blob: dbea6e705a0243ff2887c44f90af41794bfb99f4 [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package template
import (
"errors"
"fmt"
"io"
"net/url"
"reflect"
"strings"
"sync"
"unicode"
"unicode/utf8"
)
// FuncMap is the type of the map defining the mapping from names to functions.
// Each function must have either a single return value, or two return values of
// which the second has type error. In that case, if the second (error)
// return value evaluates to non-nil during execution, execution terminates and
// Execute returns that error.
//
// Errors returned by Execute wrap the underlying error; call errors.As to
// uncover them.
//
// When template execution invokes a function with an argument list, that list
// must be assignable to the function's parameter types. Functions meant to
// apply to arguments of arbitrary type can use parameters of type interface{} or
// of type reflect.Value. Similarly, functions meant to return a result of arbitrary
// type can return interface{} or reflect.Value.
type FuncMap map[string]any
// builtins returns the FuncMap.
// It is not a global variable so the linker can dead code eliminate
// more when this isn't called. See golang.org/issue/36021.
// TODO: revert this back to a global map once golang.org/issue/2559 is fixed.
func builtins() FuncMap {
return FuncMap{
"and": and,
"call": call,
"html": HTMLEscaper,
"index": index,
"slice": slice,
"js": JSEscaper,
"len": length,
"not": not,
"or": or,
"print": fmt.Sprint,
"printf": fmt.Sprintf,
"println": fmt.Sprintln,
"urlquery": URLQueryEscaper,
// Comparisons
"eq": eq, // ==
"ge": ge, // >=
"gt": gt, // >
"le": le, // <=
"lt": lt, // <
"ne": ne, // !=
}
}
var builtinFuncsOnce struct {
sync.Once
v map[string]reflect.Value
}
// builtinFuncsOnce lazily computes & caches the builtinFuncs map.
// TODO: revert this back to a global map once golang.org/issue/2559 is fixed.
func builtinFuncs() map[string]reflect.Value {
builtinFuncsOnce.Do(func() {
builtinFuncsOnce.v = createValueFuncs(builtins())
})
return builtinFuncsOnce.v
}
// createValueFuncs turns a FuncMap into a map[string]reflect.Value
func createValueFuncs(funcMap FuncMap) map[string]reflect.Value {
m := make(map[string]reflect.Value)
addValueFuncs(m, funcMap)
return m
}
// addValueFuncs adds to values the functions in funcs, converting them to reflect.Values.
func addValueFuncs(out map[string]reflect.Value, in FuncMap) {
for name, fn := range in {
if !goodName(name) {
panic(fmt.Errorf("function name %q is not a valid identifier", name))
}
v := reflect.ValueOf(fn)
if v.Kind() != reflect.Func {
panic("value for " + name + " not a function")
}
if !goodFunc(v.Type()) {
panic(fmt.Errorf("can't install method/function %q with %d results", name, v.Type().NumOut()))
}
out[name] = v
}
}
// addFuncs adds to values the functions in funcs. It does no checking of the input -
// call addValueFuncs first.
func addFuncs(out, in FuncMap) {
for name, fn := range in {
out[name] = fn
}
}
// goodFunc reports whether the function or method has the right result signature.
func goodFunc(typ reflect.Type) bool {
// We allow functions with 1 result or 2 results where the second is an error.
switch {
case typ.NumOut() == 1:
return true
case typ.NumOut() == 2 && typ.Out(1) == errorType:
return true
}
return false
}
// goodName reports whether the function name is a valid identifier.
func goodName(name string) bool {
if name == "" {
return false
}
for i, r := range name {
switch {
case r == '_':
case i == 0 && !unicode.IsLetter(r):
return false
case !unicode.IsLetter(r) && !unicode.IsDigit(r):
return false
}
}
return true
}
// findFunction looks for a function in the template, and global map.
func findFunction(name string, tmpl *Template) (v reflect.Value, isBuiltin, ok bool) {
if tmpl != nil && tmpl.common != nil {
tmpl.muFuncs.RLock()
defer tmpl.muFuncs.RUnlock()
if fn := tmpl.execFuncs[name]; fn.IsValid() {
return fn, false, true
}
}
if fn := builtinFuncs()[name]; fn.IsValid() {
return fn, true, true
}
return reflect.Value{}, false, false
}
// prepareArg checks if value can be used as an argument of type argType, and
// converts an invalid value to appropriate zero if possible.
