| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #undef EXTERN |
| #define EXTERN |
| #include <u.h> |
| #include <libc.h> |
| #include "gg.h" |
| #include "opt.h" |
| |
| static Prog *appendpp(Prog*, int, int, vlong, int, vlong); |
| static Prog *zerorange(Prog *p, vlong frame, vlong lo, vlong hi, uint32 *ax); |
| |
| void |
| defframe(Prog *ptxt) |
| { |
| uint32 frame, ax; |
| Prog *p; |
| vlong hi, lo; |
| NodeList *l; |
| Node *n; |
| |
| // fill in argument size |
| ptxt->to.offset = rnd(curfn->type->argwid, widthptr); |
| |
| // fill in final stack size |
| ptxt->to.offset <<= 32; |
| frame = rnd(stksize+maxarg, widthreg); |
| ptxt->to.offset |= frame; |
| |
| // insert code to zero ambiguously live variables |
| // so that the garbage collector only sees initialized values |
| // when it looks for pointers. |
| p = ptxt; |
| lo = hi = 0; |
| ax = 0; |
| // iterate through declarations - they are sorted in decreasing xoffset order. |
| for(l=curfn->dcl; l != nil; l = l->next) { |
| n = l->n; |
| if(!n->needzero) |
| continue; |
| if(n->class != PAUTO) |
| fatal("needzero class %d", n->class); |
| if(n->type->width % widthptr != 0 || n->xoffset % widthptr != 0 || n->type->width == 0) |
| fatal("var %lN has size %d offset %d", n, (int)n->type->width, (int)n->xoffset); |
| |
| if(lo != hi && n->xoffset + n->type->width >= lo - 2*widthreg) { |
| // merge with range we already have |
| lo = n->xoffset; |
| continue; |
| } |
| // zero old range |
| p = zerorange(p, frame, lo, hi, &ax); |
| |
| // set new range |
| hi = n->xoffset + n->type->width; |
| lo = n->xoffset; |
| } |
| // zero final range |
| zerorange(p, frame, lo, hi, &ax); |
| } |
| |
| static Prog* |
| zerorange(Prog *p, vlong frame, vlong lo, vlong hi, uint32 *ax) |
| { |
| vlong cnt, i; |
| |
| cnt = hi - lo; |
| if(cnt == 0) |
| return p; |
| if(*ax == 0) { |
| p = appendpp(p, AMOVQ, D_CONST, 0, D_AX, 0); |
| *ax = 1; |
| } |
| if(cnt % widthreg != 0) { |
| // should only happen with nacl |
| if(cnt % widthptr != 0) |
| fatal("zerorange count not a multiple of widthptr %d", cnt); |
| p = appendpp(p, AMOVL, D_AX, 0, D_SP+D_INDIR, frame+lo); |
| lo += widthptr; |
| cnt -= widthptr; |
| } |
| if(cnt <= 4*widthreg) { |
| for(i = 0; i < cnt; i += widthreg) { |
| p = appendpp(p, AMOVQ, D_AX, 0, D_SP+D_INDIR, frame+lo+i); |
| } |
| } else if(!nacl && (cnt <= 128*widthreg)) { |
| p = appendpp(p, leaptr, D_SP+D_INDIR, frame+lo, D_DI, 0); |
| p = appendpp(p, ADUFFZERO, D_NONE, 0, D_ADDR, 2*(128-cnt/widthreg)); |
| p->to.sym = linksym(pkglookup("duffzero", runtimepkg)); |
| } else { |
| p = appendpp(p, AMOVQ, D_CONST, cnt/widthreg, D_CX, 0); |
| p = appendpp(p, leaptr, D_SP+D_INDIR, frame+lo, D_DI, 0); |
| p = appendpp(p, AREP, D_NONE, 0, D_NONE, 0); |
| p = appendpp(p, ASTOSQ, D_NONE, 0, D_NONE, 0); |
| } |
| return p; |
| } |
| |
| static Prog* |
| appendpp(Prog *p, int as, int ftype, vlong foffset, int ttype, vlong toffset) |
| { |
| Prog *q; |
| q = mal(sizeof(*q)); |
| clearp(q); |
| q->as = as; |
| q->lineno = p->lineno; |
| q->from.type = ftype; |
| q->from.offset = foffset; |
| q->to.type = ttype; |
| q->to.offset = toffset; |
| q->link = p->link; |
| p->link = q; |
| return q; |
| } |
| |
| // Sweep the prog list to mark any used nodes. |
| void |
| markautoused(Prog* p) |
| { |
| for (; p; p = p->link) { |
| if (p->as == ATYPE || p->as == AVARDEF || p->as == AVARKILL) |
| continue; |
| |
| if (p->from.node) |
| p->from.node->used = 1; |
| |
| if (p->to.node) |
| p->to.node->used = 1; |
| } |
| } |
| |
