
| return errors.New("hash/crc32: tables do not match") |
| } |
| d.crc = readUint32(b[8:]) |
| return nil |
| } |
| |
| func appendUint32(b []byte, x uint32) []byte { |
| a := [4]byte{ |
| byte(x >> 24), |
| byte(x >> 16), |
| byte(x >> 8), |
| byte(x), |
| } |
| return append(b, a[:]...) |
| } |
| |
| func readUint32(b []byte) uint32 { |
| _ = b[3] |
| return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 |
| } |
| |
| // Update returns the result of adding the bytes in p to the crc. |
| func Update(crc uint32, tab *Table, p []byte) uint32 { |
| switch { |
| case atomic.LoadUint32(&haveCastagnoli) != 0 && tab == castagnoliTable: |
| return updateCastagnoli(crc, p) |
| case tab == IEEETable: |
| // Unfortunately, because IEEETable is exported, IEEE may be used without a |
| // call to MakeTable. We have to make sure it gets initialized in that case. |
| ieeeOnce.Do(ieeeInit) |
| return updateIEEE(crc, p) |
| default: |
| return simpleUpdate(crc, tab, p) |
| } |
| } |
| |
| func (d *digest) Write(p []byte) (n int, err error) { |
| switch { |
| case atomic.LoadUint32(&haveCastagnoli) != 0 && d.tab == castagnoliTable: |
| d.crc = updateCastagnoli(d.crc, p) |
| case d.tab == IEEETable: |
| // We only create digest objects through New() which takes care of |
| // initialization in this case. |
| d.crc = updateIEEE(d.crc, p) |
| default: |
| d.crc = simpleUpdate(d.crc, d.tab, p) |
| } |
| return len(p), nil |
| } |
| |
| func (d *digest) Sum32() uint32 { return d.crc } |
| |
| func (d *digest) Sum(in []byte) []byte { |
| s := d.Sum32() |
| return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s)) |
| } |
| |
| // Checksum returns the CRC-32 checksum of data |
| // using the polynomial represented by the Table. |
| func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) } |
| |
| // ChecksumIEEE returns the CRC-32 checksum of data |
| // using the IEEE polynomial. |
| func ChecksumIEEE(data []byte) uint32 { |
| ieeeOnce.Do(ieeeInit) |
| return updateIEEE(0, data) |
| } |
| |
| // tableSum returns the IEEE checksum of table t. |
| func tableSum(t *Table) uint32 { |
| var a [1024]byte |
| b := a[:0] |
| if t != nil { |
| for _, x := range t { |
| b = appendUint32(b, x) |
| } |
| } |
| return ChecksumIEEE(b) |
| } |