|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | //go:generate go run encgen.go -output enc_helpers.go | 
|  |  | 
|  | package gob | 
|  |  | 
|  | import ( | 
|  | "encoding" | 
|  | "encoding/binary" | 
|  | "math" | 
|  | "math/bits" | 
|  | "reflect" | 
|  | "sync" | 
|  | ) | 
|  |  | 
|  | const uint64Size = 8 | 
|  |  | 
|  | type encHelper func(state *encoderState, v reflect.Value) bool | 
|  |  | 
|  | // encoderState is the global execution state of an instance of the encoder. | 
|  | // Field numbers are delta encoded and always increase. The field | 
|  | // number is initialized to -1 so 0 comes out as delta(1). A delta of | 
|  | // 0 terminates the structure. | 
|  | type encoderState struct { | 
|  | enc      *Encoder | 
|  | b        *encBuffer | 
|  | sendZero bool                 // encoding an array element or map key/value pair; send zero values | 
|  | fieldnum int                  // the last field number written. | 
|  | buf      [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. | 
|  | next     *encoderState        // for free list | 
|  | } | 
|  |  | 
|  | // encBuffer is an extremely simple, fast implementation of a write-only byte buffer. | 
|  | // It never returns a non-nil error, but Write returns an error value so it matches io.Writer. | 
|  | type encBuffer struct { | 
|  | data    []byte | 
|  | scratch [64]byte | 
|  | } | 
|  |  | 
|  | var encBufferPool = sync.Pool{ | 
|  | New: func() interface{} { | 
|  | e := new(encBuffer) | 
|  | e.data = e.scratch[0:0] | 
|  | return e | 
|  | }, | 
|  | } | 
|  |  | 
|  | func (e *encBuffer) WriteByte(c byte) { | 
|  | e.data = append(e.data, c) | 
|  | } | 
|  |  | 
|  | func (e *encBuffer) Write(p []byte) (int, error) { | 
|  | e.data = append(e.data, p...) | 
|  | return len(p), nil | 
|  | } | 
|  |  | 
|  | func (e *encBuffer) WriteString(s string) { | 
|  | e.data = append(e.data, s...) | 
|  | } | 
|  |  | 
|  | func (e *encBuffer) Len() int { | 
|  | return len(e.data) | 
|  | } | 
|  |  | 
|  | func (e *encBuffer) Bytes() []byte { | 
|  | return e.data | 
|  | } | 
|  |  | 
|  | func (e *encBuffer) Reset() { | 
|  | if len(e.data) >= tooBig { | 
|  | e.data = e.scratch[0:0] | 
|  | } else { | 
|  | e.data = e.data[0:0] | 
|  | } | 
|  | } | 
|  |  | 
|  | func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState { | 
|  | e := enc.freeList | 
|  | if e == nil { | 
|  | e = new(encoderState) | 
|  | e.enc = enc | 
|  | } else { | 
|  | enc.freeList = e.next | 
|  | } | 
|  | e.sendZero = false | 
|  | e.fieldnum = 0 | 
|  | e.b = b | 
|  | if len(b.data) == 0 { | 
|  | b.data = b.scratch[0:0] | 
|  | } | 
|  | return e | 
|  | } | 
|  |  | 
|  | func (enc *Encoder) freeEncoderState(e *encoderState) { | 
|  | e.next = enc.freeList | 
|  | enc.freeList = e | 
|  | } | 
|  |  | 
|  | // Unsigned integers have a two-state encoding. If the number is less | 
|  | // than 128 (0 through 0x7F), its value is written directly. | 
|  | // Otherwise the value is written in big-endian byte order preceded | 
|  | // by the byte length, negated. | 
|  |  | 
|  | // encodeUint writes an encoded unsigned integer to state.b. | 
|  | func (state *encoderState) encodeUint(x uint64) { | 
|  | if x <= 0x7F { | 
|  | state.b.WriteByte(uint8(x)) | 
|  | return | 
|  | } | 
|  |  | 
|  | binary.BigEndian.PutUint64(state.buf[1:], x) | 
|  | bc := bits.LeadingZeros64(x) >> 3      // 8 - bytelen(x) | 