| // Fixup instructions after allocauto (formerly compactframe) has moved all autos around. |
| void |
| fixautoused(Prog *p) |
| { |
| Prog **lp; |
| |
| for (lp=&p; (p=*lp) != P; ) { |
| if (p->as == ATYPE && p->from.node && p->from.type == D_AUTO && !p->from.node->used) { |
| *lp = p->link; |
| continue; |
| } |
| if ((p->as == AVARDEF || p->as == AVARKILL) && p->to.node && !p->to.node->used) { |
| // Cannot remove VARDEF instruction, because - unlike TYPE handled above - |
| // VARDEFs are interspersed with other code, and a jump might be using the |
| // VARDEF as a target. Replace with a no-op instead. A later pass will remove |
| // the no-ops. |
| p->to.type = D_NONE; |
| p->to.node = N; |
| p->as = ANOP; |
| continue; |
| } |
| if (p->from.type == D_AUTO && p->from.node) |
| p->from.offset += p->from.node->stkdelta; |
| |
| if (p->to.type == D_AUTO && p->to.node) |
| p->to.offset += p->to.node->stkdelta; |
| |
| lp = &p->link; |
| } |
| } |
| |
| |
| /* |
| * generate: |
| * call f |
| * proc=-1 normal call but no return |
| * proc=0 normal call |
| * proc=1 goroutine run in new proc |
| * proc=2 defer call save away stack |
| * proc=3 normal call to C pointer (not Go func value) |
| */ |
| void |
| ginscall(Node *f, int proc) |
| { |
| Prog *p; |
| Node reg, con; |
| Node r1; |
| |
| if(f->type != T) |
| setmaxarg(f->type); |
| |
| switch(proc) { |
| default: |
| fatal("ginscall: bad proc %d", proc); |
| break; |
| |
| case 0: // normal call |
| case -1: // normal call but no return |
| if(f->op == ONAME && f->class == PFUNC) { |
| if(f == deferreturn) { |
| // Deferred calls will appear to be returning to |
| // the CALL deferreturn(SB) that we are about to emit. |
| // However, the stack trace code will show the line |
| // of the instruction byte before the return PC. |
| // To avoid that being an unrelated instruction, |
| // insert an x86 NOP that we will have the right line number. |
| // x86 NOP 0x90 is really XCHG AX, AX; use that description |
| // because the NOP pseudo-instruction would be removed by |
| // the linker. |
| nodreg(®, types[TINT], D_AX); |
| gins(AXCHGL, ®, ®); |
| } |
| p = gins(ACALL, N, f); |
| afunclit(&p->to, f); |
| if(proc == -1 || noreturn(p)) |
| gins(AUNDEF, N, N); |
| break; |
| } |
| nodreg(®, types[tptr], D_DX); |
| nodreg(&r1, types[tptr], D_BX); |
| gmove(f, ®); |
| reg.op = OINDREG; |
| gmove(®, &r1); |
| reg.op = OREGISTER; |
| gins(ACALL, ®, &r1); |
| break; |
| |
| case 3: // normal call of c function pointer |
| gins(ACALL, N, f); |
| break; |
| |
| case 1: // call in new proc (go) |
| case 2: // deferred call (defer) |
| nodconst(&con, types[TINT64], argsize(f->type)); |
| if(widthptr == 4) { |
| nodreg(&r1, types[TINT32], D_CX); |
| gmove(f, &r1); |
| nodreg(®, types[TINT64], D_CX); |
| nodconst(&r1, types[TINT64], 32); |
| gins(ASHLQ, &r1, ®); |
| gins(AORQ, &con, ®); |
| gins(APUSHQ, ®, N); |
| } else { |
| nodreg(®, types[TINT64], D_CX); |
| gmove(f, ®); |
| gins(APUSHQ, ®, N); |
| gins(APUSHQ, &con, N); |
| } |
| if(proc == 1) |
| ginscall(newproc, 0); |
| else { |
| if(!hasdefer) |
| fatal("hasdefer=0 but has defer"); |
| ginscall(deferproc, 0); |
| } |
| nodreg(®, types[TINT64], D_CX); |
| gins(APOPQ, N, ®); |
| if(widthptr == 8) |
| gins(APOPQ, N, ®); |
| if(proc == 2) { |
| nodreg(®, types[TINT64], D_AX); |
| gins(ATESTQ, ®, ®); |
| p = gbranch(AJEQ, T, +1); |
| cgen_ret(N); |
| patch(p, pc); |
| } |
| break; |
| } |
| } |
| |
| /* |
| * n is call to interface method. |
| * generate res = n. |
| */ |
| void |
| cgen_callinter(Node *n, Node *res, int proc) |
| { |
| Node *i, *f; |
