| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package elliptic implements several standard elliptic curves over prime |
| // fields. |
| package elliptic |
| |
| // This package operates, internally, on Jacobian coordinates. For a given |
| // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) |
| // where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole |
| // calculation can be performed within the transform (as in ScalarMult and |
| // ScalarBaseMult). But even for Add and Double, it's faster to apply and |
| // reverse the transform than to operate in affine coordinates. |
| |
| import ( |
| "io" |
| "math/big" |
| "sync" |
| ) |
| |
| // A Curve represents a short-form Weierstrass curve with a=-3. |
| // |
| // Note that the point at infinity (0, 0) is not considered on the curve, and |
| // although it can be returned by Add, Double, ScalarMult, or ScalarBaseMult, it |
| // can't be marshaled or unmarshaled, and IsOnCurve will return false for it. |
| type Curve interface { |
| // Params returns the parameters for the curve. |
| Params() *CurveParams |
| // IsOnCurve reports whether the given (x,y) lies on the curve. |
| IsOnCurve(x, y *big.Int) bool |
| // Add returns the sum of (x1,y1) and (x2,y2) |
| Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int) |
| // Double returns 2*(x,y) |
| Double(x1, y1 *big.Int) (x, y *big.Int) |
| // ScalarMult returns k*(Bx,By) where k is a number in big-endian form. |
| ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int) |
| // ScalarBaseMult returns k*G, where G is the base point of the group |
| // and k is an integer in big-endian form. |
| ScalarBaseMult(k []byte) (x, y *big.Int) |
| } |
| |
| func matchesSpecificCurve(params *CurveParams, available ...Curve) (Curve, bool) { |
| for _, c := range available { |
| if params == c.Params() { |
| return c, true |
| } |
| } |
| return nil, false |
| } |
| |
| // CurveParams contains the parameters of an elliptic curve and also provides |
| // a generic, non-constant time implementation of Curve. |
| type CurveParams struct { |
| P *big.Int // the order of the underlying field |
| N *big.Int // the order of the base point |
| B *big.Int // the constant of the curve equation |
| Gx, Gy *big.Int // (x,y) of the base point |
| BitSize int // the size of the underlying field |
| Name string // the canonical name of the curve |
| } |
| |
| func (curve *CurveParams) Params() *CurveParams { |
| return curve |
| } |
| |
| // polynomial returns x³ - 3x + b. |
| func (curve *CurveParams) polynomial(x *big.Int) *big.Int { |
| x3 := new(big.Int).Mul(x, x) |
| x3.Mul(x3, x) |
| |
| threeX := new(big.Int).Lsh(x, 1) |
| threeX.Add(threeX, x) |
| |
| x3.Sub(x3, threeX) |
| x3.Add(x3, curve.B) |
| x3.Mod(x3, curve.P) |
| |
| return x3 |
| } |
| |
| func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool { |
| // If there is a dedicated constant-time implementation for this curve operation, |
| // use that instead of the generic one. |
| if specific, ok := matchesSpecificCurve(curve, p224, p521); ok { |
| return specific.IsOnCurve(x, y) |
| } |
| |
| // y² = x³ - 3x + b |
| y2 := new(big.Int).Mul(y, y) |
| y2.Mod(y2, curve.P) |
| |
| return curve.polynomial(x).Cmp(y2) == 0 |
| } |
| |
| // zForAffine returns a Jacobian Z value for the affine point (x, y). If x and |
| // y are zero, it assumes that they represent the point at infinity because (0, |
| // 0) is not on the any of the curves handled here. |
| func zForAffine(x, y *big.Int) *big.Int { |
| z := new(big.Int) |
| if x.Sign() != 0 || y.Sign() != 0 { |
| z.SetInt64(1) |
| } |
| return z |
| } |
| |
| // affineFromJacobian reverses the Jacobian transform. See the comment at the |
