| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| //go:build ppc64le |
| // +build ppc64le |
| |
| package aes |
| |
| import ( |
| "crypto/cipher" |
| "crypto/subtle" |
| "encoding/binary" |
| "errors" |
| ) |
| |
| // This file implements GCM using an optimized GHASH function. |
| |
| //go:noescape |
| func gcmInit(productTable *[256]byte, h []byte) |
| |
| //go:noescape |
| func gcmHash(output []byte, productTable *[256]byte, inp []byte, len int) |
| |
| //go:noescape |
| func gcmMul(output []byte, productTable *[256]byte) |
| |
| const ( |
| gcmCounterSize = 16 |
| gcmBlockSize = 16 |
| gcmTagSize = 16 |
| gcmStandardNonceSize = 12 |
| ) |
| |
| var errOpen = errors.New("cipher: message authentication failed") |
| |
| // Assert that aesCipherGCM implements the gcmAble interface. |
| var _ gcmAble = (*aesCipherAsm)(nil) |
| |
| type gcmAsm struct { |
| cipher *aesCipherAsm |
| // ks is the key schedule, the length of which depends on the size of |
| // the AES key. |
| ks []uint32 |
| // productTable contains pre-computed multiples of the binary-field |
| // element used in GHASH. |
| productTable [256]byte |
| // nonceSize contains the expected size of the nonce, in bytes. |
| nonceSize int |
| // tagSize contains the size of the tag, in bytes. |
| tagSize int |
| } |
| |
| // NewGCM returns the AES cipher wrapped in Galois Counter Mode. This is only |
| // called by crypto/cipher.NewGCM via the gcmAble interface. |
| func (c *aesCipherAsm) NewGCM(nonceSize, tagSize int) (cipher.AEAD, error) { |
| g := &gcmAsm{cipher: c, ks: c.enc, nonceSize: nonceSize, tagSize: tagSize} |
| |
| hle := make([]byte, gcmBlockSize) |
| c.Encrypt(hle, hle) |
| |
| // Reverse the bytes in each 8 byte chunk |
| // Load little endian, store big endian |
| h1 := binary.LittleEndian.Uint64(hle[:8]) |
| h2 := binary.LittleEndian.Uint64(hle[8:]) |
| binary.BigEndian.PutUint64(hle[:8], h1) |
| binary.BigEndian.PutUint64(hle[8:], h2) |
| gcmInit(&g.productTable, hle) |
| |
| return g, nil |
| } |
| |
| func (g *gcmAsm) NonceSize() int { |
| return g.nonceSize |
| } |
| |
| func (g *gcmAsm) Overhead() int { |
| return g.tagSize |
| } |
| |
| func sliceForAppend(in []byte, n int) (head, tail []byte) { |
| if total := len(in) + n; cap(in) >= total { |
| head = in[:total] |
| } else { |
| head = make([]byte, total) |
| copy(head, in) |
| } |
| tail = head[len(in):] |
| return |
| } |
| |
| // deriveCounter computes the initial GCM counter state from the given nonce. |
| func (g *gcmAsm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) { |
| if len(nonce) == gcmStandardNonceSize { |
| copy(counter[:], nonce) |
| counter[gcmBlockSize-1] = 1 |
| } else { |
| var hash [16]byte |
| g.paddedGHASH(&hash, nonce) |
| lens := gcmLengths(0, uint64(len(nonce))*8) |
| g.paddedGHASH(&hash, lens[:]) |
| copy(counter[:], hash[:]) |
| } |
| } |
| |
| // counterCrypt encrypts in using AES in counter mode and places the result |
| // into out. counter is the initial count value and will be updated with the next |
| // count value. The length of out must be greater than or equal to the length |
| // of in. |
| func (g *gcmAsm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) { |
| var mask [gcmBlockSize]byte |
| |
| for len(in) >= gcmBlockSize { |
| // Hint to avoid bounds check |
| _, _ = in[15], out[15] |
| g.cipher.Encrypt(mask[:], counter[:]) |
| gcmInc32(counter) |
| |
| // XOR 16 bytes each loop iteration in 8 byte chunks |
| in0 := binary.LittleEndian.Uint64(in[0:]) |
| in1 := binary.LittleEndian.Uint64(in[8:]) |
| m0 := binary.LittleEndian.Uint64(mask[:8]) |
| m1 := binary.LittleEndian.Uint64(mask[8:]) |
| binary.LittleEndian.PutUint64(out[:8], in0^m0) |
| binary.LittleEndian.PutUint64(out[8:], in1^m1) |