func prepareArg(value reflect.Value, argType reflect.Type) (reflect.Value, error) {
if !value.IsValid() {
if !canBeNil(argType) {
return reflect.Value{}, fmt.Errorf("value is nil; should be of type %s", argType)
}
value = reflect.Zero(argType)
}
if value.Type().AssignableTo(argType) {
return value, nil
}
if intLike(value.Kind()) && intLike(argType.Kind()) && value.Type().ConvertibleTo(argType) {
value = value.Convert(argType)
return value, nil
}
return reflect.Value{}, fmt.Errorf("value has type %s; should be %s", value.Type(), argType)
}
func intLike(typ reflect.Kind) bool {
switch typ {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return true
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return true
}
return false
}
// indexArg checks if a reflect.Value can be used as an index, and converts it to int if possible.
func indexArg(index reflect.Value, cap int) (int, error) {
var x int64
switch index.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
x = index.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
x = int64(index.Uint())
case reflect.Invalid:
return 0, fmt.Errorf("cannot index slice/array with nil")
default:
return 0, fmt.Errorf("cannot index slice/array with type %s", index.Type())
}
if x < 0 || int(x) < 0 || int(x) > cap {
return 0, fmt.Errorf("index out of range: %d", x)
}
return int(x), nil
}
// Indexing.
// index returns the result of indexing its first argument by the following
// arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each
// indexed item must be a map, slice, or array.
func index(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
item = indirectInterface(item)
if !item.IsValid() {
return reflect.Value{}, fmt.Errorf("index of untyped nil")
}
for _, index := range indexes {
index = indirectInterface(index)
var isNil bool
if item, isNil = indirect(item); isNil {
return reflect.Value{}, fmt.Errorf("index of nil pointer")
}
switch item.Kind() {
case reflect.Array, reflect.Slice, reflect.String:
x, err := indexArg(index, item.Len())
if err != nil {
return reflect.Value{}, err
}
item = item.Index(x)
case reflect.Map:
index, err := prepareArg(index, item.Type().Key())
if err != nil {
return reflect.Value{}, err
}
if x := item.MapIndex(index); x.IsValid() {
item = x
} else {
item = reflect.Zero(item.Type().Elem())
}
case reflect.Invalid:
// the loop holds invariant: item.IsValid()
panic("unreachable")
default:
return reflect.Value{}, fmt.Errorf("can't index item of type %s", item.Type())
}
}
return item, nil
}
// Slicing.
// slice returns the result of slicing its first argument by the remaining
// arguments. Thus "slice x 1 2" is, in Go syntax, x[1:2], while "slice x"
// is x[:], "slice x 1" is x[1:], and "slice x 1 2 3" is x[1:2:3]. The first
// argument must be a string, slice, or array.
func slice(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
item = indirectInterface(item)
if !item.IsValid() {
return reflect.Value{}, fmt.Errorf("slice of untyped nil")
}
if len(indexes) > 3 {
return reflect.Value{}, fmt.Errorf("too many slice indexes: %d", len(indexes))
}
var cap int
switch item.Kind() {
case reflect.String:
if len(indexes) == 3 {
return reflect.Value{}, fmt.Errorf("cannot 3-index slice a string")
}
cap = item.Len()
case reflect.Array, reflect.Slice:
cap = item.Cap()
default:
return reflect.Value{}, fmt.Errorf("can't slice item of type %s", item.Type())
}
// set default values for cases item[:], item[i:].
idx := [3]int{0, item.Len()}
for i, index := range indexes {
x, err := indexArg(index, cap)
if err != nil {
return reflect.Value{}, err
}
idx[i] = x
}
// given item[i:j], make sure i <= j.
if idx[0] > idx[1] {
return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[0], idx[1])
}
if len(indexes) < 3 {
return item.Slice(idx[0], idx[1]), nil
}
// given item[i:j:k], make sure i <= j <= k.
if idx[1] > idx[2] {
return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[1], idx[2])
}
return item.Slice3(idx[0], idx[1], idx[2]), nil
}
// Length
// length returns the length of the item, with an error if it has no defined length.
func length(item reflect.Value) (int, error) {
item, isNil := indirect(item)
if isNil {
return 0, fmt.Errorf("len of nil pointer")
}
switch item.Kind() {
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice, reflect.String:
return item.Len(), nil
}
return 0, fmt.Errorf("len of type %s", item.Type())
}
// Function invocation
// call returns the result of evaluating the first argument as a function.