| Node tmpi, nodi, nodo, nodr, nodsp; |
| |
| i = n->left; |
| if(i->op != ODOTINTER) |
| fatal("cgen_callinter: not ODOTINTER %O", i->op); |
| |
| f = i->right; // field |
| if(f->op != ONAME) |
| fatal("cgen_callinter: not ONAME %O", f->op); |
| |
| i = i->left; // interface |
| |
| if(!i->addable) { |
| tempname(&tmpi, i->type); |
| cgen(i, &tmpi); |
| i = &tmpi; |
| } |
| |
| genlist(n->list); // assign the args |
| |
| // i is now addable, prepare an indirected |
| // register to hold its address. |
| igen(i, &nodi, res); // REG = &inter |
| |
| nodindreg(&nodsp, types[tptr], D_SP); |
| nodi.type = types[tptr]; |
| nodi.xoffset += widthptr; |
| cgen(&nodi, &nodsp); // 0(SP) = 8(REG) -- i.data |
| |
| regalloc(&nodo, types[tptr], res); |
| nodi.type = types[tptr]; |
| nodi.xoffset -= widthptr; |
| cgen(&nodi, &nodo); // REG = 0(REG) -- i.tab |
| regfree(&nodi); |
| |
| regalloc(&nodr, types[tptr], &nodo); |
| if(n->left->xoffset == BADWIDTH) |
| fatal("cgen_callinter: badwidth"); |
| cgen_checknil(&nodo); // in case offset is huge |
| nodo.op = OINDREG; |
| nodo.xoffset = n->left->xoffset + 3*widthptr + 8; |
| if(proc == 0) { |
| // plain call: use direct c function pointer - more efficient |
| cgen(&nodo, &nodr); // REG = 32+offset(REG) -- i.tab->fun[f] |
| proc = 3; |
| } else { |
| // go/defer. generate go func value. |
| gins(ALEAQ, &nodo, &nodr); // REG = &(32+offset(REG)) -- i.tab->fun[f] |
| } |
| |
| nodr.type = n->left->type; |
| ginscall(&nodr, proc); |
| |
| regfree(&nodr); |
| regfree(&nodo); |
| } |
| |
| /* |
| * generate function call; |
| * proc=0 normal call |
| * proc=1 goroutine run in new proc |
| * proc=2 defer call save away stack |
| */ |
| void |
| cgen_call(Node *n, int proc) |
| { |
| Type *t; |
| Node nod, afun; |
| |
| if(n == N) |
| return; |
| |
| if(n->left->ullman >= UINF) { |
| // if name involves a fn call |
| // precompute the address of the fn |
| tempname(&afun, types[tptr]); |
| cgen(n->left, &afun); |
| } |
| |
| genlist(n->list); // assign the args |
| t = n->left->type; |
| |
| // call tempname pointer |
| if(n->left->ullman >= UINF) { |
| regalloc(&nod, types[tptr], N); |
| cgen_as(&nod, &afun); |
| nod.type = t; |
| ginscall(&nod, proc); |
| regfree(&nod); |
| return; |
| } |
| |
| // call pointer |
| if(n->left->op != ONAME || n->left->class != PFUNC) { |
| regalloc(&nod, types[tptr], N); |
| cgen_as(&nod, n->left); |
| nod.type = t; |
| ginscall(&nod, proc); |
| regfree(&nod); |
| return; |
| } |
| |
| // call direct |
| n->left->method = 1; |
| ginscall(n->left, proc); |
| } |
| |
| /* |
| * call to n has already been generated. |
| * generate: |
| * res = return value from call. |
| */ |
| void |
| cgen_callret(Node *n, Node *res) |
| { |
| Node nod; |
| Type *fp, *t; |
| Iter flist; |
| |
| t = n->left->type; |
| if(t->etype == TPTR32 || t->etype == TPTR64) |
| t = t->type; |
| |
| fp = structfirst(&flist, getoutarg(t)); |
| if(fp == T) |
| fatal("cgen_callret: nil"); |
| |
| memset(&nod, 0, sizeof(nod)); |
| nod.op = OINDREG; |
| nod.val.u.reg = D_SP; |
| nod.addable = 1; |
| |
| nod.xoffset = fp->width; |
| nod.type = fp->type; |
| cgen_as(res, &nod); |
| } |
| |
| /* |
| * call to n has already been generated. |
| * generate: |
| * res = &return value from call. |
| */ |
| void |
| cgen_aret(Node *n, Node *res) |
| { |
| Node nod1, nod2; |
| Type *fp, *t; |
| Iter flist; |
| |
| t = n->left->type; |
| if(isptr[t->etype]) |
| t = t->type; |
| |
| fp = structfirst(&flist, getoutarg(t)); |
| if(fp == T) |
| fatal("cgen_aret: nil"); |
| |
