| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssagen |
| |
| import ( |
| "fmt" |
| "internal/buildcfg" |
| "io/ioutil" |
| "log" |
| "os" |
| "strings" |
| |
| "cmd/compile/internal/base" |
| "cmd/compile/internal/ir" |
| "cmd/compile/internal/staticdata" |
| "cmd/compile/internal/typecheck" |
| "cmd/compile/internal/types" |
| "cmd/internal/obj" |
| "cmd/internal/objabi" |
| ) |
| |
| // SymABIs records information provided by the assembler about symbol |
| // definition ABIs and reference ABIs. |
| type SymABIs struct { |
| defs map[string]obj.ABI |
| refs map[string]obj.ABISet |
| |
| localPrefix string |
| } |
| |
| func NewSymABIs(myimportpath string) *SymABIs { |
| var localPrefix string |
| if myimportpath != "" { |
| localPrefix = objabi.PathToPrefix(myimportpath) + "." |
| } |
| |
| return &SymABIs{ |
| defs: make(map[string]obj.ABI), |
| refs: make(map[string]obj.ABISet), |
| localPrefix: localPrefix, |
| } |
| } |
| |
| // canonicalize returns the canonical name used for a linker symbol in |
| // s's maps. Symbols in this package may be written either as "".X or |
| // with the package's import path already in the symbol. This rewrites |
| // both to `"".`, which matches compiler-generated linker symbol names. |
| func (s *SymABIs) canonicalize(linksym string) string { |
| // If the symbol is already prefixed with localPrefix, |
| // rewrite it to start with "" so it matches the |
| // compiler's internal symbol names. |
| if s.localPrefix != "" && strings.HasPrefix(linksym, s.localPrefix) { |
| return `"".` + linksym[len(s.localPrefix):] |
| } |
| return linksym |
| } |
| |
| // ReadSymABIs reads a symabis file that specifies definitions and |
| // references of text symbols by ABI. |
| // |
| // The symabis format is a set of lines, where each line is a sequence |
| // of whitespace-separated fields. The first field is a verb and is |
| // either "def" for defining a symbol ABI or "ref" for referencing a |
| // symbol using an ABI. For both "def" and "ref", the second field is |
| // the symbol name and the third field is the ABI name, as one of the |
| // named cmd/internal/obj.ABI constants. |
| func (s *SymABIs) ReadSymABIs(file string) { |
| data, err := ioutil.ReadFile(file) |
| if err != nil { |
| log.Fatalf("-symabis: %v", err) |
| } |
| |
| for lineNum, line := range strings.Split(string(data), "\n") { |
| lineNum++ // 1-based |
| line = strings.TrimSpace(line) |
| if line == "" || strings.HasPrefix(line, "#") { |
| continue |
| } |
| |
| parts := strings.Fields(line) |
| switch parts[0] { |
| case "def", "ref": |
| // Parse line. |
| if len(parts) != 3 { |
| log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0]) |
| } |
| sym, abistr := parts[1], parts[2] |
| abi, valid := obj.ParseABI(abistr) |
| if !valid { |
| log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr) |
| } |
| |
| sym = s.canonicalize(sym) |
| |
| // Record for later. |
| if parts[0] == "def" { |
| s.defs[sym] = abi |
| } else { |
| s.refs[sym] |= obj.ABISetOf(abi) |
| } |
| default: |
| log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0]) |
| } |
| } |
| } |
| |
| // GenABIWrappers applies ABI information to Funcs and generates ABI |
| // wrapper functions where necessary. |
| func (s *SymABIs) GenABIWrappers() { |
| // For cgo exported symbols, we tell the linker to export the |
| // definition ABI to C. That also means that we don't want to |
| // create ABI wrappers even if there's a linkname. |
| // |
| // TODO(austin): Maybe we want to create the ABI wrappers, but |
| // ensure the linker exports the right ABI definition under |
| // the unmangled name? |