|  | state.buf[bc] = uint8(bc - uint64Size) // and then we subtract 8 to get -bytelen(x) | 
|  |  | 
|  | state.b.Write(state.buf[bc : uint64Size+1]) | 
|  | } | 
|  |  | 
|  | // encodeInt writes an encoded signed integer to state.w. | 
|  | // The low bit of the encoding says whether to bit complement the (other bits of the) | 
|  | // uint to recover the int. | 
|  | func (state *encoderState) encodeInt(i int64) { | 
|  | var x uint64 | 
|  | if i < 0 { | 
|  | x = uint64(^i<<1) | 1 | 
|  | } else { | 
|  | x = uint64(i << 1) | 
|  | } | 
|  | state.encodeUint(x) | 
|  | } | 
|  |  | 
|  | // encOp is the signature of an encoding operator for a given type. | 
|  | type encOp func(i *encInstr, state *encoderState, v reflect.Value) | 
|  |  | 
|  | // The 'instructions' of the encoding machine | 
|  | type encInstr struct { | 
|  | op    encOp | 
|  | field int   // field number in input | 
|  | index []int // struct index | 
|  | indir int   // how many pointer indirections to reach the value in the struct | 
|  | } | 
|  |  | 
|  | // update emits a field number and updates the state to record its value for delta encoding. | 
|  | // If the instruction pointer is nil, it does nothing | 
|  | func (state *encoderState) update(instr *encInstr) { | 
|  | if instr != nil { | 
|  | state.encodeUint(uint64(instr.field - state.fieldnum)) | 
|  | state.fieldnum = instr.field | 
|  | } | 
|  | } | 
|  |  | 
|  | // Each encoder for a composite is responsible for handling any | 
|  | // indirections associated with the elements of the data structure. | 
|  | // If any pointer so reached is nil, no bytes are written. If the | 
|  | // data item is zero, no bytes are written. Single values - ints, | 
|  | // strings etc. - are indirected before calling their encoders. | 
|  | // Otherwise, the output (for a scalar) is the field number, as an | 
|  | // encoded integer, followed by the field data in its appropriate | 
|  | // format. | 
|  |  | 
|  | // encIndirect dereferences pv indir times and returns the result. | 
|  | func encIndirect(pv reflect.Value, indir int) reflect.Value { | 
|  | for ; indir > 0; indir-- { | 
|  | if pv.IsNil() { | 
|  | break | 
|  | } | 
|  | pv = pv.Elem() | 
|  | } | 
|  | return pv | 
|  | } | 
|  |  | 
|  | // encBool encodes the bool referenced by v as an unsigned 0 or 1. | 
|  | func encBool(i *encInstr, state *encoderState, v reflect.Value) { | 
|  | b := v.Bool() | 
|  | if b || state.sendZero { | 
|  | state.update(i) | 
|  | if b { | 
|  | state.encodeUint(1) | 
|  | } else { | 
|  | state.encodeUint(0) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v. | 
|  | func encInt(i *encInstr, state *encoderState, v reflect.Value) { | 
|  | value := v.Int() | 
|  | if value != 0 || state.sendZero { | 
|  | state.update(i) | 
|  | state.encodeInt(value) | 
|  | } | 
|  | } | 
|  |  | 
|  | // encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v. | 
|  | func encUint(i *encInstr, state *encoderState, v reflect.Value) { | 
|  | value := v.Uint() | 
|  | if value != 0 || state.sendZero { | 
|  | state.update(i) | 
|  | state.encodeUint(value) | 
|  | } | 
|  | } | 
|  |  | 
|  | // floatBits returns a uint64 holding the bits of a floating-point number. | 
|  | // Floating-point numbers are transmitted as uint64s holding the bits | 
|  | // of the underlying representation. They are sent byte-reversed, with | 
|  | // the exponent end coming out first, so integer floating point numbers | 
|  | // (for example) transmit more compactly. This routine does the | 