| memset(&nod1, 0, sizeof(nod1)); |
| nod1.op = OINDREG; |
| nod1.val.u.reg = D_SP; |
| nod1.addable = 1; |
| |
| nod1.xoffset = fp->width; |
| nod1.type = fp->type; |
| |
| if(res->op != OREGISTER) { |
| regalloc(&nod2, types[tptr], res); |
| gins(leaptr, &nod1, &nod2); |
| gins(movptr, &nod2, res); |
| regfree(&nod2); |
| } else |
| gins(leaptr, &nod1, res); |
| } |
| |
| /* |
| * generate return. |
| * n->left is assignments to return values. |
| */ |
| void |
| cgen_ret(Node *n) |
| { |
| Prog *p; |
| |
| if(n != N) |
| genlist(n->list); // copy out args |
| if(hasdefer) |
| ginscall(deferreturn, 0); |
| genlist(curfn->exit); |
| p = gins(ARET, N, N); |
| if(n != N && n->op == ORETJMP) { |
| p->to.type = D_EXTERN; |
| p->to.sym = linksym(n->left->sym); |
| } |
| } |
| |
| /* |
| * generate += *= etc. |
| */ |
| void |
| cgen_asop(Node *n) |
| { |
| Node n1, n2, n3, n4; |
| Node *nl, *nr; |
| Prog *p1; |
| Addr addr; |
| int a; |
| |
| nl = n->left; |
| nr = n->right; |
| |
| if(nr->ullman >= UINF && nl->ullman >= UINF) { |
| tempname(&n1, nr->type); |
| cgen(nr, &n1); |
| n2 = *n; |
| n2.right = &n1; |
| cgen_asop(&n2); |
| goto ret; |
| } |
| |
| if(!isint[nl->type->etype]) |
| goto hard; |
| if(!isint[nr->type->etype]) |
| goto hard; |
| |
| switch(n->etype) { |
| case OADD: |
| if(smallintconst(nr)) |
| if(mpgetfix(nr->val.u.xval) == 1) { |
| a = optoas(OINC, nl->type); |
| if(nl->addable) { |
| gins(a, N, nl); |
| goto ret; |
| } |
| if(sudoaddable(a, nl, &addr)) { |
| p1 = gins(a, N, N); |
| p1->to = addr; |
| sudoclean(); |
| goto ret; |
| } |
| } |
| break; |
| |
| case OSUB: |
| if(smallintconst(nr)) |
| if(mpgetfix(nr->val.u.xval) == 1) { |
| a = optoas(ODEC, nl->type); |
| if(nl->addable) { |
| gins(a, N, nl); |
| goto ret; |
| } |
| if(sudoaddable(a, nl, &addr)) { |
| p1 = gins(a, N, N); |
| p1->to = addr; |
| sudoclean(); |
| goto ret; |
| } |
| } |
| break; |
| } |
| |
| switch(n->etype) { |
| case OADD: |
| case OSUB: |
| case OXOR: |
| case OAND: |
| case OOR: |
| a = optoas(n->etype, nl->type); |
| if(nl->addable) { |
| if(smallintconst(nr)) { |
| gins(a, nr, nl); |
| goto ret; |
| } |
| regalloc(&n2, nr->type, N); |
| cgen(nr, &n2); |
| gins(a, &n2, nl); |
| regfree(&n2); |
| goto ret; |
| } |
| if(nr->ullman < UINF) |
| if(sudoaddable(a, nl, &addr)) { |
| if(smallintconst(nr)) { |
| p1 = gins(a, nr, N); |
| p1->to = addr; |
| sudoclean(); |
| goto ret; |
| } |
| regalloc(&n2, nr->type, N); |
| cgen(nr, &n2); |
| p1 = gins(a, &n2, N); |
| p1->to = addr; |
| regfree(&n2); |
| sudoclean(); |
| goto ret; |
| } |
| } |
| |
| hard: |
| n2.op = 0; |
| n1.op = 0; |
| if(nr->op == OLITERAL) { |
| // don't allocate a register for literals. |
| } else if(nr->ullman >= nl->ullman || nl->addable) { |
| regalloc(&n2, nr->type, N); |
| cgen(nr, &n2); |
| nr = &n2; |
| } else { |
| tempname(&n2, nr->type); |
| cgen(nr, &n2); |
| nr = &n2; |
| } |
| if(!nl->addable) { |
| igen(nl, &n1, N); |
| nl = &n1; |
| } |
| |
| n3 = *n; |
| n3.left = nl; |
| n3.right = nr; |
| n3.op = n->etype; |
| |
| regalloc(&n4, nl->type, N); |
| cgen(&n3, &n4); |
| gmove(&n4, nl); |
| |
| if(n1.op) |
| regfree(&n1); |
| if(n2.op == OREGISTER) |
| regfree(&n2); |
| regfree(&n4); |
| |
| ret: |
| ; |
| } |
| |
| int |
| samereg(Node *a, Node *b) |
| { |
| if(a == N || b == N) |
| return 0; |
| if(a->op != OREGISTER) |
| return 0; |
| if(b->op != OREGISTER) |
| return 0; |
| if(a->val.u.reg != b->val.u.reg) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * generate division. |
| * generates one of: |
| * res = nl / nr |
| * res = nl % nr |