// The function must return 1 result, or 2 results, the second of which is an error.
func call(fn reflect.Value, args ...reflect.Value) (reflect.Value, error) {
fn = indirectInterface(fn)
if !fn.IsValid() {
return reflect.Value{}, fmt.Errorf("call of nil")
}
typ := fn.Type()
if typ.Kind() != reflect.Func {
return reflect.Value{}, fmt.Errorf("non-function of type %s", typ)
}
if !goodFunc(typ) {
return reflect.Value{}, fmt.Errorf("function called with %d args; should be 1 or 2", typ.NumOut())
}
numIn := typ.NumIn()
var dddType reflect.Type
if typ.IsVariadic() {
if len(args) < numIn-1 {
return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want at least %d", len(args), numIn-1)
}
dddType = typ.In(numIn - 1).Elem()
} else {
if len(args) != numIn {
return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want %d", len(args), numIn)
}
}
argv := make([]reflect.Value, len(args))
for i, arg := range args {
arg = indirectInterface(arg)
// Compute the expected type. Clumsy because of variadics.
argType := dddType
if !typ.IsVariadic() || i < numIn-1 {
argType = typ.In(i)
}
var err error
if argv[i], err = prepareArg(arg, argType); err != nil {
return reflect.Value{}, fmt.Errorf("arg %d: %w", i, err)
}
}
return safeCall(fn, argv)
}
// safeCall runs fun.Call(args), and returns the resulting value and error, if
// any. If the call panics, the panic value is returned as an error.
func safeCall(fun reflect.Value, args []reflect.Value) (val reflect.Value, err error) {
defer func() {
if r := recover(); r != nil {
if e, ok := r.(error); ok {
err = e
} else {
err = fmt.Errorf("%v", r)
}
}
}()
ret := fun.Call(args)
if len(ret) == 2 && !ret[1].IsNil() {
return ret[0], ret[1].Interface().(error)
}
return ret[0], nil
}
// Boolean logic.
func truth(arg reflect.Value) bool {
t, _ := isTrue(indirectInterface(arg))
return t
}
// and computes the Boolean AND of its arguments, returning
// the first false argument it encounters, or the last argument.
func and(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
panic("unreachable") // implemented as a special case in evalCall
}
// or computes the Boolean OR of its arguments, returning
// the first true argument it encounters, or the last argument.
func or(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
panic("unreachable") // implemented as a special case in evalCall
}
// not returns the Boolean negation of its argument.
func not(arg reflect.Value) bool {
return !truth(arg)
}
// Comparison.
// TODO: Perhaps allow comparison between signed and unsigned integers.
var (
errBadComparisonType = errors.New("invalid type for comparison")
errBadComparison = errors.New("incompatible types for comparison")
errNoComparison = errors.New("missing argument for comparison")
)
type kind int
const (
invalidKind kind = iota
boolKind
complexKind
intKind
floatKind
stringKind
uintKind
)
func basicKind(v reflect.Value) (kind, error) {
switch v.Kind() {
case reflect.Bool:
return boolKind, nil
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return intKind, nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return uintKind, nil
case reflect.Float32, reflect.Float64:
return floatKind, nil
case reflect.Complex64, reflect.Complex128:
return complexKind, nil
case reflect.String:
return stringKind, nil
}
return invalidKind, errBadComparisonType
}
// isNil returns true if v is the zero reflect.Value, or nil of its type.
func isNil(v reflect.Value) bool {
if !v.IsValid() {
return true
}
switch v.Kind() {
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice:
return v.IsNil()
}
return false
}
// canCompare reports whether v1 and v2 are both the same kind, or one is nil.