| out = out[16:] |
| in = in[16:] |
| } |
| |
| if len(in) > 0 { |
| g.cipher.Encrypt(mask[:], counter[:]) |
| gcmInc32(counter) |
| // XOR leftover bytes |
| for i, inb := range in { |
| out[i] = inb ^ mask[i] |
| } |
| } |
| } |
| |
| // increments the rightmost 32-bits of the count value by 1. |
| func gcmInc32(counterBlock *[16]byte) { |
| c := counterBlock[len(counterBlock)-4:] |
| x := binary.BigEndian.Uint32(c) + 1 |
| binary.BigEndian.PutUint32(c, x) |
| } |
| |
| // paddedGHASH pads data with zeroes until its length is a multiple of |
| // 16-bytes. It then calculates a new value for hash using the ghash |
| // algorithm. |
| func (g *gcmAsm) paddedGHASH(hash *[16]byte, data []byte) { |
| if siz := len(data) - (len(data) % gcmBlockSize); siz > 0 { |
| gcmHash(hash[:], &g.productTable, data[:], siz) |
| data = data[siz:] |
| } |
| if len(data) > 0 { |
| var s [16]byte |
| copy(s[:], data) |
| gcmHash(hash[:], &g.productTable, s[:], len(s)) |
| } |
| } |
| |
| // auth calculates GHASH(ciphertext, additionalData), masks the result with |
| // tagMask and writes the result to out. |
| func (g *gcmAsm) auth(out, ciphertext, aad []byte, tagMask *[gcmTagSize]byte) { |
| var hash [16]byte |
| g.paddedGHASH(&hash, aad) |
| g.paddedGHASH(&hash, ciphertext) |
| lens := gcmLengths(uint64(len(aad))*8, uint64(len(ciphertext))*8) |
| g.paddedGHASH(&hash, lens[:]) |
| |
| copy(out, hash[:]) |
| for i := range out { |
| out[i] ^= tagMask[i] |
| } |
| } |
| |
| // Seal encrypts and authenticates plaintext. See the cipher.AEAD interface for |
| // details. |
| func (g *gcmAsm) Seal(dst, nonce, plaintext, data []byte) []byte { |
| if len(nonce) != g.nonceSize { |
| panic("cipher: incorrect nonce length given to GCM") |
| } |
| if uint64(len(plaintext)) > ((1<<32)-2)*BlockSize { |
| panic("cipher: message too large for GCM") |
| } |
| |
| ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize) |
| |
| var counter, tagMask [gcmBlockSize]byte |
| g.deriveCounter(&counter, nonce) |
| |
| g.cipher.Encrypt(tagMask[:], counter[:]) |
| gcmInc32(&counter) |
| |
| g.counterCrypt(out, plaintext, &counter) |
| g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask) |
| |
| return ret |
| } |
| |
| // Open authenticates and decrypts ciphertext. See the cipher.AEAD interface |
| // for details. |
| func (g *gcmAsm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { |
| if len(nonce) != g.nonceSize { |
| panic("cipher: incorrect nonce length given to GCM") |
| } |
| if len(ciphertext) < g.tagSize { |
| return nil, errOpen |
| } |
| if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(BlockSize)+uint64(g.tagSize) { |
| return nil, errOpen |
| } |
| |
| tag := ciphertext[len(ciphertext)-g.tagSize:] |
| ciphertext = ciphertext[:len(ciphertext)-g.tagSize] |
| |
| var counter, tagMask [gcmBlockSize]byte |
| g.deriveCounter(&counter, nonce) |
| |
| g.cipher.Encrypt(tagMask[:], counter[:]) |
| gcmInc32(&counter) |
| |
| var expectedTag [gcmTagSize]byte |
| g.auth(expectedTag[:], ciphertext, data, &tagMask) |
| |
| ret, out := sliceForAppend(dst, len(ciphertext)) |
| |
| if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 { |
| for i := range out { |
| out[i] = 0 |
| } |
| return nil, errOpen |
| } |
| |
| g.counterCrypt(out, ciphertext, &counter) |
| return ret, nil |
| } |
| |
| func gcmLengths(len0, len1 uint64) [16]byte { |
| return [16]byte{ |
| byte(len0 >> 56), |
| byte(len0 >> 48), |
| byte(len0 >> 40), |
| byte(len0 >> 32), |
| byte(len0 >> 24), |
| byte(len0 >> 16), |
| byte(len0 >> 8), |
| byte(len0), |
| byte(len1 >> 56), |
| byte(len1 >> 48), |
| byte(len1 >> 40), |
| byte(len1 >> 32), |
| byte(len1 >> 24), |
| byte(len1 >> 16), |
| byte(len1 >> 8), |
| byte(len1), |
| } |
| } |