| * according to op. |
| */ |
| void |
| dodiv(int op, Node *nl, Node *nr, Node *res) |
| { |
| int a, check; |
| Node n3, n4; |
| Type *t, *t0; |
| Node ax, dx, ax1, n31, oldax, olddx; |
| Prog *p1, *p2; |
| |
| // Have to be careful about handling |
| // most negative int divided by -1 correctly. |
| // The hardware will trap. |
| // Also the byte divide instruction needs AH, |
| // which we otherwise don't have to deal with. |
| // Easiest way to avoid for int8, int16: use int32. |
| // For int32 and int64, use explicit test. |
| // Could use int64 hw for int32. |
| t = nl->type; |
| t0 = t; |
| check = 0; |
| if(issigned[t->etype]) { |
| check = 1; |
| if(isconst(nl, CTINT) && mpgetfix(nl->val.u.xval) != -(1ULL<<(t->width*8-1))) |
| check = 0; |
| else if(isconst(nr, CTINT) && mpgetfix(nr->val.u.xval) != -1) |
| check = 0; |
| } |
| if(t->width < 4) { |
| if(issigned[t->etype]) |
| t = types[TINT32]; |
| else |
| t = types[TUINT32]; |
| check = 0; |
| } |
| a = optoas(op, t); |
| |
| regalloc(&n3, t0, N); |
| if(nl->ullman >= nr->ullman) { |
| savex(D_AX, &ax, &oldax, res, t0); |
| cgen(nl, &ax); |
| regalloc(&ax, t0, &ax); // mark ax live during cgen |
| cgen(nr, &n3); |
| regfree(&ax); |
| } else { |
| cgen(nr, &n3); |
| savex(D_AX, &ax, &oldax, res, t0); |
| cgen(nl, &ax); |
| } |
| if(t != t0) { |
| // Convert |
| ax1 = ax; |
| n31 = n3; |
| ax.type = t; |
| n3.type = t; |
| gmove(&ax1, &ax); |
| gmove(&n31, &n3); |
| } |
| |
| p2 = P; |
| if(nacl) { |
| // Native Client does not relay the divide-by-zero trap |
| // to the executing program, so we must insert a check |
| // for ourselves. |
| nodconst(&n4, t, 0); |
| gins(optoas(OCMP, t), &n3, &n4); |
| p1 = gbranch(optoas(ONE, t), T, +1); |
| if(panicdiv == N) |
| panicdiv = sysfunc("panicdivide"); |
| ginscall(panicdiv, -1); |
| patch(p1, pc); |
| } |
| if(check) { |
| nodconst(&n4, t, -1); |
| gins(optoas(OCMP, t), &n3, &n4); |
| p1 = gbranch(optoas(ONE, t), T, +1); |
| if(op == ODIV) { |
| // a / (-1) is -a. |
| gins(optoas(OMINUS, t), N, &ax); |
| gmove(&ax, res); |
| } else { |
| // a % (-1) is 0. |
| nodconst(&n4, t, 0); |
| gmove(&n4, res); |
| } |
| p2 = gbranch(AJMP, T, 0); |
| patch(p1, pc); |
| } |
| savex(D_DX, &dx, &olddx, res, t); |
| if(!issigned[t->etype]) { |
| nodconst(&n4, t, 0); |
| gmove(&n4, &dx); |
| } else |
| gins(optoas(OEXTEND, t), N, N); |
| gins(a, &n3, N); |
| regfree(&n3); |
| if(op == ODIV) |
| gmove(&ax, res); |
| else |
| gmove(&dx, res); |
| restx(&dx, &olddx); |
| if(check) |
| patch(p2, pc); |
| restx(&ax, &oldax); |
| } |
| |
| /* |
| * register dr is one of the special ones (AX, CX, DI, SI, etc.). |
| * we need to use it. if it is already allocated as a temporary |
| * (r > 1; can only happen if a routine like sgen passed a |
| * special as cgen's res and then cgen used regalloc to reuse |
| * it as its own temporary), then move it for now to another |
| * register. caller must call restx to move it back. |
| * the move is not necessary if dr == res, because res is |
| * known to be dead. |
| */ |
| void |
| savex(int dr, Node *x, Node *oldx, Node *res, Type *t) |
| { |
| int r; |
| |
| r = reg[dr]; |
| |
| // save current ax and dx if they are live |
| // and not the destination |
| memset(oldx, 0, sizeof *oldx); |
| nodreg(x, t, dr); |
| if(r > 1 && !samereg(x, res)) { |
| regalloc(oldx, types[TINT64], N); |
| x->type = types[TINT64]; |
| gmove(x, oldx); |
| x->type = t; |
| oldx->ostk = r; // squirrel away old r value |
| reg[dr] = 1; |
| } |
| } |
| |
| void |
| restx(Node *x, Node *oldx) |
| { |