| // top of the file. If the point is ∞ it returns 0, 0. |
| func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { |
| if z.Sign() == 0 { |
| return new(big.Int), new(big.Int) |
| } |
| |
| zinv := new(big.Int).ModInverse(z, curve.P) |
| zinvsq := new(big.Int).Mul(zinv, zinv) |
| |
| xOut = new(big.Int).Mul(x, zinvsq) |
| xOut.Mod(xOut, curve.P) |
| zinvsq.Mul(zinvsq, zinv) |
| yOut = new(big.Int).Mul(y, zinvsq) |
| yOut.Mod(yOut, curve.P) |
| return |
| } |
| |
| func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { |
| // If there is a dedicated constant-time implementation for this curve operation, |
| // use that instead of the generic one. |
| if specific, ok := matchesSpecificCurve(curve, p224, p521); ok { |
| return specific.Add(x1, y1, x2, y2) |
| } |
| |
| z1 := zForAffine(x1, y1) |
| z2 := zForAffine(x2, y2) |
| return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2)) |
| } |
| |
| // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and |
| // (x2, y2, z2) and returns their sum, also in Jacobian form. |
| func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { |
| // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl |
| x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int) |
| if z1.Sign() == 0 { |
| x3.Set(x2) |
| y3.Set(y2) |
| z3.Set(z2) |
| return x3, y3, z3 |
| } |
| if z2.Sign() == 0 { |
| x3.Set(x1) |
| y3.Set(y1) |
| z3.Set(z1) |
| return x3, y3, z3 |
| } |
| |
| z1z1 := new(big.Int).Mul(z1, z1) |
| z1z1.Mod(z1z1, curve.P) |
| z2z2 := new(big.Int).Mul(z2, z2) |
| z2z2.Mod(z2z2, curve.P) |
| |
| u1 := new(big.Int).Mul(x1, z2z2) |
| u1.Mod(u1, curve.P) |
| u2 := new(big.Int).Mul(x2, z1z1) |
| u2.Mod(u2, curve.P) |
| h := new(big.Int).Sub(u2, u1) |
| xEqual := h.Sign() == 0 |
| if h.Sign() == -1 { |
| h.Add(h, curve.P) |
| } |
| i := new(big.Int).Lsh(h, 1) |
| i.Mul(i, i) |
| j := new(big.Int).Mul(h, i) |
| |
| s1 := new(big.Int).Mul(y1, z2) |
| s1.Mul(s1, z2z2) |
| s1.Mod(s1, curve.P) |
| s2 := new(big.Int).Mul(y2, z1) |
| s2.Mul(s2, z1z1) |
| s2.Mod(s2, curve.P) |
| r := new(big.Int).Sub(s2, s1) |
| if r.Sign() == -1 { |
| r.Add(r, curve.P) |
| } |
| yEqual := r.Sign() == 0 |
| if xEqual && yEqual { |
| return curve.doubleJacobian(x1, y1, z1) |
| } |
| r.Lsh(r, 1) |
| v := new(big.Int).Mul(u1, i) |
| |
| x3.Set(r) |
| x3.Mul(x3, x3) |
| x3.Sub(x3, j) |
| x3.Sub(x3, v) |
| x3.Sub(x3, v) |
| x3.Mod(x3, curve.P) |
| |
| y3.Set(r) |
| v.Sub(v, x3) |
| y3.Mul(y3, v) |
| s1.Mul(s1, j) |
| s1.Lsh(s1, 1) |
| y3.Sub(y3, s1) |
| y3.Mod(y3, curve.P) |
| |
| z3.Add(z1, z2) |
| z3.Mul(z3, z3) |
| z3.Sub(z3, z1z1) |
| z3.Sub(z3, z2z2) |
| z3.Mul(z3, h) |
| z3.Mod(z3, curve.P) |
| |
| return x3, y3, z3 |
| } |
| |
| func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { |
| // If there is a dedicated constant-time implementation for this curve operation, |
| // use that instead of the generic one. |
| if specific, ok := matchesSpecificCurve(curve, p224, p521); ok { |
| return specific.Double(x1, y1) |
| } |
| |
| z1 := zForAffine(x1, y1) |
| return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) |
| } |
| |
| // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and |
| // returns its double, also in Jacobian form. |
| func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { |
| // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
| delta := new(big.Int).Mul(z, z) |
| delta.Mod(delta, curve.P) |
| gamma := new(big.Int).Mul(y, y) |
| gamma.Mod(gamma, curve.P) |
| alpha := new(big.Int).Sub(x, delta) |
| if alpha.Sign() == -1 { |
| alpha.Add(alpha, curve.P) |
| } |
| alpha2 := new(big.Int).Add(x, delta) |
| alpha.Mul(alpha, alpha2) |
| alpha2.Set(alpha) |
| alpha.Lsh(alpha, 1) |
| alpha.Add(alpha, alpha2) |
| |