|  | // swizzling. | 
|  | func floatBits(f float64) uint64 { | 
|  | u := math.Float64bits(f) | 
|  | return bits.ReverseBytes64(u) | 
|  | } | 
|  |  | 
|  | // encFloat encodes the floating point value (float32 float64) referenced by v. | 
|  | func encFloat(i *encInstr, state *encoderState, v reflect.Value) { | 
|  | f := v.Float() | 
|  | if f != 0 || state.sendZero { | 
|  | bits := floatBits(f) | 
|  | state.update(i) | 
|  | state.encodeUint(bits) | 
|  | } | 
|  | } | 
|  |  | 
|  | // encComplex encodes the complex value (complex64 complex128) referenced by v. | 
|  | // Complex numbers are just a pair of floating-point numbers, real part first. | 
|  | func encComplex(i *encInstr, state *encoderState, v reflect.Value) { | 
|  | c := v.Complex() | 
|  | if c != 0+0i || state.sendZero { | 
|  | rpart := floatBits(real(c)) | 
|  | ipart := floatBits(imag(c)) | 
|  | state.update(i) | 
|  | state.encodeUint(rpart) | 
|  | state.encodeUint(ipart) | 
|  | } | 
|  | } | 
|  |  | 
|  | // encUint8Array encodes the byte array referenced by v. | 
|  | // Byte arrays are encoded as an unsigned count followed by the raw bytes. | 
|  | func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) { | 
|  | b := v.Bytes() | 
|  | if len(b) > 0 || state.sendZero { | 
|  | state.update(i) | 
|  | state.encodeUint(uint64(len(b))) | 
|  | state.b.Write(b) | 
|  | } | 
|  | } | 
|  |  | 
|  | // encString encodes the string referenced by v. | 
|  | // Strings are encoded as an unsigned count followed by the raw bytes. | 
|  | func encString(i *encInstr, state *encoderState, v reflect.Value) { | 
|  | s := v.String() | 
|  | if len(s) > 0 || state.sendZero { | 
|  | state.update(i) | 
|  | state.encodeUint(uint64(len(s))) | 
|  | state.b.WriteString(s) | 
|  | } | 
|  | } | 
|  |  | 
|  | // encStructTerminator encodes the end of an encoded struct | 
|  | // as delta field number of 0. | 
|  | func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) { | 
|  | state.encodeUint(0) | 
|  | } | 
|  |  | 
|  | // Execution engine | 
|  |  | 
|  | // encEngine an array of instructions indexed by field number of the encoding | 
|  | // data, typically a struct. It is executed top to bottom, walking the struct. | 
|  | type encEngine struct { | 
|  | instr []encInstr | 
|  | } | 
|  |  | 
|  | const singletonField = 0 | 
|  |  | 
|  | // valid reports whether the value is valid and a non-nil pointer. | 
|  | // (Slices, maps, and chans take care of themselves.) | 
|  | func valid(v reflect.Value) bool { | 
|  | switch v.Kind() { | 
|  | case reflect.Invalid: | 
|  | return false | 
|  | case reflect.Ptr: | 
|  | return !v.IsNil() | 
|  | } | 
|  | return true | 
|  | } | 
|  |  | 
|  | // encodeSingle encodes a single top-level non-struct value. | 
|  | func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) { | 
|  | state := enc.newEncoderState(b) | 
|  | defer enc.freeEncoderState(state) | 
|  | state.fieldnum = singletonField | 
|  | // There is no surrounding struct to frame the transmission, so we must | 
|  | // generate data even if the item is zero. To do this, set sendZero. | 
|  | state.sendZero = true | 
|  | instr := &engine.instr[singletonField] | 
|  | if instr.indir > 0 { | 
|  | value = encIndirect(value, instr.indir) | 
|  | } | 
|  | if valid(value) { | 
|  | instr.op(instr, state, value) | 
|  | } | 
|  | } | 
|  |  | 
|  | // encodeStruct encodes a single struct value. | 