| if(oldx->op != 0) { |
| x->type = types[TINT64]; |
| reg[x->val.u.reg] = oldx->ostk; |
| gmove(oldx, x); |
| regfree(oldx); |
| } |
| } |
| |
| /* |
| * generate division according to op, one of: |
| * res = nl / nr |
| * res = nl % nr |
| */ |
| void |
| cgen_div(int op, Node *nl, Node *nr, Node *res) |
| { |
| Node n1, n2, n3; |
| int w, a; |
| Magic m; |
| |
| if(nr->op != OLITERAL) |
| goto longdiv; |
| w = nl->type->width*8; |
| |
| // Front end handled 32-bit division. We only need to handle 64-bit. |
| // try to do division by multiply by (2^w)/d |
| // see hacker's delight chapter 10 |
| switch(simtype[nl->type->etype]) { |
| default: |
| goto longdiv; |
| |
| case TUINT64: |
| m.w = w; |
| m.ud = mpgetfix(nr->val.u.xval); |
| umagic(&m); |
| if(m.bad) |
| break; |
| if(op == OMOD) |
| goto longmod; |
| |
| cgenr(nl, &n1, N); |
| nodconst(&n2, nl->type, m.um); |
| regalloc(&n3, nl->type, res); |
| cgen_hmul(&n1, &n2, &n3); |
| |
| if(m.ua) { |
| // need to add numerator accounting for overflow |
| gins(optoas(OADD, nl->type), &n1, &n3); |
| nodconst(&n2, nl->type, 1); |
| gins(optoas(ORROTC, nl->type), &n2, &n3); |
| nodconst(&n2, nl->type, m.s-1); |
| gins(optoas(ORSH, nl->type), &n2, &n3); |
| } else { |
| nodconst(&n2, nl->type, m.s); |
| gins(optoas(ORSH, nl->type), &n2, &n3); // shift dx |
| } |
| |
| gmove(&n3, res); |
| regfree(&n1); |
| regfree(&n3); |
| return; |
| |
| case TINT64: |
| m.w = w; |
| m.sd = mpgetfix(nr->val.u.xval); |
| smagic(&m); |
| if(m.bad) |
| break; |
| if(op == OMOD) |
| goto longmod; |
| |
| cgenr(nl, &n1, res); |
| nodconst(&n2, nl->type, m.sm); |
| regalloc(&n3, nl->type, N); |
| cgen_hmul(&n1, &n2, &n3); |
| |
| if(m.sm < 0) { |
| // need to add numerator |
| gins(optoas(OADD, nl->type), &n1, &n3); |
| } |
| |
| nodconst(&n2, nl->type, m.s); |
| gins(optoas(ORSH, nl->type), &n2, &n3); // shift n3 |
| |
| nodconst(&n2, nl->type, w-1); |
| gins(optoas(ORSH, nl->type), &n2, &n1); // -1 iff num is neg |
| gins(optoas(OSUB, nl->type), &n1, &n3); // added |
| |
| if(m.sd < 0) { |
| // this could probably be removed |
| // by factoring it into the multiplier |
| gins(optoas(OMINUS, nl->type), N, &n3); |
| } |
| |
| gmove(&n3, res); |
| regfree(&n1); |
| regfree(&n3); |
| return; |
| } |
| goto longdiv; |
| |
| longdiv: |
| // division and mod using (slow) hardware instruction |
| dodiv(op, nl, nr, res); |
| return; |
| |
| longmod: |
| // mod using formula A%B = A-(A/B*B) but |
| // we know that there is a fast algorithm for A/B |
| regalloc(&n1, nl->type, res); |
| cgen(nl, &n1); |
| regalloc(&n2, nl->type, N); |
| cgen_div(ODIV, &n1, nr, &n2); |
| a = optoas(OMUL, nl->type); |
| if(w == 8) { |
| // use 2-operand 16-bit multiply |
| // because there is no 2-operand 8-bit multiply |
| a = AIMULW; |
| } |
| if(!smallintconst(nr)) { |
| regalloc(&n3, nl->type, N); |
| cgen(nr, &n3); |
| gins(a, &n3, &n2); |
| regfree(&n3); |
| } else |
| gins(a, nr, &n2); |
| gins(optoas(OSUB, nl->type), &n2, &n1); |
| gmove(&n1, res); |
| regfree(&n1); |
| regfree(&n2); |
| } |
| |
| /* |
| * generate high multiply: |
| * res = (nl*nr) >> width |
| */ |
| void |
| cgen_hmul(Node *nl, Node *nr, Node *res) |
| { |
| Type *t; |
| int a; |
| Node n1, n2, ax, dx, *tmp; |
| |
| t = nl->type; |
| a = optoas(OHMUL, t); |
| if(nl->ullman < nr->ullman) { |
| tmp = nl; |
| nl = nr; |
| nr = tmp; |
| } |
| cgenr(nl, &n1, res); |
| cgenr(nr, &n2, N); |
| nodreg(&ax, t, D_AX); |
| gmove(&n1, &ax); |
| gins(a, &n2, N); |
| regfree(&n2); |
| regfree(&n1); |
| |
| if(t->width == 1) { |
| // byte multiply behaves differently. |