| cgoExports := make(map[string][]*[]string) |
| for i, prag := range typecheck.Target.CgoPragmas { |
| switch prag[0] { |
| case "cgo_export_static", "cgo_export_dynamic": |
| symName := s.canonicalize(prag[1]) |
| pprag := &typecheck.Target.CgoPragmas[i] |
| cgoExports[symName] = append(cgoExports[symName], pprag) |
| } |
| } |
| |
| // Apply ABI defs and refs to Funcs and generate wrappers. |
| // |
| // This may generate new decls for the wrappers, but we |
| // specifically *don't* want to visit those, lest we create |
| // wrappers for wrappers. |
| for _, fn := range typecheck.Target.Decls { |
| if fn.Op() != ir.ODCLFUNC { |
| continue |
| } |
| fn := fn.(*ir.Func) |
| nam := fn.Nname |
| if ir.IsBlank(nam) { |
| continue |
| } |
| sym := nam.Sym() |
| var symName string |
| if sym.Linkname != "" { |
| symName = s.canonicalize(sym.Linkname) |
| } else { |
| // These names will already be canonical. |
| symName = sym.Pkg.Prefix + "." + sym.Name |
| } |
| |
| // Apply definitions. |
| defABI, hasDefABI := s.defs[symName] |
| if hasDefABI { |
| if len(fn.Body) != 0 { |
| base.ErrorfAt(fn.Pos(), "%v defined in both Go and assembly", fn) |
| } |
| fn.ABI = defABI |
| } |
| |
| if fn.Pragma&ir.CgoUnsafeArgs != 0 { |
| // CgoUnsafeArgs indicates the function (or its callee) uses |
| // offsets to dispatch arguments, which currently using ABI0 |
| // frame layout. Pin it to ABI0. |
| fn.ABI = obj.ABI0 |
| } |
| |
| // If cgo-exported, add the definition ABI to the cgo |
| // pragmas. |
| cgoExport := cgoExports[symName] |
| for _, pprag := range cgoExport { |
| // The export pragmas have the form: |
| // |
| // cgo_export_* <local> [<remote>] |
| // |
| // If <remote> is omitted, it's the same as |
| // <local>. |
| // |
| // Expand to |
| // |
| // cgo_export_* <local> <remote> <ABI> |
| if len(*pprag) == 2 { |
| *pprag = append(*pprag, (*pprag)[1]) |
| } |
| // Add the ABI argument. |
| *pprag = append(*pprag, fn.ABI.String()) |
| } |
| |
| // Apply references. |
| if abis, ok := s.refs[symName]; ok { |
| fn.ABIRefs |= abis |
| } |
| // Assume all functions are referenced at least as |
| // ABIInternal, since they may be referenced from |
| // other packages. |
| fn.ABIRefs.Set(obj.ABIInternal, true) |
| |
| // If a symbol is defined in this package (either in |
| // Go or assembly) and given a linkname, it may be |
| // referenced from another package, so make it |
| // callable via any ABI. It's important that we know |
| // it's defined in this package since other packages |
| // may "pull" symbols using linkname and we don't want |
| // to create duplicate ABI wrappers. |
| // |
| // However, if it's given a linkname for exporting to |
| // C, then we don't make ABI wrappers because the cgo |
| // tool wants the original definition. |
| hasBody := len(fn.Body) != 0 |
| if sym.Linkname != "" && (hasBody || hasDefABI) && len(cgoExport) == 0 { |
| fn.ABIRefs |= obj.ABISetCallable |
| } |
| |
| // Double check that cgo-exported symbols don't get |
| // any wrappers. |
| if len(cgoExport) > 0 && fn.ABIRefs&^obj.ABISetOf(fn.ABI) != 0 { |
| base.Fatalf("cgo exported function %s cannot have ABI wrappers", fn) |
| } |
| |
| if !buildcfg.Experiment.RegabiWrappers { |
| continue |
| } |
| |
| forEachWrapperABI(fn, makeABIWrapper) |
| } |
| } |
| |
| // InitLSym defines f's obj.LSym and initializes it based on the |
| // properties of f. This includes setting the symbol flags and ABI and |
| // creating and initializing related DWARF symbols. |
| // |
| // InitLSym must be called exactly once per function and must be |
| // called for both functions with bodies and functions without bodies. |