| beta := alpha2.Mul(x, gamma) |
| |
| x3 := new(big.Int).Mul(alpha, alpha) |
| beta8 := new(big.Int).Lsh(beta, 3) |
| beta8.Mod(beta8, curve.P) |
| x3.Sub(x3, beta8) |
| if x3.Sign() == -1 { |
| x3.Add(x3, curve.P) |
| } |
| x3.Mod(x3, curve.P) |
| |
| z3 := new(big.Int).Add(y, z) |
| z3.Mul(z3, z3) |
| z3.Sub(z3, gamma) |
| if z3.Sign() == -1 { |
| z3.Add(z3, curve.P) |
| } |
| z3.Sub(z3, delta) |
| if z3.Sign() == -1 { |
| z3.Add(z3, curve.P) |
| } |
| z3.Mod(z3, curve.P) |
| |
| beta.Lsh(beta, 2) |
| beta.Sub(beta, x3) |
| if beta.Sign() == -1 { |
| beta.Add(beta, curve.P) |
| } |
| y3 := alpha.Mul(alpha, beta) |
| |
| gamma.Mul(gamma, gamma) |
| gamma.Lsh(gamma, 3) |
| gamma.Mod(gamma, curve.P) |
| |
| y3.Sub(y3, gamma) |
| if y3.Sign() == -1 { |
| y3.Add(y3, curve.P) |
| } |
| y3.Mod(y3, curve.P) |
| |
| return x3, y3, z3 |
| } |
| |
| func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { |
| // If there is a dedicated constant-time implementation for this curve operation, |
| // use that instead of the generic one. |
| if specific, ok := matchesSpecificCurve(curve, p224, p256, p521); ok { |
| return specific.ScalarMult(Bx, By, k) |
| } |
| |
| Bz := new(big.Int).SetInt64(1) |
| x, y, z := new(big.Int), new(big.Int), new(big.Int) |
| |
| for _, byte := range k { |
| for bitNum := 0; bitNum < 8; bitNum++ { |
| x, y, z = curve.doubleJacobian(x, y, z) |
| if byte&0x80 == 0x80 { |
| x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) |
| } |
| byte <<= 1 |
| } |
| } |
| |
| return curve.affineFromJacobian(x, y, z) |
| } |
| |
| func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { |
| // If there is a dedicated constant-time implementation for this curve operation, |
| // use that instead of the generic one. |
| if specific, ok := matchesSpecificCurve(curve, p224, p256, p521); ok { |
| return specific.ScalarBaseMult(k) |
| } |
| |
| return curve.ScalarMult(curve.Gx, curve.Gy, k) |
| } |
| |
| var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} |
| |
| // GenerateKey returns a public/private key pair. The private key is |
| // generated using the given reader, which must return random data. |
| func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) { |
| N := curve.Params().N |
| bitSize := N.BitLen() |
| byteLen := (bitSize + 7) / 8 |
| priv = make([]byte, byteLen) |
| |
| for x == nil { |
| _, err = io.ReadFull(rand, priv) |
| if err != nil { |
| return |
| } |
| // We have to mask off any excess bits in the case that the size of the |
| // underlying field is not a whole number of bytes. |
| priv[0] &= mask[bitSize%8] |
| // This is because, in tests, rand will return all zeros and we don't |
| // want to get the point at infinity and loop forever. |
| priv[1] ^= 0x42 |
| |
| // If the scalar is out of range, sample another random number. |
| if new(big.Int).SetBytes(priv).Cmp(N) >= 0 { |
| continue |
| } |
| |
| x, y = curve.ScalarBaseMult(priv) |
| } |
| return |
| } |
| |
| // Marshal converts a point on the curve into the uncompressed form specified in |
| // section 4.3.6 of ANSI X9.62. |
| func Marshal(curve Curve, x, y *big.Int) []byte { |
| byteLen := (curve.Params().BitSize + 7) / 8 |
| |
| ret := make([]byte, 1+2*byteLen) |
| ret[0] = 4 // uncompressed point |
| |
| x.FillBytes(ret[1 : 1+byteLen]) |
| y.FillBytes(ret[1+byteLen : 1+2*byteLen]) |
| |
| return ret |
| } |
| |
| // MarshalCompressed converts a point on the curve into the compressed form |
| // specified in section 4.3.6 of ANSI X9.62. |
| func MarshalCompressed(curve Curve, x, y *big.Int) []byte { |
| byteLen := (curve.Params().BitSize + 7) / 8 |
| compressed := make([]byte, 1+byteLen) |
| compressed[0] = byte(y.Bit(0)) | 2 |
| x.FillBytes(compressed[1:]) |
| return compressed |