| nodreg(&ax, t, D_AH); |
| nodreg(&dx, t, D_DX); |
| gmove(&ax, &dx); |
| } |
| nodreg(&dx, t, D_DX); |
| gmove(&dx, res); |
| } |
| |
| /* |
| * generate shift according to op, one of: |
| * res = nl << nr |
| * res = nl >> nr |
| */ |
| void |
| cgen_shift(int op, int bounded, Node *nl, Node *nr, Node *res) |
| { |
| Node n1, n2, n3, n4, n5, cx, oldcx; |
| int a, rcx; |
| Prog *p1; |
| uvlong sc; |
| Type *tcount; |
| |
| a = optoas(op, nl->type); |
| |
| if(nr->op == OLITERAL) { |
| regalloc(&n1, nl->type, res); |
| cgen(nl, &n1); |
| sc = mpgetfix(nr->val.u.xval); |
| if(sc >= nl->type->width*8) { |
| // large shift gets 2 shifts by width-1 |
| nodconst(&n3, types[TUINT32], nl->type->width*8-1); |
| gins(a, &n3, &n1); |
| gins(a, &n3, &n1); |
| } else |
| gins(a, nr, &n1); |
| gmove(&n1, res); |
| regfree(&n1); |
| goto ret; |
| } |
| |
| if(nl->ullman >= UINF) { |
| tempname(&n4, nl->type); |
| cgen(nl, &n4); |
| nl = &n4; |
| } |
| if(nr->ullman >= UINF) { |
| tempname(&n5, nr->type); |
| cgen(nr, &n5); |
| nr = &n5; |
| } |
| |
| rcx = reg[D_CX]; |
| nodreg(&n1, types[TUINT32], D_CX); |
| |
| // Allow either uint32 or uint64 as shift type, |
| // to avoid unnecessary conversion from uint32 to uint64 |
| // just to do the comparison. |
| tcount = types[simtype[nr->type->etype]]; |
| if(tcount->etype < TUINT32) |
| tcount = types[TUINT32]; |
| |
| regalloc(&n1, nr->type, &n1); // to hold the shift type in CX |
| regalloc(&n3, tcount, &n1); // to clear high bits of CX |
| |
| nodreg(&cx, types[TUINT64], D_CX); |
| memset(&oldcx, 0, sizeof oldcx); |
| if(rcx > 0 && !samereg(&cx, res)) { |
| regalloc(&oldcx, types[TUINT64], N); |
| gmove(&cx, &oldcx); |
| } |
| cx.type = tcount; |
| |
| if(samereg(&cx, res)) |
| regalloc(&n2, nl->type, N); |
| else |
| regalloc(&n2, nl->type, res); |
| if(nl->ullman >= nr->ullman) { |
| cgen(nl, &n2); |
| cgen(nr, &n1); |
| gmove(&n1, &n3); |
| } else { |
| cgen(nr, &n1); |
| gmove(&n1, &n3); |
| cgen(nl, &n2); |
| } |
| regfree(&n3); |
| |
| // test and fix up large shifts |
| if(!bounded) { |
| nodconst(&n3, tcount, nl->type->width*8); |
| gins(optoas(OCMP, tcount), &n1, &n3); |
| p1 = gbranch(optoas(OLT, tcount), T, +1); |
| if(op == ORSH && issigned[nl->type->etype]) { |
| nodconst(&n3, types[TUINT32], nl->type->width*8-1); |
| gins(a, &n3, &n2); |
| } else { |
| nodconst(&n3, nl->type, 0); |
| gmove(&n3, &n2); |
| } |
| patch(p1, pc); |
| } |
| |
| gins(a, &n1, &n2); |
| |
| if(oldcx.op != 0) { |
| cx.type = types[TUINT64]; |
| gmove(&oldcx, &cx); |
| regfree(&oldcx); |
| } |
| |
| gmove(&n2, res); |
| |
| regfree(&n1); |
| regfree(&n2); |
| |
| ret: |
| ; |
| } |
| |
| /* |
| * generate byte multiply: |
| * res = nl * nr |
| * there is no 2-operand byte multiply instruction so |
| * we do a full-width multiplication and truncate afterwards. |
| */ |
| void |
| cgen_bmul(int op, Node *nl, Node *nr, Node *res) |
| { |
| Node n1, n2, n1b, n2b, *tmp; |
| Type *t; |
| int a; |
| |
| // largest ullman on left. |
| if(nl->ullman < nr->ullman) { |
| tmp = nl; |
| nl = nr; |
| nr = tmp; |
| } |
| |
| // generate operands in "8-bit" registers. |
| regalloc(&n1b, nl->type, res); |
| cgen(nl, &n1b); |
| regalloc(&n2b, nr->type, N); |
| cgen(nr, &n2b); |
| |
| // perform full-width multiplication. |
| t = types[TUINT64]; |
| if(issigned[nl->type->etype]) |
| t = types[TINT64]; |
| nodreg(&n1, t, n1b.val.u.reg); |
| nodreg(&n2, t, n2b.val.u.reg); |
| a = optoas(op, t); |
| gins(a, &n2, &n1); |
| |
| // truncate. |
| gmove(&n1, res); |
| regfree(&n1b); |