|  | func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) { | 
|  | if !valid(value) { | 
|  | return | 
|  | } | 
|  | state := enc.newEncoderState(b) | 
|  | defer enc.freeEncoderState(state) | 
|  | state.fieldnum = -1 | 
|  | for i := 0; i < len(engine.instr); i++ { | 
|  | instr := &engine.instr[i] | 
|  | if i >= value.NumField() { | 
|  | // encStructTerminator | 
|  | instr.op(instr, state, reflect.Value{}) | 
|  | break | 
|  | } | 
|  | field := value.FieldByIndex(instr.index) | 
|  | if instr.indir > 0 { | 
|  | field = encIndirect(field, instr.indir) | 
|  | // TODO: Is field guaranteed valid? If so we could avoid this check. | 
|  | if !valid(field) { | 
|  | continue | 
|  | } | 
|  | } | 
|  | instr.op(instr, state, field) | 
|  | } | 
|  | } | 
|  |  | 
|  | // encodeArray encodes an array. | 
|  | func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) { | 
|  | state := enc.newEncoderState(b) | 
|  | defer enc.freeEncoderState(state) | 
|  | state.fieldnum = -1 | 
|  | state.sendZero = true | 
|  | state.encodeUint(uint64(length)) | 
|  | if helper != nil && helper(state, value) { | 
|  | return | 
|  | } | 
|  | for i := 0; i < length; i++ { | 
|  | elem := value.Index(i) | 
|  | if elemIndir > 0 { | 
|  | elem = encIndirect(elem, elemIndir) | 
|  | // TODO: Is elem guaranteed valid? If so we could avoid this check. | 
|  | if !valid(elem) { | 
|  | errorf("encodeArray: nil element") | 
|  | } | 
|  | } | 
|  | op(nil, state, elem) | 
|  | } | 
|  | } | 
|  |  | 
|  | // encodeReflectValue is a helper for maps. It encodes the value v. | 
|  | func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { | 
|  | for i := 0; i < indir && v.IsValid(); i++ { | 
|  | v = reflect.Indirect(v) | 
|  | } | 
|  | if !v.IsValid() { | 
|  | errorf("encodeReflectValue: nil element") | 
|  | } | 
|  | op(nil, state, v) | 
|  | } | 
|  |  | 
|  | // encodeMap encodes a map as unsigned count followed by key:value pairs. | 
|  | func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { | 
|  | state := enc.newEncoderState(b) | 
|  | state.fieldnum = -1 | 
|  | state.sendZero = true | 
|  | keys := mv.MapKeys() | 
|  | state.encodeUint(uint64(len(keys))) | 
|  | for _, key := range keys { | 
|  | encodeReflectValue(state, key, keyOp, keyIndir) | 
|  | encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir) | 
|  | } | 
|  | enc.freeEncoderState(state) | 
|  | } | 
|  |  | 
|  | // encodeInterface encodes the interface value iv. | 
|  | // To send an interface, we send a string identifying the concrete type, followed | 
|  | // by the type identifier (which might require defining that type right now), followed | 
|  | // by the concrete value. A nil value gets sent as the empty string for the name, | 
|  | // followed by no value. | 
|  | func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) { | 
|  | // Gobs can encode nil interface values but not typed interface | 
|  | // values holding nil pointers, since nil pointers point to no value. | 
|  | elem := iv.Elem() | 
|  | if elem.Kind() == reflect.Ptr && elem.IsNil() { | 
|  | errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type()) | 
|  | } | 
|  | state := enc.newEncoderState(b) | 
|  | state.fieldnum = -1 | 
|  | state.sendZero = true | 
|  | if iv.IsNil() { | 
|  | state.encodeUint(0) | 
|  | return | 
|  | } | 
|  |  | 
|  | ut := userType(iv.Elem().Type()) | 
|  | namei, ok := concreteTypeToName.Load(ut.base) | 
|  | if !ok { | 
|  | errorf("type not registered for interface: %s", ut.base) | 