// Called only when dealing with nillable types, or there's about to be an error.
func canCompare(v1, v2 reflect.Value) bool {
k1 := v1.Kind()
k2 := v2.Kind()
if k1 == k2 {
return true
}
// We know the type can be compared to nil.
return k1 == reflect.Invalid || k2 == reflect.Invalid
}
// eq evaluates the comparison a == b || a == c || ...
func eq(arg1 reflect.Value, arg2 ...reflect.Value) (bool, error) {
arg1 = indirectInterface(arg1)
if len(arg2) == 0 {
return false, errNoComparison
}
k1, _ := basicKind(arg1)
for _, arg := range arg2 {
arg = indirectInterface(arg)
k2, _ := basicKind(arg)
truth := false
if k1 != k2 {
// Special case: Can compare integer values regardless of type's sign.
switch {
case k1 == intKind && k2 == uintKind:
truth = arg1.Int() >= 0 && uint64(arg1.Int()) == arg.Uint()
case k1 == uintKind && k2 == intKind:
truth = arg.Int() >= 0 && arg1.Uint() == uint64(arg.Int())
default:
if arg1 != zero && arg != zero {
return false, errBadComparison
}
}
} else {
switch k1 {
case boolKind:
truth = arg1.Bool() == arg.Bool()
case complexKind:
truth = arg1.Complex() == arg.Complex()
case floatKind:
truth = arg1.Float() == arg.Float()
case intKind:
truth = arg1.Int() == arg.Int()
case stringKind:
truth = arg1.String() == arg.String()
case uintKind:
truth = arg1.Uint() == arg.Uint()
default:
if !canCompare(arg1, arg) {
return false, fmt.Errorf("non-comparable types %s: %v, %s: %v", arg1, arg1.Type(), arg.Type(), arg)
}
if isNil(arg1) || isNil(arg) {
truth = isNil(arg) == isNil(arg1)
} else {
if !arg.Type().Comparable() {
return false, fmt.Errorf("non-comparable type %s: %v", arg, arg.Type())
}
truth = arg1.Interface() == arg.Interface()
}
}
}
if truth {
return true, nil
}
}
return false, nil
}
// ne evaluates the comparison a != b.
func ne(arg1, arg2 reflect.Value) (bool, error) {
// != is the inverse of ==.
equal, err := eq(arg1, arg2)
return !equal, err
}
// lt evaluates the comparison a < b.
func lt(arg1, arg2 reflect.Value) (bool, error) {
arg1 = indirectInterface(arg1)
k1, err := basicKind(arg1)
if err != nil {
return false, err
}
arg2 = indirectInterface(arg2)
k2, err := basicKind(arg2)
if err != nil {
return false, err
}
truth := false
if k1 != k2 {
// Special case: Can compare integer values regardless of type's sign.
switch {
case k1 == intKind && k2 == uintKind:
truth = arg1.Int() < 0 || uint64(arg1.Int()) < arg2.Uint()
case k1 == uintKind && k2 == intKind:
truth = arg2.Int() >= 0 && arg1.Uint() < uint64(arg2.Int())
default:
return false, errBadComparison
}
} else {
switch k1 {
case boolKind, complexKind:
return false, errBadComparisonType
case floatKind:
truth = arg1.Float() < arg2.Float()
case intKind:
truth = arg1.Int() < arg2.Int()
case stringKind:
truth = arg1.String() < arg2.String()
case uintKind:
truth = arg1.Uint() < arg2.Uint()
default:
panic("invalid kind")
}
}
return truth, nil
}
// le evaluates the comparison <= b.
func le(arg1, arg2 reflect.Value) (bool, error) {
// <= is < or ==.
lessThan, err := lt(arg1, arg2)
if lessThan || err != nil {
return lessThan, err
}
return eq(arg1, arg2)
}
// gt evaluates the comparison a > b.
func gt(arg1, arg2 reflect.Value) (bool, error) {
// > is the inverse of <=.
lessOrEqual, err := le(arg1, arg2)
if err != nil {
return false, err
}
return !lessOrEqual, nil
}
// ge evaluates the comparison a >= b.
func ge(arg1, arg2 reflect.Value) (bool, error) {
// >= is the inverse of <.
lessThan, err := lt(arg1, arg2)
if err != nil {
return false, err
}
return !lessThan, nil
}
// HTML escaping.
var (
htmlQuot = []byte("&#34;") // shorter than "&quot;"
htmlApos = []byte("&#39;") // shorter than "&apos;" and apos was not in HTML until HTML5
htmlAmp = []byte("&amp;")
htmlLt = []byte("&lt;")
htmlGt = []byte("&gt;")
htmlNull = []byte("\uFFFD")
)
// HTMLEscape writes to w the escaped HTML equivalent of the plain text data b.