| // For body-less functions, we only create the LSym; for functions |
| // with bodies call a helper to setup up / populate the LSym. |
| func InitLSym(f *ir.Func, hasBody bool) { |
| if f.LSym != nil { |
| base.FatalfAt(f.Pos(), "InitLSym called twice on %v", f) |
| } |
| |
| if nam := f.Nname; !ir.IsBlank(nam) { |
| f.LSym = nam.LinksymABI(f.ABI) |
| if f.Pragma&ir.Systemstack != 0 { |
| f.LSym.Set(obj.AttrCFunc, true) |
| } |
| if f.ABI == obj.ABIInternal || !buildcfg.Experiment.RegabiWrappers { |
| // Function values can only point to |
| // ABIInternal entry points. This will create |
| // the funcsym for either the defining |
| // function or its wrapper as appropriate. |
| // |
| // If we're not using ABI wrappers, we only |
| // InitLSym for the defining ABI of a function, |
| // so we make the funcsym when we see that. |
| staticdata.NeedFuncSym(f) |
| } |
| } |
| if hasBody { |
| setupTextLSym(f, 0) |
| } |
| } |
| |
| func forEachWrapperABI(fn *ir.Func, cb func(fn *ir.Func, wrapperABI obj.ABI)) { |
| need := fn.ABIRefs &^ obj.ABISetOf(fn.ABI) |
| if need == 0 { |
| return |
| } |
| |
| for wrapperABI := obj.ABI(0); wrapperABI < obj.ABICount; wrapperABI++ { |
| if !need.Get(wrapperABI) { |
| continue |
| } |
| cb(fn, wrapperABI) |
| } |
| } |
| |
| // makeABIWrapper creates a new function that will be called with |
| // wrapperABI and calls "f" using f.ABI. |
| func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) { |
| if base.Debug.ABIWrap != 0 { |
| fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %v\n", wrapperABI, f.ABI, f) |
| } |
| |
| // Q: is this needed? |
| savepos := base.Pos |
| savedclcontext := typecheck.DeclContext |
| savedcurfn := ir.CurFunc |
| |
| base.Pos = base.AutogeneratedPos |
| typecheck.DeclContext = ir.PEXTERN |
| |
| // At the moment we don't support wrapping a method, we'd need machinery |
| // below to handle the receiver. Panic if we see this scenario. |
| ft := f.Nname.Type() |
| if ft.NumRecvs() != 0 { |
| panic("makeABIWrapper support for wrapping methods not implemented") |
| } |
| |
| // Manufacture a new func type to use for the wrapper. |
| var noReceiver *ir.Field |
| tfn := ir.NewFuncType(base.Pos, |
| noReceiver, |
| typecheck.NewFuncParams(ft.Params(), true), |
| typecheck.NewFuncParams(ft.Results(), false)) |
| |
| // Reuse f's types.Sym to create a new ODCLFUNC/function. |
| fn := typecheck.DeclFunc(f.Nname.Sym(), tfn) |
| fn.ABI = wrapperABI |
| |
| fn.SetABIWrapper(true) |
| fn.SetDupok(true) |
| |
| // ABI0-to-ABIInternal wrappers will be mainly loading params from |
| // stack into registers (and/or storing stack locations back to |
| // registers after the wrapped call); in most cases they won't |
| // need to allocate stack space, so it should be OK to mark them |
| // as NOSPLIT in these cases. In addition, my assumption is that |
| // functions written in assembly are NOSPLIT in most (but not all) |
| // cases. In the case of an ABIInternal target that has too many |
| // parameters to fit into registers, the wrapper would need to |
| // allocate stack space, but this seems like an unlikely scenario. |
| // Hence: mark these wrappers NOSPLIT. |
| // |
| // ABIInternal-to-ABI0 wrappers on the other hand will be taking |
| // things in registers and pushing them onto the stack prior to |
| // the ABI0 call, meaning that they will always need to allocate |
| // stack space. If the compiler marks them as NOSPLIT this seems |
| // as though it could lead to situations where the linker's |
| // nosplit-overflow analysis would trigger a link failure. On the |