|  | } | 
|  | name := namei.(string) | 
|  |  | 
|  | // Send the name. | 
|  | state.encodeUint(uint64(len(name))) | 
|  | state.b.WriteString(name) | 
|  | // Define the type id if necessary. | 
|  | enc.sendTypeDescriptor(enc.writer(), state, ut) | 
|  | // Send the type id. | 
|  | enc.sendTypeId(state, ut) | 
|  | // Encode the value into a new buffer. Any nested type definitions | 
|  | // should be written to b, before the encoded value. | 
|  | enc.pushWriter(b) | 
|  | data := encBufferPool.Get().(*encBuffer) | 
|  | data.Write(spaceForLength) | 
|  | enc.encode(data, elem, ut) | 
|  | if enc.err != nil { | 
|  | error_(enc.err) | 
|  | } | 
|  | enc.popWriter() | 
|  | enc.writeMessage(b, data) | 
|  | data.Reset() | 
|  | encBufferPool.Put(data) | 
|  | if enc.err != nil { | 
|  | error_(enc.err) | 
|  | } | 
|  | enc.freeEncoderState(state) | 
|  | } | 
|  |  | 
|  | // isZero reports whether the value is the zero of its type. | 
|  | func isZero(val reflect.Value) bool { | 
|  | switch val.Kind() { | 
|  | case reflect.Array: | 
|  | for i := 0; i < val.Len(); i++ { | 
|  | if !isZero(val.Index(i)) { | 
|  | return false | 
|  | } | 
|  | } | 
|  | return true | 
|  | case reflect.Map, reflect.Slice, reflect.String: | 
|  | return val.Len() == 0 | 
|  | case reflect.Bool: | 
|  | return !val.Bool() | 
|  | case reflect.Complex64, reflect.Complex128: | 
|  | return val.Complex() == 0 | 
|  | case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr: | 
|  | return val.IsNil() | 
|  | case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: | 
|  | return val.Int() == 0 | 
|  | case reflect.Float32, reflect.Float64: | 
|  | return val.Float() == 0 | 
|  | case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: | 
|  | return val.Uint() == 0 | 
|  | case reflect.Struct: | 
|  | for i := 0; i < val.NumField(); i++ { | 
|  | if !isZero(val.Field(i)) { | 
|  | return false | 
|  | } | 
|  | } | 
|  | return true | 
|  | } | 
|  | panic("unknown type in isZero " + val.Type().String()) | 
|  | } | 
|  |  | 
|  | // encGobEncoder encodes a value that implements the GobEncoder interface. | 
|  | // The data is sent as a byte array. | 
|  | func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) { | 
|  | // TODO: should we catch panics from the called method? | 
|  |  | 
|  | var data []byte | 
|  | var err error | 
|  | // We know it's one of these. | 
|  | switch ut.externalEnc { | 
|  | case xGob: | 
|  | data, err = v.Interface().(GobEncoder).GobEncode() | 
|  | case xBinary: | 
|  | data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary() | 
|  | case xText: | 
|  | data, err = v.Interface().(encoding.TextMarshaler).MarshalText() | 
|  | } | 
|  | if err != nil { | 
|  | error_(err) | 
|  | } | 
|  | state := enc.newEncoderState(b) | 
|  | state.fieldnum = -1 | 
|  | state.encodeUint(uint64(len(data))) | 
|  | state.b.Write(data) | 
|  | enc.freeEncoderState(state) | 
|  | } | 
|  |  | 
|  | var encOpTable = [...]encOp{ | 
|  | reflect.Bool:       encBool, | 
|  | reflect.Int:        encInt, | 
|  | reflect.Int8:       encInt, | 
|  | reflect.Int16:      encInt, | 
|  | reflect.Int32:      encInt, | 
|  | reflect.Int64:      encInt, | 
|  | reflect.Uint:       encUint, | 
|  | reflect.Uint8:      encUint, | 
|  | reflect.Uint16:     encUint, | 
|  | reflect.Uint32:     encUint, | 
|  | reflect.Uint64:     encUint, | 
|  | reflect.Uintptr:    encUint, | 
|  | reflect.Float32:    encFloat, | 