func HTMLEscape(w io.Writer, b []byte) {
last := 0
for i, c := range b {
var html []byte
switch c {
case '\000':
html = htmlNull
case '"':
html = htmlQuot
case '\'':
html = htmlApos
case '&':
html = htmlAmp
case '<':
html = htmlLt
case '>':
html = htmlGt
default:
continue
}
w.Write(b[last:i])
w.Write(html)
last = i + 1
}
w.Write(b[last:])
}
// HTMLEscapeString returns the escaped HTML equivalent of the plain text data s.
func HTMLEscapeString(s string) string {
// Avoid allocation if we can.
if !strings.ContainsAny(s, "'\"&<>\000") {
return s
}
var b strings.Builder
HTMLEscape(&b, []byte(s))
return b.String()
}
// HTMLEscaper returns the escaped HTML equivalent of the textual
// representation of its arguments.
func HTMLEscaper(args ...any) string {
return HTMLEscapeString(evalArgs(args))
}
// JavaScript escaping.
var (
jsLowUni = []byte(`\u00`)
hex = []byte("0123456789ABCDEF")
jsBackslash = []byte(`\\`)
jsApos = []byte(`\'`)
jsQuot = []byte(`\"`)
jsLt = []byte(`\u003C`)
jsGt = []byte(`\u003E`)
jsAmp = []byte(`\u0026`)
jsEq = []byte(`\u003D`)
)
// JSEscape writes to w the escaped JavaScript equivalent of the plain text data b.
func JSEscape(w io.Writer, b []byte) {
last := 0
for i := 0; i < len(b); i++ {
c := b[i]
if !jsIsSpecial(rune(c)) {
// fast path: nothing to do
continue
}
w.Write(b[last:i])
if c < utf8.RuneSelf {
// Quotes, slashes and angle brackets get quoted.
// Control characters get written as \u00XX.
switch c {
case '\\':
w.Write(jsBackslash)
case '\'':
w.Write(jsApos)
case '"':
w.Write(jsQuot)
case '<':
w.Write(jsLt)
case '>':
w.Write(jsGt)
case '&':
w.Write(jsAmp)
case '=':
w.Write(jsEq)
default:
w.Write(jsLowUni)
t, b := c>>4, c&0x0f
w.Write(hex[t : t+1])
w.Write(hex[b : b+1])
}
} else {
// Unicode rune.
r, size := utf8.DecodeRune(b[i:])
if unicode.IsPrint(r) {
w.Write(b[i : i+size])
} else {
fmt.Fprintf(w, "\\u%04X", r)
}
i += size - 1
}
last = i + 1
}
w.Write(b[last:])
}
// JSEscapeString returns the escaped JavaScript equivalent of the plain text data s.
func JSEscapeString(s string) string {
// Avoid allocation if we can.
if strings.IndexFunc(s, jsIsSpecial) < 0 {
return s
}
var b strings.Builder
JSEscape(&b, []byte(s))
return b.String()
}
func jsIsSpecial(r rune) bool {
switch r {
case '\\', '\'', '"', '<', '>', '&', '=':
return true
}
return r < ' ' || utf8.RuneSelf <= r
}
// JSEscaper returns the escaped JavaScript equivalent of the textual
// representation of its arguments.
func JSEscaper(args ...any) string {
return JSEscapeString(evalArgs(args))
}
// URLQueryEscaper returns the escaped value of the textual representation of
// its arguments in a form suitable for embedding in a URL query.
func URLQueryEscaper(args ...any) string {
return url.QueryEscape(evalArgs(args))
}
// evalArgs formats the list of arguments into a string. It is therefore equivalent to
//
// fmt.Sprint(args...)
//
// except that each argument is indirected (if a pointer), as required,
// using the same rules as the default string evaluation during template
// execution.
func evalArgs(args []any) string {
ok := false
var s string
// Fast path for simple common case.
if len(args) == 1 {
s, ok = args[0].(string)
}
if !ok {
for i, arg := range args {
a, ok := printableValue(reflect.ValueOf(arg))
if ok {
args[i] = a
} // else let fmt do its thing
}
s = fmt.Sprint(args...)
}
return s
}