| regfree(&n2b); |
| } |
| |
| void |
| clearfat(Node *nl) |
| { |
| int64 w, c, q; |
| Node n1, oldn1, ax, oldax, di, z; |
| Prog *p; |
| |
| /* clear a fat object */ |
| if(debug['g']) |
| dump("\nclearfat", nl); |
| |
| w = nl->type->width; |
| // Avoid taking the address for simple enough types. |
| if(componentgen(N, nl)) |
| return; |
| |
| c = w % 8; // bytes |
| q = w / 8; // quads |
| |
| if(q < 4) { |
| // Write sequence of MOV 0, off(base) instead of using STOSQ. |
| // The hope is that although the code will be slightly longer, |
| // the MOVs will have no dependencies and pipeline better |
| // than the unrolled STOSQ loop. |
| // NOTE: Must use agen, not igen, so that optimizer sees address |
| // being taken. We are not writing on field boundaries. |
| agenr(nl, &n1, N); |
| n1.op = OINDREG; |
| nodconst(&z, types[TUINT64], 0); |
| while(q-- > 0) { |
| n1.type = z.type; |
| gins(AMOVQ, &z, &n1); |
| n1.xoffset += 8; |
| } |
| if(c >= 4) { |
| nodconst(&z, types[TUINT32], 0); |
| n1.type = z.type; |
| gins(AMOVL, &z, &n1); |
| n1.xoffset += 4; |
| c -= 4; |
| } |
| nodconst(&z, types[TUINT8], 0); |
| while(c-- > 0) { |
| n1.type = z.type; |
| gins(AMOVB, &z, &n1); |
| n1.xoffset++; |
| } |
| regfree(&n1); |
| return; |
| } |
| |
| savex(D_DI, &n1, &oldn1, N, types[tptr]); |
| agen(nl, &n1); |
| |
| savex(D_AX, &ax, &oldax, N, types[tptr]); |
| gconreg(AMOVL, 0, D_AX); |
| |
| if(q > 128 || nacl) { |
| gconreg(movptr, q, D_CX); |
| gins(AREP, N, N); // repeat |
| gins(ASTOSQ, N, N); // STOQ AL,*(DI)+ |
| } else { |
| p = gins(ADUFFZERO, N, N); |
| p->to.type = D_ADDR; |
| p->to.sym = linksym(pkglookup("duffzero", runtimepkg)); |
| // 2 and 128 = magic constants: see ../../runtime/asm_amd64.s |
| p->to.offset = 2*(128-q); |
| } |
| |
| z = ax; |
| di = n1; |
| if(w >= 8 && c >= 4) { |
| di.op = OINDREG; |
| di.type = z.type = types[TINT64]; |
| p = gins(AMOVQ, &z, &di); |
| p->to.scale = 1; |
| p->to.offset = c-8; |
| } else if(c >= 4) { |
| di.op = OINDREG; |
| di.type = z.type = types[TINT32]; |
| p = gins(AMOVL, &z, &di); |
| if(c > 4) { |
| p = gins(AMOVL, &z, &di); |
| p->to.scale = 1; |
| p->to.offset = c-4; |
| } |
| } else |
| while(c > 0) { |
| gins(ASTOSB, N, N); // STOB AL,*(DI)+ |
| c--; |
| } |
| |
| restx(&n1, &oldn1); |
| restx(&ax, &oldax); |
| } |
| |
| // Called after regopt and peep have run. |
| // Expand CHECKNIL pseudo-op into actual nil pointer check. |
| void |
| expandchecks(Prog *firstp) |
| { |
| Prog *p, *p1, *p2; |
| |
| for(p = firstp; p != P; p = p->link) { |
| if(p->as != ACHECKNIL) |
| continue; |
| if(debug_checknil && p->lineno > 1) // p->lineno==1 in generated wrappers |
| warnl(p->lineno, "generated nil check"); |
| // check is |
| // CMP arg, $0 |
| // JNE 2(PC) (likely) |
| // MOV AX, 0 |
| p1 = mal(sizeof *p1); |
| p2 = mal(sizeof *p2); |
| clearp(p1); |
| clearp(p2); |
| p1->link = p2; |
| p2->link = p->link; |
| p->link = p1; |
| p1->lineno = p->lineno; |
| p2->lineno = p->lineno; |
| p1->pc = 9999; |
| p2->pc = 9999; |
| p->as = cmpptr; |
| p->to.type = D_CONST; |
| p->to.offset = 0; |
| p1->as = AJNE; |
| p1->from.type = D_CONST; |
| p1->from.offset = 1; // likely |
| p1->to.type = D_BRANCH; |
| p1->to.u.branch = p2->link; |
| // crash by write to memory address 0. |
| // if possible, since we know arg is 0, use 0(arg), |
| // which will be shorter to encode than plain 0. |
| p2->as = AMOVL; |
| p2->from.type = D_AX; |
| if(regtyp(&p->from)) |
| p2->to.type = p->from.type + D_INDIR; |
| else |
| p2->to.type = D_INDIR+D_NONE; |
| p2->to.offset = 0; |
| } |
| } |