|  | reflect.Float64:    encFloat, | 
|  | reflect.Complex64:  encComplex, | 
|  | reflect.Complex128: encComplex, | 
|  | reflect.String:     encString, | 
|  | } | 
|  |  | 
|  | // encOpFor returns (a pointer to) the encoding op for the base type under rt and | 
|  | // the indirection count to reach it. | 
|  | func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) { | 
|  | ut := userType(rt) | 
|  | // If the type implements GobEncoder, we handle it without further processing. | 
|  | if ut.externalEnc != 0 { | 
|  | return gobEncodeOpFor(ut) | 
|  | } | 
|  | // If this type is already in progress, it's a recursive type (e.g. map[string]*T). | 
|  | // Return the pointer to the op we're already building. | 
|  | if opPtr := inProgress[rt]; opPtr != nil { | 
|  | return opPtr, ut.indir | 
|  | } | 
|  | typ := ut.base | 
|  | indir := ut.indir | 
|  | k := typ.Kind() | 
|  | var op encOp | 
|  | if int(k) < len(encOpTable) { | 
|  | op = encOpTable[k] | 
|  | } | 
|  | if op == nil { | 
|  | inProgress[rt] = &op | 
|  | // Special cases | 
|  | switch t := typ; t.Kind() { | 
|  | case reflect.Slice: | 
|  | if t.Elem().Kind() == reflect.Uint8 { | 
|  | op = encUint8Array | 
|  | break | 
|  | } | 
|  | // Slices have a header; we decode it to find the underlying array. | 
|  | elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) | 
|  | helper := encSliceHelper[t.Elem().Kind()] | 
|  | op = func(i *encInstr, state *encoderState, slice reflect.Value) { | 
|  | if !state.sendZero && slice.Len() == 0 { | 
|  | return | 
|  | } | 
|  | state.update(i) | 
|  | state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper) | 
|  | } | 
|  | case reflect.Array: | 
|  | // True arrays have size in the type. | 
|  | elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) | 
|  | helper := encArrayHelper[t.Elem().Kind()] | 
|  | op = func(i *encInstr, state *encoderState, array reflect.Value) { | 
|  | state.update(i) | 
|  | state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper) | 
|  | } | 
|  | case reflect.Map: | 
|  | keyOp, keyIndir := encOpFor(t.Key(), inProgress, building) | 
|  | elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) | 
|  | op = func(i *encInstr, state *encoderState, mv reflect.Value) { | 
|  | // We send zero-length (but non-nil) maps because the | 
|  | // receiver might want to use the map.  (Maps don't use append.) | 
|  | if !state.sendZero && mv.IsNil() { | 
|  | return | 
|  | } | 
|  | state.update(i) | 
|  | state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir) | 
|  | } | 
|  | case reflect.Struct: | 
|  | // Generate a closure that calls out to the engine for the nested type. | 
|  | getEncEngine(userType(typ), building) | 
|  | info := mustGetTypeInfo(typ) | 
|  | op = func(i *encInstr, state *encoderState, sv reflect.Value) { | 
|  | state.update(i) | 
|  | // indirect through info to delay evaluation for recursive structs | 
|  | enc := info.encoder.Load().(*encEngine) | 
|  | state.enc.encodeStruct(state.b, enc, sv) | 
|  | } | 
|  | case reflect.Interface: | 
|  | op = func(i *encInstr, state *encoderState, iv reflect.Value) { | 
|  | if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { | 
|  | return | 
|  | } | 
|  | state.update(i) | 
|  | state.enc.encodeInterface(state.b, iv) | 
|  | } | 
|  | } | 
|  | } | 
|  | if op == nil { | 
|  | errorf("can't happen: encode type %s", rt) | 
|  | } | 
|  | return &op, indir | 
|  | } | 
|  |  | 