| } |
| |
| // Unmarshal converts a point, serialized by Marshal, into an x, y pair. |
| // It is an error if the point is not in uncompressed form or is not on the curve. |
| // On error, x = nil. |
| func Unmarshal(curve Curve, data []byte) (x, y *big.Int) { |
| byteLen := (curve.Params().BitSize + 7) / 8 |
| if len(data) != 1+2*byteLen { |
| return nil, nil |
| } |
| if data[0] != 4 { // uncompressed form |
| return nil, nil |
| } |
| p := curve.Params().P |
| x = new(big.Int).SetBytes(data[1 : 1+byteLen]) |
| y = new(big.Int).SetBytes(data[1+byteLen:]) |
| if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 { |
| return nil, nil |
| } |
| if !curve.IsOnCurve(x, y) { |
| return nil, nil |
| } |
| return |
| } |
| |
| // UnmarshalCompressed converts a point, serialized by MarshalCompressed, into an x, y pair. |
| // It is an error if the point is not in compressed form or is not on the curve. |
| // On error, x = nil. |
| func UnmarshalCompressed(curve Curve, data []byte) (x, y *big.Int) { |
| byteLen := (curve.Params().BitSize + 7) / 8 |
| if len(data) != 1+byteLen { |
| return nil, nil |
| } |
| if data[0] != 2 && data[0] != 3 { // compressed form |
| return nil, nil |
| } |
| p := curve.Params().P |
| x = new(big.Int).SetBytes(data[1:]) |
| if x.Cmp(p) >= 0 { |
| return nil, nil |
| } |
| // y² = x³ - 3x + b |
| y = curve.Params().polynomial(x) |
| y = y.ModSqrt(y, p) |
| if y == nil { |
| return nil, nil |
| } |
| if byte(y.Bit(0)) != data[0]&1 { |
| y.Neg(y).Mod(y, p) |
| } |
| if !curve.IsOnCurve(x, y) { |
| return nil, nil |
| } |
| return |
| } |
| |
| var initonce sync.Once |
| var p384 *CurveParams |
| |
| func initAll() { |
| initP224() |
| initP256() |
| initP384() |
| initP521() |
| } |
| |
| func initP384() { |
| // See FIPS 186-3, section D.2.4 |
| p384 = &CurveParams{Name: "P-384"} |
| p384.P, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319", 10) |
| p384.N, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643", 10) |
| p384.B, _ = new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", 16) |
| p384.Gx, _ = new(big.Int).SetString("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", 16) |
| p384.Gy, _ = new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16) |
| p384.BitSize = 384 |
| } |
| |
| // P256 returns a Curve which implements NIST P-256 (FIPS 186-3, section D.2.3), |
| // also known as secp256r1 or prime256v1. The CurveParams.Name of this Curve is |
| // "P-256". |
| // |
| // Multiple invocations of this function will return the same value, so it can |
| // be used for equality checks and switch statements. |
| // |
| // ScalarMult and ScalarBaseMult are implemented using constant-time algorithms. |
| func P256() Curve { |
| initonce.Do(initAll) |
| return p256 |
| } |
| |
| // P384 returns a Curve which implements NIST P-384 (FIPS 186-3, section D.2.4), |
| // also known as secp384r1. The CurveParams.Name of this Curve is "P-384". |
| // |
| // Multiple invocations of this function will return the same value, so it can |
| // be used for equality checks and switch statements. |
| // |
| // The cryptographic operations do not use constant-time algorithms. |
| func P384() Curve { |
| initonce.Do(initAll) |
| return p384 |
| } |
| |
| // P521 returns a Curve which implements NIST P-521 (FIPS 186-3, section D.2.5), |
| // also known as secp521r1. The CurveParams.Name of this Curve is "P-521". |
| // |
| // Multiple invocations of this function will return the same value, so it can |
| // be used for equality checks and switch statements. |
| // |
| // The cryptographic operations are implemented using constant-time algorithms. |
| func P521() Curve { |
| initonce.Do(initAll) |
| return p521 |
| } |