| // other hand if they not tagged NOSPLIT then this could cause |
| // problems when building the runtime (since there may be calls to |
| // asm routine in cases where it's not safe to grow the stack). In |
| // most cases the wrapper would be (in effect) inlined, but are |
| // there (perhaps) indirect calls from the runtime that could run |
| // into trouble here. |
| // FIXME: at the moment all.bash does not pass when I leave out |
| // NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT. |
| fn.Pragma |= ir.Nosplit |
| |
| // Generate call. Use tail call if no params and no returns, |
| // but a regular call otherwise. |
| // |
| // Note: ideally we would be using a tail call in cases where |
| // there are params but no returns for ABI0->ABIInternal wrappers, |
| // provided that all params fit into registers (e.g. we don't have |
| // to allocate any stack space). Doing this will require some |
| // extra work in typecheck/walk/ssa, might want to add a new node |
| // OTAILCALL or something to this effect. |
| tailcall := tfn.Type().NumResults() == 0 && tfn.Type().NumParams() == 0 && tfn.Type().NumRecvs() == 0 |
| if base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink { |
| // cannot tailcall on PPC64 with dynamic linking, as we need |
| // to restore R2 after call. |
| tailcall = false |
| } |
| if base.Ctxt.Arch.Name == "amd64" && wrapperABI == obj.ABIInternal { |
| // cannot tailcall from ABIInternal to ABI0 on AMD64, as we need |
| // to special registers (X15) when returning to ABIInternal. |
| tailcall = false |
| } |
| |
| var tail ir.Node |
| call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil) |
| call.Args = ir.ParamNames(tfn.Type()) |
| call.IsDDD = tfn.Type().IsVariadic() |
| tail = call |
| if tailcall { |
| tail = ir.NewTailCallStmt(base.Pos, call) |
| } else if tfn.Type().NumResults() > 0 { |
| n := ir.NewReturnStmt(base.Pos, nil) |
| n.Results = []ir.Node{call} |
| tail = n |
| } |
| fn.Body.Append(tail) |
| |
| typecheck.FinishFuncBody() |
| if base.Debug.DclStack != 0 { |
| types.CheckDclstack() |
| } |
| |
| typecheck.Func(fn) |
| ir.CurFunc = fn |
| typecheck.Stmts(fn.Body) |
| |
| typecheck.Target.Decls = append(typecheck.Target.Decls, fn) |
| |
| // Restore previous context. |
| base.Pos = savepos |
| typecheck.DeclContext = savedclcontext |
| ir.CurFunc = savedcurfn |
| } |
| |
| // setupTextLsym initializes the LSym for a with-body text symbol. |
| func setupTextLSym(f *ir.Func, flag int) { |
| if f.Dupok() { |
| flag |= obj.DUPOK |
| } |
| if f.Wrapper() { |
| flag |= obj.WRAPPER |
| } |
| if f.ABIWrapper() { |
| flag |= obj.ABIWRAPPER |
| } |
| if f.Needctxt() { |
| flag |= obj.NEEDCTXT |
| } |
| if f.Pragma&ir.Nosplit != 0 { |
| flag |= obj.NOSPLIT |
| } |
| if f.ReflectMethod() { |
| flag |= obj.REFLECTMETHOD |
| } |
| |
| // Clumsy but important. |
| // For functions that could be on the path of invoking a deferred |
| // function that can recover (runtime.reflectcall, reflect.callReflect, |
| // and reflect.callMethod), we want the panic+recover special handling. |
| // See test/recover.go for test cases and src/reflect/value.go |
| // for the actual functions being considered. |
| // |
| // runtime.reflectcall is an assembly function which tailcalls |
| // WRAPPER functions (runtime.callNN). Its ABI wrapper needs WRAPPER |
| // flag as well. |
| fnname := f.Sym().Name |
| if base.Ctxt.Pkgpath == "runtime" && fnname == "reflectcall" { |
| flag |= obj.WRAPPER |
| } else if base.Ctxt.Pkgpath == "reflect" { |
| switch fnname { |
| case "callReflect", "callMethod": |
| flag |= obj.WRAPPER |
| } |
| } |
| |
| base.Ctxt.InitTextSym(f.LSym, flag) |
| } |