|  | // gobEncodeOpFor returns the op for a type that is known to implement GobEncoder. | 
|  | func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { | 
|  | rt := ut.user | 
|  | if ut.encIndir == -1 { | 
|  | rt = reflect.PtrTo(rt) | 
|  | } else if ut.encIndir > 0 { | 
|  | for i := int8(0); i < ut.encIndir; i++ { | 
|  | rt = rt.Elem() | 
|  | } | 
|  | } | 
|  | var op encOp | 
|  | op = func(i *encInstr, state *encoderState, v reflect.Value) { | 
|  | if ut.encIndir == -1 { | 
|  | // Need to climb up one level to turn value into pointer. | 
|  | if !v.CanAddr() { | 
|  | errorf("unaddressable value of type %s", rt) | 
|  | } | 
|  | v = v.Addr() | 
|  | } | 
|  | if !state.sendZero && isZero(v) { | 
|  | return | 
|  | } | 
|  | state.update(i) | 
|  | state.enc.encodeGobEncoder(state.b, ut, v) | 
|  | } | 
|  | return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver. | 
|  | } | 
|  |  | 
|  | // compileEnc returns the engine to compile the type. | 
|  | func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { | 
|  | srt := ut.base | 
|  | engine := new(encEngine) | 
|  | seen := make(map[reflect.Type]*encOp) | 
|  | rt := ut.base | 
|  | if ut.externalEnc != 0 { | 
|  | rt = ut.user | 
|  | } | 
|  | if ut.externalEnc == 0 && srt.Kind() == reflect.Struct { | 
|  | for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ { | 
|  | f := srt.Field(fieldNum) | 
|  | if !isSent(&f) { | 
|  | continue | 
|  | } | 
|  | op, indir := encOpFor(f.Type, seen, building) | 
|  | engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir}) | 
|  | wireFieldNum++ | 
|  | } | 
|  | if srt.NumField() > 0 && len(engine.instr) == 0 { | 
|  | errorf("type %s has no exported fields", rt) | 
|  | } | 
|  | engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0}) | 
|  | } else { | 
|  | engine.instr = make([]encInstr, 1) | 
|  | op, indir := encOpFor(rt, seen, building) | 
|  | engine.instr[0] = encInstr{*op, singletonField, nil, indir} | 
|  | } | 
|  | return engine | 
|  | } | 
|  |  | 
|  | // getEncEngine returns the engine to compile the type. | 
|  | func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { | 
|  | info, err := getTypeInfo(ut) | 
|  | if err != nil { | 
|  | error_(err) | 
|  | } | 
|  | enc, ok := info.encoder.Load().(*encEngine) | 
|  | if !ok { | 
|  | enc = buildEncEngine(info, ut, building) | 
|  | } | 
|  | return enc | 
|  | } | 
|  |  | 
|  | func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { | 
|  | // Check for recursive types. | 
|  | if building != nil && building[info] { | 
|  | return nil | 
|  | } | 
|  | info.encInit.Lock() | 
|  | defer info.encInit.Unlock() | 
|  | enc, ok := info.encoder.Load().(*encEngine) | 
|  | if !ok { | 
|  | if building == nil { | 
|  | building = make(map[*typeInfo]bool) | 
|  | } | 
|  | building[info] = true | 
|  | enc = compileEnc(ut, building) | 
|  | info.encoder.Store(enc) | 
|  | } | 
|  | return enc | 
|  | } | 
|  |  | 
|  | func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) { | 
|  | defer catchError(&enc.err) | 
|  | engine := getEncEngine(ut, nil) | 
|  | indir := ut.indir | 
|  | if ut.externalEnc != 0 { | 
|  | indir = int(ut.encIndir) | 
|  | } | 
|  | for i := 0; i < indir; i++ { | 
|  | value = reflect.Indirect(value) | 
|  | } | 
|  | if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct { | 
|  | enc.encodeStruct(b, engine, value) | 
|  | } else { | 
|  | enc.encodeSingle(b, engine, value) | 
|  | } | 
|  | } |